Summer 8-18-2016

2012 Monterey County Water Resources Agency Groundwater Extraction Summary Report

Follow this and additional works at: https://digitalcommons.csumb.edu/hornbeck_cgb_6_a

Part of the Education Commons, Law Commons, Life Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

This Report is brought to you for free and open access by the Monterey County Water Resources Agency at Digital Commons @ CSUMB. It has been accepted for inclusion in Monterey County Water Resources Agency Water Reports by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact digitalcommons@csumb.edu.
Table of Contents

Overview of the Ground Water Reporting Program ... 1
 History of the Ground Water Reporting Program ... 1
 2012 Ground Water Summary Report ... 1
 Reporting Methods .. 1
 Disclaimer ... 1
 Reporting Format .. 1

Ground Water Extraction Data Summary ... 2
 Summary of Methods Used for Extraction Reporting .. 3
 Total Extraction Data by Hydrologic Subarea and Type of Use ... 3
 Urban Extraction Data by City or Area .. 3

Agricultural Water Conservation Plans .. 4

Water and Land Use Forms ... 6
 Agricultural Water Pumped .. 6

Urban Water Conservation Plans .. 10

List of Tables

Table 1. Total extraction data by reporting method ... 3
Table 2. Total extraction data by hydrologic subarea and type of use 3
Table 3. Urban extraction data by city or area ... 3
Table 4. 1993 – net acre distribution of irrigation methods by crop type (based on 94% companies reported) 4
Table 5. 2011 – net acre distribution of irrigation methods by crop type (based on 94% companies reported) 4
Table 6. 2012 – net acre distribution of irrigation methods by crop type (based on 92% companies reported) 4
Table 7. 2013 – net acre distribution of irrigation methods by crop type (based on 94% companies reported) 4
Table 8. Agricultural Best Management Practices reported to be adopted from 2006 through 2013 6
Table 9. Urban Best Management Practices reported to be adopted from 2009 through 2013 10

List of Figures

Figure 1. Agency Zones and hydrologic subareas of the Salinas Valley Ground Water Basin 2
Figure 2. Percentage distribution by volume of methods used for extraction reporting 3
Figure 3. Percentage of total extractions by hydrologic subarea .. 3
Figure 4. Distribution of urban extraction by city or area ... 3
Figure 5. Types of irrigation methods used in the Salinas Valley based on companies reported 5
Figure 6. Top ten Best Management Practices forecasted for 2013 based on reported net acres 6
Figure 7. 2012 reported acre-feet by crop type & hydrologic subarea 7
Figure 8. 2012 reported net acres by crop type & hydrologic subarea .. 8
Figure 9. 2012 reported acre-feet/acre by crop type & hydrologic subarea 9
Overview of the Ground Water Reporting Program

History of the Ground Water Reporting Program
In February 1993, the Monterey County Board of Supervisors adopted Ordinance No. 3663 that required water suppliers within Zones 2, 2A, and 2B to report water-use information for ground water extraction facilities (wells) and service connections to the Monterey County Water Resources Agency (Agency). Monterey County Ordinance No. 3717, which replaced Ordinance No. 3663 and was adopted in October 1993, modified certain other requirements in the previous ordinance while keeping the ground water extraction reporting requirements in place for wells with a discharge pipe having an inside diameter of at least three inches.

The Agency has collected ground water extraction data from well operators, for the period beginning November 1 and ending October 31, starting with the 1992-1993 reporting year. Information received from the 300-plus well operators in the above-referenced zones of the Salinas Valley is compiled by the Ground Water Extraction Management System (GEMS) portion of the Water Resources Agency Information Management System (WRAIMS), a relational database maintained by the Agency. The intent of the ground water reporting program is to provide documentation of the reported amount of ground water that is extracted from Zones 2, 2A, and 2B of the Salinas Valley Ground Water Basin each year.

Since 1991, the Agency has required the annual submittal of Agricultural Water Conservation Plans (Ordinance 3851), which outline the best management practices that are adopted each year by growers in the Salinas Valley. In 1996, an ordinance was passed that requires the filing of Urban Water Conservation Plans (Ordinance 3886). Developed as the urban counterpart of the agricultural water conservation plans, this program provides an overview of the best management practices being implemented by urban water purveyors as conservation measures.

2012 Ground Water Summary Report
The purpose of this report is to summarize the data submitted to the Agency by well operators in February 2013 from the following annual reports:
- Ground Water Extraction Reports (agricultural and urban)
- Water Conservation Plans (agricultural and urban)
- Water and Land Use Forms (agricultural)

The agricultural data from the ground water extraction program covers the reporting year of November 1, 2011, through October 31, 2012; the urban data covers calendar year 2012. The agricultural and urban water conservation plans adopted for 2013 are also summarized. This report is intended to present a synopsis of current water extraction within the Salinas Valley, including agricultural and urban water conservation improvements that are being implemented to reduce the total amount of water pumped. It is not the purpose of this report to thoroughly analyze the factors that contribute to increases or decreases in pumping.

Reporting Methods
The Ground Water Conservation and Extraction Program provides well operators with a choice of three different reporting methods for each of their wells: Water Flowmeter, Electrical Meter, or Hour Meter (timer). The summary of ground water extractions presented in this report is compiled from data generated by all three reporting methods. Ordinance 3717 requires annual pump efficiency tests and/or meter calibration of each well to ensure the accuracy of the data reported.

Disclaimer
While the Agency has made every effort to ensure the accuracy of the data presented in this report, it should be noted that the data are submitted by individual reporting parties and are not verified by Agency staff. In addition, since so many factors can affect the extraction calculations, it is understood that no reporting method is 100 percent accurate. The Agency maintains strict quality assurance in the compilation, standardization, and entry of the data received. The Agency received Ground Water Extraction Reports from ninety-seven percent (97%) of the 1867 wells in the Salinas Valley for the 2012 reporting year. Agricultural and Urban Water Conservation Plan submittals for 2013 were ninety-four percent (94%) and one hundred percent (100%), respectively.

Reporting Format
Ground water extraction data are presented in this report by measurement in acre-feet. One acre-foot is equal to 325,851 gallons.
Ground Water Extraction Data Summary

The Salinas Valley Ground Water Basin is divided into four major hydrologic subareas whose boundaries are derived from discernible changes in the hydrogeologic conditions of the underground aquifers. Figure 1 (below) illustrates the Agency-designated Zones of the Salinas Valley in relation to the hydrologic subareas.

Figure 1. Agency Zones and hydrologic subareas of the Salinas Valley Ground Water Basin
Ground Water Extraction Data Summary (continued)

Summary of Methods Used for Extraction Reporting
The distribution of methods used for ground water extraction reporting (agricultural and urban) for the 2012 reporting year is shown in Table 1; a percentage distribution by volume is shown in Figure 2.

<table>
<thead>
<tr>
<th>Reporting Method</th>
<th>Acre-Feet per Reporting Method</th>
<th>Wells per Reporting Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Flowmeter</td>
<td>343,597</td>
<td>1,380</td>
</tr>
<tr>
<td>Electrical Meter</td>
<td>136,543</td>
<td>407</td>
</tr>
<tr>
<td>Hour Meter</td>
<td>9,101</td>
<td>18</td>
</tr>
<tr>
<td>Total (2012)</td>
<td>489,241</td>
<td>1,806</td>
</tr>
<tr>
<td>Average ('03-'12)</td>
<td>495,968</td>
<td>1,756</td>
</tr>
</tbody>
</table>

Total Extraction Data by Hydrologic Subarea and Type of Use
The total ground water extractions for the 2012 reporting year are summarized by hydrologic subarea, type of use (agricultural and urban in Table 2), and percentage (Figure 3).

<table>
<thead>
<tr>
<th>Subarea</th>
<th>Agricultural Pumping (acre-feet)</th>
<th>Urban Pumping (acre-feet)</th>
<th>Total Pumping (acre-feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>95,814</td>
<td>18,084</td>
<td>113,898</td>
</tr>
<tr>
<td>East Side</td>
<td>82,451</td>
<td>13,092</td>
<td>95,543</td>
</tr>
<tr>
<td>Forebay</td>
<td>135,971</td>
<td>7,488</td>
<td>143,459</td>
</tr>
<tr>
<td>Upper Valley</td>
<td>132,383</td>
<td>3,957</td>
<td>136,341</td>
</tr>
<tr>
<td>Total</td>
<td>446,620</td>
<td>42,621</td>
<td>489,241</td>
</tr>
<tr>
<td>Percent of Total</td>
<td>91.3%</td>
<td>8.7%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Urban Extraction Data by City or Area
The total ground water extractions attributed to urban (residential, commercial/institutional, industrial, and governmental) pumping for the 2012 reporting year are summarized by city or area in Table 3. Figure 4 shows how the total urban pumping for 2012 is apportioned among each city or area.

<table>
<thead>
<tr>
<th>City or Area</th>
<th>Urban Pumping (AF)</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castroville</td>
<td>776</td>
<td>1.82%</td>
</tr>
<tr>
<td>Chualar</td>
<td>130</td>
<td>0.30%</td>
</tr>
<tr>
<td>Gonzales</td>
<td>1,454</td>
<td>3.41%</td>
</tr>
<tr>
<td>Greenfield</td>
<td>2,426</td>
<td>5.69%</td>
</tr>
<tr>
<td>King City</td>
<td>2,735</td>
<td>6.42%</td>
</tr>
<tr>
<td>Marina</td>
<td>4,129</td>
<td>9.69%</td>
</tr>
<tr>
<td>Other Areas (OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA-Pressure</td>
<td>3,893</td>
<td>9.13%</td>
</tr>
<tr>
<td>OA-East Side</td>
<td>3,434</td>
<td>8.06%</td>
</tr>
<tr>
<td>OA-Forebay</td>
<td>933</td>
<td>2.19%</td>
</tr>
<tr>
<td>OA-Upper Valley</td>
<td>1,081</td>
<td>2.54%</td>
</tr>
<tr>
<td>Salinas</td>
<td>17,360</td>
<td>40.73%</td>
</tr>
<tr>
<td>San Ardo</td>
<td>110</td>
<td>0.26%</td>
</tr>
<tr>
<td>San Lucas</td>
<td>31</td>
<td>0.07%</td>
</tr>
<tr>
<td>Soledad</td>
<td>2,519</td>
<td>5.91%</td>
</tr>
<tr>
<td>Soledad Prisons</td>
<td>1,610</td>
<td>3.78%</td>
</tr>
<tr>
<td>Total</td>
<td>42,621</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Agricultural Water Conservation Plans

The Agricultural Water Conservation Plans include net irrigated acreage, irrigation method, and crop category. This information is forecasted and indicates what the grower plans to do in the upcoming year. It reflects the changing trends in irrigation methods in the Salinas Valley. Tables 4, 5, 6, and 7 show the distribution of irrigation methods by crop type for 1993, 2011, 2012 and 2013, respectively. Figure 5 (on the following page) illustrates the irrigation method trends from 1993 to 2013.

Table 4. 1993 - net acre distribution of irrigation methods by crop type (based on 94% companies reported)

<table>
<thead>
<tr>
<th></th>
<th>Furrow</th>
<th>Sprinkler & Furrow</th>
<th>Hand Move Sprinklers</th>
<th>Solid Set Sprinklers</th>
<th>Linear Move</th>
<th>Drip</th>
<th>Other¹</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>2,349</td>
<td>84,060</td>
<td>30,764</td>
<td>6,607</td>
<td>3,827</td>
<td>3,682</td>
<td>0</td>
<td>131,289</td>
</tr>
<tr>
<td>Field Crops</td>
<td>575</td>
<td>2,173</td>
<td>2,236</td>
<td>90</td>
<td>50</td>
<td>48</td>
<td>0</td>
<td>5,172</td>
</tr>
<tr>
<td>Berries</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,158</td>
<td>0</td>
<td>4,159</td>
</tr>
<tr>
<td>Grapes</td>
<td>261</td>
<td>0</td>
<td>0</td>
<td>13,347</td>
<td>0</td>
<td>15,976</td>
<td>0</td>
<td>29,584</td>
</tr>
<tr>
<td>Tree Crops</td>
<td>0</td>
<td>0</td>
<td>122</td>
<td>251</td>
<td>0</td>
<td>1,216</td>
<td>10</td>
<td>1,599</td>
</tr>
<tr>
<td>Forage</td>
<td>41</td>
<td>202</td>
<td>1,327</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>189</td>
<td>1,807</td>
</tr>
<tr>
<td>Unirrigated</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,227</td>
<td>86,435</td>
<td>34,449</td>
<td>20,295</td>
<td>3,925</td>
<td>25,080</td>
<td>199</td>
<td>173,610</td>
</tr>
</tbody>
</table>

¹ “Other” may include an irrigation system not listed here or a different combination of systems

Table 5. 2011 - net acre distribution of irrigation methods by crop type (based on 94% companies reported)

<table>
<thead>
<tr>
<th></th>
<th>Furrow</th>
<th>Sprinkler & Furrow</th>
<th>Hand Move Sprinklers</th>
<th>Solid Set Sprinklers</th>
<th>Linear Move</th>
<th>Drip</th>
<th>Other¹</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>30</td>
<td>24,027</td>
<td>23,409</td>
<td>9,907</td>
<td>869</td>
<td>62,275</td>
<td>185</td>
<td>120,702</td>
</tr>
<tr>
<td>Field Crops</td>
<td>35</td>
<td>444</td>
<td>266</td>
<td>80</td>
<td>1,416</td>
<td>544</td>
<td>0</td>
<td>2,785</td>
</tr>
<tr>
<td>Berries</td>
<td>0</td>
<td>38</td>
<td>0</td>
<td>340</td>
<td>0</td>
<td>6,810</td>
<td>0</td>
<td>7,188</td>
</tr>
<tr>
<td>Grapes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>620</td>
<td>0</td>
<td>33,008</td>
<td>0</td>
<td>33,628</td>
</tr>
<tr>
<td>Tree Crops</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>366</td>
<td>0</td>
<td>1,742</td>
<td>0</td>
<td>2,108</td>
</tr>
<tr>
<td>Forage</td>
<td>18</td>
<td>0</td>
<td>133</td>
<td>0</td>
<td>0</td>
<td>132</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Other Type²</td>
<td>0</td>
<td>126</td>
<td>2,427</td>
<td>175</td>
<td>12</td>
<td>1,321</td>
<td>100</td>
<td>4,161</td>
</tr>
<tr>
<td>Unirrigated</td>
<td>20</td>
<td>126</td>
<td>2,297</td>
<td>126</td>
<td>12</td>
<td>886</td>
<td>20</td>
<td>3,503</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>24,635</td>
<td>26,235</td>
<td>11,488</td>
<td>2,297</td>
<td>105,700</td>
<td>417</td>
<td>176,992</td>
</tr>
</tbody>
</table>

² “Other Type” are for other crop types not included, i.e. cactus, flower bulbs, etc.

Table 6. 2012 - net acre distribution of irrigation methods by crop type (based on 92% companies reported)

<table>
<thead>
<tr>
<th></th>
<th>Furrow</th>
<th>Sprinkler & Furrow</th>
<th>Hand Move Sprinklers</th>
<th>Solid Set Sprinklers</th>
<th>Linear Move</th>
<th>Drip</th>
<th>Other¹</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>0</td>
<td>22,556</td>
<td>19,469</td>
<td>7,476</td>
<td>677</td>
<td>69,040</td>
<td>2,001</td>
<td>121,219</td>
</tr>
<tr>
<td>Field Crops</td>
<td>0</td>
<td>323</td>
<td>284</td>
<td>206</td>
<td>1,416</td>
<td>389</td>
<td>140</td>
<td>2,758</td>
</tr>
<tr>
<td>Berries</td>
<td>0</td>
<td>122</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>7,707</td>
<td>0</td>
<td>7,929</td>
</tr>
<tr>
<td>Grapes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>363</td>
<td>0</td>
<td>34,381</td>
<td>0</td>
<td>34,744</td>
</tr>
<tr>
<td>Tree Crops</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,724</td>
<td>0</td>
<td>1,724</td>
</tr>
<tr>
<td>Forage</td>
<td>0</td>
<td>138</td>
<td>172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Other Type²</td>
<td>36</td>
<td>126</td>
<td>2,297</td>
<td>126</td>
<td>12</td>
<td>886</td>
<td>20</td>
<td>3,503</td>
</tr>
<tr>
<td>Unirrigated</td>
<td>6</td>
<td>126</td>
<td>2,222</td>
<td>8,271</td>
<td>2,105</td>
<td>114,128</td>
<td>2,161</td>
<td>178,505</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>23,265</td>
<td>22,222</td>
<td>8,271</td>
<td>2,105</td>
<td>114,128</td>
<td>2,161</td>
<td>178,505</td>
</tr>
</tbody>
</table>

Table 7. 2013 - net acre distribution of irrigation methods by crop type (based on 94% companies reported)

<table>
<thead>
<tr>
<th></th>
<th>Furrow</th>
<th>Sprinkler & Furrow</th>
<th>Hand Move Sprinklers</th>
<th>Solid Set Sprinklers</th>
<th>Linear Move</th>
<th>Drip</th>
<th>Other¹</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables</td>
<td>389</td>
<td>19,621</td>
<td>15,737</td>
<td>12,209</td>
<td>591</td>
<td>69,773</td>
<td>2,463</td>
<td>120,783</td>
</tr>
<tr>
<td>Field Crops</td>
<td>0</td>
<td>167</td>
<td>166</td>
<td>121</td>
<td>0</td>
<td>0</td>
<td>734</td>
<td></td>
</tr>
<tr>
<td>Berries</td>
<td>0</td>
<td>122</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6,610</td>
<td>0</td>
<td>6,732</td>
</tr>
<tr>
<td>Grapes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>363</td>
<td>0</td>
<td>34,358</td>
<td>0</td>
<td>34,721</td>
</tr>
<tr>
<td>Tree Crops</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,695</td>
<td>0</td>
<td>1,695</td>
</tr>
<tr>
<td>Forage</td>
<td>0</td>
<td>145</td>
<td>107</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>68</td>
<td>323</td>
</tr>
<tr>
<td>Other Type²</td>
<td>0</td>
<td>126</td>
<td>2,592</td>
<td>126</td>
<td>7</td>
<td>900</td>
<td>25</td>
<td>3,776</td>
</tr>
<tr>
<td>Unirrigated</td>
<td>1</td>
<td>27</td>
<td>1,128</td>
<td>598</td>
<td>113,617</td>
<td>2,556</td>
<td>170,044</td>
<td></td>
</tr>
</tbody>
</table>

¹ “Other” may include an irrigation system not listed here or a different combination of systems
² “Other Type” are for other crop types not included, i.e. cactus, flower bulbs, etc.

NOTE: Percentage of companies reported varies from year to year
Figure 5. Types of irrigation methods used in the Salinas Valley based on companies reported

NOTE: Reported net acres vary from year to year
Agricultural Water Conservation Plans (continued)

Since 1991, Salinas Valley growers have submitted Agricultural Water Conservation Plans to the Agency. Table 8 shows the number of net acres, by year, for selected Best Management Practices (BMPs) or water conservation measures which were reported to be implemented over the past five years.

Table 8. Agricultural Best Management Practices reported to be adopted from 2009 through 2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Months Set Aside</td>
<td>9,043</td>
<td>7,447</td>
<td>3,285</td>
<td>8,172</td>
<td>1,314</td>
</tr>
<tr>
<td>Summer Fallow</td>
<td>509</td>
<td>692</td>
<td>1,944</td>
<td>688</td>
<td>1,462</td>
</tr>
<tr>
<td>Water Flowmeters</td>
<td>124,561</td>
<td>138,957</td>
<td>144,353</td>
<td>141,595</td>
<td>132,104</td>
</tr>
<tr>
<td>Time Clock/Pressure Switch</td>
<td>126,694</td>
<td>144,853</td>
<td>153,715</td>
<td>152,488</td>
<td>144,693</td>
</tr>
<tr>
<td>Soil Moisture Sensors</td>
<td>32,427</td>
<td>44,644</td>
<td>46,121</td>
<td>46,309</td>
<td>45,953</td>
</tr>
<tr>
<td>Pre-Irrigation Reduction</td>
<td>84,693</td>
<td>96,908</td>
<td>99,362</td>
<td>94,954</td>
<td>92,338</td>
</tr>
<tr>
<td>Reduced Sprinkler Spacing</td>
<td>83,046</td>
<td>90,065</td>
<td>97,926</td>
<td>90,503</td>
<td>89,289</td>
</tr>
<tr>
<td>Sprinkler Improvements</td>
<td>105,495</td>
<td>111,889</td>
<td>115,517</td>
<td>115,946</td>
<td>108,617</td>
</tr>
<tr>
<td>Off-Wind Irrigation</td>
<td>107,552</td>
<td>114,843</td>
<td>116,209</td>
<td>114,110</td>
<td>108,243</td>
</tr>
<tr>
<td>Leakage Reduction</td>
<td>105,702</td>
<td>113,820</td>
<td>115,255</td>
<td>113,372</td>
<td>110,565</td>
</tr>
<tr>
<td>Micro Irrigation System</td>
<td>71,710</td>
<td>67,383</td>
<td>87,464</td>
<td>93,146</td>
<td>84,031</td>
</tr>
<tr>
<td>Surge Flow Irrigation</td>
<td>7,182</td>
<td>8,785</td>
<td>11,473</td>
<td>12,275</td>
<td>10,154</td>
</tr>
<tr>
<td>Tailwater Return System</td>
<td>10,046</td>
<td>16,581</td>
<td>15,402</td>
<td>13,577</td>
<td>8,220</td>
</tr>
<tr>
<td>Land Leveling/Grading</td>
<td>56,482</td>
<td>73,361</td>
<td>76,436</td>
<td>79,534</td>
<td>65,306</td>
</tr>
</tbody>
</table>

Note: Due to unique crop rotations, it is difficult to account for each BMP used on total Crop Acres; therefore Net Acres were used.

![BMPs Graph](image)

Figure 6. Top Ten Best Management Practices forecasted for 2013 based on reported net acres

Water and Land Use Forms

Agricultural Water Pumped

The following three figures present the agricultural water pumped (Fig. 7), irrigated net acres (Fig. 8), and amount of water used per acre (Fig. 9) by hydrologic subarea and crop type. The data was compiled using the reported acreage and water pumped from the 2012 Water and Land Use Forms. The data accounts for all crop types reported and all reporting methods: Water Flowmeter, Electrical Meter, and Hour Meter.

Changing weather patterns, variable soils, and crop types affect the amount of water needed for efficient irrigation. Even during a normal rain year, pumping rates will vary from one subarea to another and crop types will vary depending on economic demand.
Figure 7. 2012 reported acre-feet by crop type & hydrologic subarea
Figure 8. 2012 reported net acres by crop type & hydrologic subarea
Figure 9. 2012 reported acre-feet/acre by crop type & hydrologic subarea
Urban Water Conservation Plans

Since 1996, the Agency has been collecting data for the Urban Water Conservation Plan program. Table 9 shows the forecasted adoption of “Best Management Practices” (water conservation measures) for the past three years, as a percentage of total acreage reported. It is important to note that, while all of the listed practices apply to “large” water systems (200 or more customer connections), not all apply to “small” water systems (between 15 and 199 customer connections). The practices that apply only to large systems are printed in **bold** below.

Table 9. Urban Best Management Practices reported to be adopted from 2011 through 2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide speakers to community groups and media</td>
<td>85%</td>
<td>81%</td>
<td>85%</td>
</tr>
<tr>
<td>Use paid and public service advertising</td>
<td>74%</td>
<td>96%</td>
<td>89%</td>
</tr>
<tr>
<td>Provide conservation information in bill inserts</td>
<td>94%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Provide individual historical water use information on water bills</td>
<td>92%</td>
<td>92%</td>
<td>96%</td>
</tr>
<tr>
<td>Coordinate with other entities in regional efforts to promote water conservation practices</td>
<td>94%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Work with school districts to provide educational materials and instructional assistance</td>
<td>61%</td>
<td>92%</td>
<td>91%</td>
</tr>
<tr>
<td>Implement requirements that all new connections be metered and billed by volume of use</td>
<td>99%</td>
<td>99%</td>
<td>98%</td>
</tr>
<tr>
<td>Establish a program to retrofit any existing unmetered connections and bill by volume of use</td>
<td>77%</td>
<td>78%</td>
<td>39%</td>
</tr>
<tr>
<td>Offer free interior and exterior water audits to identify water conservation opportunities</td>
<td>98%</td>
<td>100%</td>
<td>98%</td>
</tr>
<tr>
<td>Provide incentives to achieve water conservation by way of free conservation fixtures (showerheads, hose end timers) and/or conservation “adjustments” to water bills</td>
<td>94%</td>
<td>90%</td>
<td>89%</td>
</tr>
<tr>
<td>Enforcement and support of water conserving plumbing fixture standards, including requirement for ultra low flush toilets in all new construction</td>
<td>78%</td>
<td>98%</td>
<td>94%</td>
</tr>
<tr>
<td>Support of State/Federal legislation prohibiting sale of toilets using more than 1.6 gallons per flush</td>
<td>96%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>Program to retrofit existing toilets to reduce flush volume (with displacement devices)</td>
<td>66%</td>
<td>34%</td>
<td>48%</td>
</tr>
<tr>
<td>Program to encourage replacement of existing toilets with ultra low flush (through rebates, incentives, etc.)</td>
<td>89%</td>
<td>95%</td>
<td>89%</td>
</tr>
<tr>
<td>Provide guidelines, information, and/or incentives for installation of more efficient landscapes and water-saving practices</td>
<td>94%</td>
<td>90%</td>
<td>94%</td>
</tr>
<tr>
<td>Encourage local nurseries to promote use of low water use plants</td>
<td>78%</td>
<td>78%</td>
<td>77%</td>
</tr>
<tr>
<td>Develop and implement landscape water conservation ordinances pursuant to the “Water Conservation in Landscaping Act”</td>
<td>63%</td>
<td>63%</td>
<td>63%</td>
</tr>
<tr>
<td>Identify and contact top industrial, commercial, and/or institutional customers directly; offer and encourage water audits to identify conservation opportunities</td>
<td>89%</td>
<td>87%</td>
<td>89%</td>
</tr>
<tr>
<td>Review proposed water uses for new commercial and industrial water service, and make recommendations for improving efficiency before completion of building permit process</td>
<td>64%</td>
<td>84%</td>
<td>84%</td>
</tr>
<tr>
<td>Complete an audit of water distribution system at least every three years as prescribed by American Water Works Association</td>
<td>74%</td>
<td>92%</td>
<td>93%</td>
</tr>
<tr>
<td>Perform distribution system leak detection and repair whenever the audit reveals that it would be cost effective</td>
<td>79%</td>
<td>97%</td>
<td>98%</td>
</tr>
<tr>
<td>Advise customers when it appears possible that leaks exist on customer’s side of water meter</td>
<td>99%</td>
<td>99%</td>
<td>97%</td>
</tr>
<tr>
<td>Identify irrigators of large landscapes (3 acres or more) and offer landscape audits to determine conservation opportunities</td>
<td>90%</td>
<td>89%</td>
<td>90%</td>
</tr>
<tr>
<td>Provide conservation training, information, and incentives necessary to encourage use of conservation practices</td>
<td>91%</td>
<td>92%</td>
<td>96%</td>
</tr>
<tr>
<td>Encourage and promote the elimination of non-conserving pricing and adoption of conservation pricing policies</td>
<td>91%</td>
<td>86%</td>
<td>86%</td>
</tr>
<tr>
<td>Implementation of conservation pricing policies</td>
<td>96%</td>
<td>91%</td>
<td>91%</td>
</tr>
<tr>
<td>Enact and enforce measures prohibiting water waste as specified in Agency Ordinance No. 3932 or as subsequently amended, and encourage the efficient use of water</td>
<td>64%</td>
<td>71%</td>
<td>76%</td>
</tr>
<tr>
<td>Implement and/or support programs for the treatment and reuse of industrial waste water / storm water / waste water</td>
<td>53%</td>
<td>67%</td>
<td>66%</td>
</tr>
</tbody>
</table>
Monterey County
Board of Supervisors

Fernando Armenta, Chair District #1
Louis Calcagno District #2
Simón Salinas District #3
Jane Parker District #4
Dave Potter District #5

Monterey County Water Resources Agency
Board of Directors

Vacant District #1
Silvio Bernardi District #2
Richard Ortiz District #3
Deidre Sullivan District #4
Ken Ekelund, Chair District #5
Mike Scattini Grower-Shipper Association
Claude Hoover, Vice Chair Monterey County Farm Bureau
David Hart Agricultural Advisory Committee
Fred Ledesma Mayor Select Committee

Monterey County Water Resources Agency
Executive Management

David Chardavoyne, General Manager
Robert Johnson, Assistant General Manager, Chief – Water Resources Planning and Management
Brent Buche, Assistant General Manager, Chief – Operations and Maintenance
Cathy Paladini, Finance Manager – Administrative Services
Wini Chambliss, Administrative Services Assistant

Summary Report Team

Elizabeth Krafft, Senior Hydrologist
Tamara Voss, Hydrologist
Teresa Campa, Engineering Aide II

For more information, contact:
Monterey County Water Resources Agency
893 Blanco Circle, Salinas
Mailing address:
P.O. Box 930, Salinas, CA 93902-0930
831.755.4860
831.424.7935 (fax)
www.mcwra.co.monterey.ca.us