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ABSTRACT 

Surface Conditions Drive Changes In Groundfish Species' 
Populations Along California Coast 

by 
Danielle Marie Fabian 

Master of Science in Environmental Science 
California State University Monterey Bay, 2020 

 
 Oceans display physical variability over a range of temporal and spatial scales, 
influencing factors such as larval dispersal, nutrient availability, species migration, and 
biodiversity. Such variability is vulnerable to the effects of climate change. Larvae and 
juveniles are particularly susceptible to changes in ocean variability, and changes in the early 
life stages of species populations ultimately impacts the adult stages. Physical consequences 
stemming from climate driven variability, including a loss of key prey species and changes in 
depth distributions of vulnerable fish species, could ultimately impact ecosystem services and 
threaten human food security and fisheries. The deep sea benthopelagic groundfish  play 
significant roles in biogeochemical and ecological processes on a global scale. Macrourids, 
the most common benthopelagic fish in the deep sea, are important benthic and midwater 
predators; making it critical to understand changes in their population structures over time. 
Macrourid larvae reside in surface waters, where they are more vulnerable to climate driven 
variability. Merluccius productus (M. productus) is a commercially important benthopelagic 
groundfish species with a life history similar to Macrourids. The combination of surface 
waters exhibiting more changes in physical variability compared to the deep sea and the 
vulnerability of larvae to oceanographic variability  makes observing these benthopelagic 
species particularly important for understanding the full-depth interactions and climate-
related changes.  This project focuses on studying correlations between changes in the life 
stages of Macrourid species’ and M. productus’ populations over time in relation to changes 
in climate and surface ocean conditions. Four research questions are addressed; Q1 & Q2) 
Has groundfish (specifically Macrourid spp. (Q1) and M. productus (Q2)) population 
structure changed over time in relation to changing climate and surface-ocean conditions?; 
and Q3 & Q4) Has the depth range of groundfish species (specifically Macrourid spp. (Q3) 
and M. productus (Q4)) changed over time with changing climate and surface-ocean 
conditions? With increasing changes in climate and surface-ocean conditions over time, there 
is a significant change in both Macrourid species’ population structure and M. productus 
population structure over time (Q1 and Q2). With increasing changes in climate and surface-
ocean conditions over time, there is no significant change in M. productus’ depth distribution 
over time (Q4). Regarding potential changes in Macrourid species’ depth distributions, Q3 
couldn’t be answered due to insufficient data. This study increases our understanding of how 
potential impacts of changing climate and surface-ocean conditions on M. productus’ 
population structure and depth distribution could affect Macrourid populations. Findings also 
provide valuable insight for: 1) predicting  and managing consequences of climate change 
and 2) management of coastal and marine resources and fisheries in the future. 
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CHAPTER 1 

INTRODUCTION 

CLIMATE CHANGE EFFECTS ON ENVIRONMENTAL VARIABILITY & FISHERIES  

 Deep sea groundfish along continental margins play vital roles within their 

ecosystems (Hamilton et al. 2004), including major biogeochemical cycles (Ragueneau et al. 

2000; Street-Perrott et al. 2008), acting as an important process contributing to marine 

primary production and carbon export to the deep sea (Tréguer and De La Rocha 2013; 

Schneider et al. 2008). The eastern division of the North Pacific is highly biodiverse, 

containing a combination of subarctic, temperate, and subtropical groundfish species 

(Therriault et al., 2016). An east to west diversity gradient is present there, with higher 

diversity and the majority of fish biomass occurring within coastal nearshore areas and the 

continental shelf, compared to the less diverse oceanic realm (Mueter and Norcross, 2002). 

Due to the great depths that deep sea groundfish reside in, the data needed to understand and 

monitor these species is lacking (Therriault et al., 2016). Grenadiers, of the family 

Macrouridae (Neat and Burns 2010), are the most common benthopelagic groundfish in the 

deep sea (Jeffreys et al. 2010; Matsui et al. 1991). For the sake of consistency, “grenadiers” 

will be referred to as Macrourids for the entirety of this paper. Macrourids are important 

benthic and midwater predators (Morley & Belchier, 2002) and some species are targeted by 

fisheries. Many Macrourids, including four of the five focal species of this research project, 

are benthopelagic (Hiroaki et al. 2002). The adult stages reside in the deep sea, inhabiting the 

water just above the seafloor, while the larvae are planktonic and reside in the upper water 

column (Allen et al. 2006).   The pelagic larvae is ultimately the link between the surface 

water and their adult habitat – the seafloor (e.g. Stein & Pearcy, 1982). The extent to which 

Macrourid, and other deep sea benthopelagic groundfish, populations are coupled to surface 

conditions, and the role that different marine species interactions play within this coupling 

are examples of important unresolved questions in the field of marine ecology that need to be 

addressed regarding these species.  
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Oceans display physical variability over a range of temporal and spatial scales 

(Brierley and Kingsford 2009; Fraschetti et al. 2005; Powell et al. 2006), influencing factors 

such as larval dispersal (Botsford et al. 1994), physiology (Hinrichsen 2009), nutrient 

availability (Kamykowski et al. 2002), species migration (Wegner et al. 2003), production, 

and biodiversity (Lindegren et al. 2016). In California waters, groundfish species’ 

populations experience different degrees of physical variability interannually, depending on 

the depth range and relative spatial location of groundfish species’ populations residing in the 

California Current Ecosystem (CCE) (Bograd et al., 2019). The combination of three 

different source waters and various currents within the California Current Ecosystem allows 

for great spatial diversity in physical and biological processes (Strub et al., 

1990; Mendelssohn et al., 2003). Species residing in regions further north and closer to the 

coast experience more extreme temperature variation due to the cooling of waters, both at the 

surface and at depth, from the intrusion of Subarctic water and upwelling in the spring and 

summer (Mendelssohn et al., 2003; King et al., 2011). By contrast, annual thermocline 

variability in the southern and offshore regions is very low, partially due to subtropical  water 

dominating these regions and stratification reduction in the seasonal mixed layer during the 

summer and autumn months (King et al., 2011).  

 

Similarly, surface waters exhibit more changes in physical variability compared to the 

deep sea (McLeod et al. 2009; Davies et al. 2007). Shallower living groundfish species, such 

as Merluccius productus (M. productus) may experience more extreme physical variability 

compared to groundfish living deeper in the water column, such as Coryphaenoides armatus 

(C. armatus); and therefore, may are more directly affected by such variability (Peterson et 

al., 2006; Bailey et al., 1982). However, changes in the surface waters ultimately affect deep 

sea ecosystems, impacting deep sea species either directly or indirectly (Kuhnz et al., 2014; 

Moore et al., 2013). For instance, extended periods of high-nutrient conditions caused by 

upwelling result in high productivity in surface waters (Pickett & Paduan, 2003; Bograd et 

al., 2019), which eventually leads to increased food supply reaching the deep sea in the form 

of particulate organic carbon (Buesseler et al., 2008; Steinberg et al., 2012). Additionally, M. 

productus carrion has been found to be the largest food source for various groundfish 

species, including Macrourids (Drazen et al., 2009; Dufault et al., 2009), making up 61% of 
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pelagic biomass in the California Current ecosystem (CCE) (Agostini et al., 2006; Drazen et 

al., 2012). Although physical variability in the surface waters may not directly affect deep 

sea Macrourids, these species are dependent on the carrion of M. productus’ populations, 

which are more sensitive to such variability (Agostini, 2005). For instance, the location of 

spawning can shift slightly with temperature (Agostini, 2005). Direct physical variability 

effects on M. productus populations could in turn indirectly affect Macrourids and other deep 

sea groundfish species .  The extent to which physical variability affects deep sea 

benthopelagic species, both directly and indirectly, are two important and unresolved 

questions that need to be addressed in the field of marine ecology.  

 

Physical ocean variability among and within all marine ecosystems is vulnerable to 

the effects of climate change (Brierley and Kingsford 2009; Doney et al. 2012), primarily due 

to temperature increases (Rosenzweig et al., 2008). Since the mid-1800s, there has been a 

tremendous increase in carbon dioxide (CO2) in the atmosphere due to the combustion of 

fossil fuels on a global scale (Karnosky 2003; Patz et al. 2014). This rise in C02 aggravates 

the greenhouse gas effect (Peters 1985; Recent Global Warming 2002), making the planet 

warmer than it otherwise would be  (Recent Global Warming 2002; Mitchell 1989; Schneider 

1989). Additional effects of climate change include: rising sea levels, rising global mean sea-

surface temperatures (SST), increased ocean acidity, perturbed regional weather patterns, 

altered ocean circulation, changes in the extent of oxygen-deficient dead-zones, and changed 

nutrient loads (Brierley and Kingsford 2009; Doney et al. 2011).  Marine biological 

processes are affected by such physical consequences, which could ultimately impact 

ecosystem services and threaten human food security (Brander 2007; Pecl et al. 2017).  For 

example, significant changes in physical ocean variability caused by ocean warming 

(Rosenzweig et al., 2008) can affect the conditions of larvae and juveniles (Pansch et al. 

2012), as well as the timing of reproduction and reproductive output (Velaquez 2003; 

Pankhurst and Munday 2011; Petrik et al. 2015).  

 

Larvae and juveniles are particularly susceptible to changes in ocean variability 

(Pansch et al. 2012; Heath 1992), and changes in the early life stages of species populations 

ultimately impacts the adult stages (Pankhurst and Munday 2011; Heath 1992). Juveniles and 
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larvae may not be able to survive the changes in salinity, temperature, and pH that are 

tolerated by adult stages (Rijnsdorp et al. 2009; Byrne and Przeslawski 2013).  Similarly, if 

the hatching time of larval eggs does not coincide with food availability, survival rates may 

be affected (Brierley and Kingsford 2009; Fiksen and Jorgensen 2011).  Changes in food 

availability could stem from temperature-driven phenological changes that could alter the 

timing of plankton blooms (Berner et al. 2018); ultimately leading to a loss of food supply 

for prey species, and potentially causing shifts in prey species distributions  (Brierley and 

Kingsford 2009).  The loss of key prey species could negatively impact remaining predators 

that not only play an important role within their ecosystems, but that are also deemed 

important in commercial fisheries (Young et al. 2015; Ripple et al. 2014). The combination 

of surface waters exhibiting more changes in physical variability compared to the deep sea 

(McLeod et al. 2009; Davies et al. 2007) and the vulnerability of larvae to oceanographic 

variability change (biological and physical) (Pansch et al. 2012; Heath 1992) makes 

observing deep sea benthopelagic species particularly important for understanding the 

interactions and feedbacks between marine systems and climate-related changes. Changes in 

surface water conditions probably affect larval stages of these species. Although adult fishes 

living in the deep sea may experience fewer negative effects caused by changing climate and 

surface conditions than their pelagic larvae and juveniles, effects on the early life stages will 

ultimately affect the adult populations and the fisheries dependent upon them (Johnson et al. 

2011).  In addition, direct impacts of increasing changes in climate and surface-ocean 

conditions on the more sensitive shallower species may potentially affect deep sea 

benthopelagic species indirectly.  

 

Another concern is that extremely vulnerable fish species have exhibited changes in 

depth distribution relating to changing water conditions (Nye et al. 2009; Cheung et al. 

2010). Fishing effort is venturing to deeper depths with increasing depletion of economically 

important species in shallower water (Norse et al. 2012; Yoklavich et al. 2000), and changes 

in depth distributions can potentially impact the risk of individuals being caught as bycatch 

(Gilly et al. 2013; Roberts 2002). In addition, Macrourids generally have slow recovery rates 

from fishing mortality (Norse et al., 2012), due to high longevity and slow growth rates 

(Clark, 2001), and Macrourid species that are commercially exploited may be overfished 
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(Shotton 2005). The combination of slow recovery rates and overfishing could potentially 

result in a fishery collapse within a short time period (Large et al. 2003; Shotton 2005). A 

good example for showing the importance of monitoring Macrourid species’ populations can 

be seen in reference to the commercially targeted species, Coryphaenoides acrolepis (C. 

acrolepis), and the non-target species, Coryphaenoides armatus (C. armatus). These two 

species overlap on the slope. Coryphaenoides armatus, although of little interest to fisheries, 

is often caught as bycatch and is difficult to differentiate from C. acrolepis (Iwamoto et al. 

2015). Both C. acrolepis and C. armatus are known to have pelagic larvae (e.g. Stein & 

Pearcy, 1982). It is important to assess if there is any change in C. acrolepis and C. armatus 

pelagic larval density and benthopelagic adult fishes with the change in climate and surface 

conditions in order to provide insight necessary to  manage fisheries in the future. Accidental 

misclassification could result in fishermen wrongly assuming that the target species’, C. 

acrolepis, population is thriving. In reality, it might be declining at a rapid rate.  This could 

result in overexploitation and collapse of fisheries, which in turn, could negatively affect 

local communities as a whole. Misidentification could also lead to overexploitation of the 

non-target species, potentially disrupting deep-sea ecosystems (Gjerde 2006). For instance, 

declining groundfish populations, resulting from anthropogenic climate change and 

overfishing, could potentially create shifts in marine phytoplankton communities (Pershing et 

al. 2015; Katz et al. 2009). 

 

Given the extent to which deep sea benthopelagic groundfish are coupled to surface 

conditions and the vulnerability of their early life stages to changes in physical variability, 

the goal of this thesis is to better understand, how increasing changes in climate and surface-

ocean conditions over time are affecting deep sea benthopelagic groundfish species off the 

coast of California. To achieve this, this study monitors changes occurring in larval and adult 

life stages of environmentally and economically important benthopelagic fish species with 

changes in climate and surface-ocean conditions. Findings from this study have the potential 

to provide valuable insight for the global climate change discussion in that it sheds light on 

both the direct effects and potential indirect effects of changing climate and surface 

conditions on economically and ecologically important benthopelagic groundfish species. In 
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turn, such insight can be incorporated into the management of coastal and marine resources 

to aid in the protection of both fisheries and the marine ecosystems they depend on.  

 

FOCAL SPECIES 

 The five focal species in this study are: C. armatus, Coryphaenoides leptolepis (C. 

leptolepis), Coryphaenoides yaquinae (C. yaquinae), C. acrolepis, and M. productus, 

commonly known as North Pacific hake. For the sake of consistency, Pacific hake will be 

referred to as M. productus for the entirety of this thesis. All of the Coryphaenoides species 

are included in the family Macrouridae (Cohen et al. 1990). Although not a Macrourid, M. 

productus is a benthopelagic groundfish species and is included in the study due to its similar 

life history (Melnychuk et al. 2013; Cohen et al. 1990). Merluccius productus and 

Macrourids are all included in the order Gadiformes (Iwamoto et al. 2015). For this study, 

Macrourids were analyzed as a group and M. productus was analyzed independently as a 

single species. Due to difficulty distinguishing C. armatus, C. leptolepis, and C. yaquinae 

from one another at the long-term time series study site, all three species were grouped 

together as one complex (Coryphaenoides armatus-leptolepis-yaquinae complex or 

Macrourid species complex) for analyses at this site. The following are brief descriptions of 

the Macrourid focal species in this project: 

Coryphaenoides acrolepis: 

Coryphaenoides acrolepis is a benthopelagic mid-slope Macrourid species that is 

significantly more abundant than any other large fish species living on the continental slope 

(Cohen et al. 1990).  Commercially, this species is the North Pacific’s most important 

Macrourid species (Koslow 1996; Laptikhovsky et al., 2013).  It is a non-migratory species 

that resides in the North Pacific at a depth range of 400-1800 meters (Matsui et al. 1991; 

Cohen et al. 1990).  This species has pelagic larvae (Iwamoto T. 1999). Due to its economic 

importance, it is necessary to monitor potential changes in abundance of this species over 

time to avoid overfishing (as recommended for groupers: Mangubhai et al. 2011).  
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Coryphaenoides armatus:  

Coryphaenoides armatus is a deep-slope upper continental rise Macrourid species 

found in all the world’s oceans, at depths between 800 and 4,000 meters (Merrett and 

Haedrich 1997; Cohen et al. 1990).  This species is known to grow slowly, potentially living 

up to 75 years of age (Cohen et al. 1990). Distribution of C. armatus is likely driven by 

migration in response to variation in food availability (Drazen et al. 2012; Bailey et al. 2006).  

Coryphaenoides armatus, although of no interest to fisheries, is often caught as by-catch and 

is difficult to differentiate from C. acrolepis (Iwamoto et al. 2015). This species has pelagic 

larvae (Iwamoto T. 1999). 

Coryphaenoides yaquinae: 

Coryphaenoides yaquinae is an abyssal Macrourid species that is confined to abyssal 

depths encompassed within the Pacific Ocean (Jamieson et al. 2012).  Although preferring 

deeper depths, the species is known to inhabit a depth range of 3400 to 5800 meters (Wilson 

and Waples 1983).  Coryphaenoides yaquinae is closely related to C. armatus, and the two 

species are almost indistinguishable from one another based on physical characteristics alone 

(Smith et al. 1979; Jamieson et al. 2012).  While generally segregated by depth, the two 

species co-exist on the Pacific continental margin between the 3400-4300 meter depth ranges 

(Jamieson et al. 2012; Endo and Okamura 1992).  This species has pelagic larvae (Iwamoto 

T. 1999). 

Coryphaenoides leptolepis: 

Coryphaenoides leptolepis is commonly referred to as the “Ghostly Grenadier” and is 

listed as Least Concern because the species has no known predators and resides outside the 

range of fisheries (Iwamoto 2015).  It is a bathydemersal species, inhabiting a depth range of 

610-4000 meters, and can grow to 62 centimeters in length (Iwamoto 2015).  

Coryphaenoides leptolepis is native to the northeast and eastern central Pacific, as well as the 

western central, eastern central, northwest, and northeast Atlantic (Wilson and Attia 2003; 

Iwamoto 2015).  Due to a lack of commercial importance and depth range, very little is 

known about C. leptolepis (Iwamoto 2015). This species has pelagic larvae (Iwamoto T. 

1999). 
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Merluccius productus:  

Merluccius productus, of the family Merlucciidae, is commonly referred to as the 

Pacific hake (Carrera et al. 2006). It is a benthopelagic species (Essington et al. 2011) with 

pelagic larvae (Leaman and Beamish 1984) and is important prey for many larger fishes and 

marine mammals (Hoff et al. 2015). Within U.S. waters, M. productus is considered one of 

the most important commercial fishery species (NOAA, Pacific whiting (hake)). Merluccius 

productus resides in surface waters and depths up to 1,000 meters and is native to the eastern 

Pacific (Cohen et al. 1990). It inhabits coastal and oceanic areas but resides mainly on the 

continental shelf (Alverson and Larkins 1969; Cohen et al. 1990).  Merluccius productus is a 

highly migratory species and can grow to 91 centimeters in length (Beamish et al. 2005; Hoff 

et al. 2015). Currently, this species is the most abundant groundfish population in the 

California Current system, with more M. productus caught than all other groundfish species 

combined (Fisheries and Oceans Canada 2018). 

 

 

 

 

 

Figure 1. Panels A-E showing separate images of the benthopelagic groundfish focal species chosen 
for this study. 
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ENVIRONMENTAL VARIABLES 

In order to monitor potential changes occurring in larval and adult life stages of 

Macrourids and M. productus in relation to changes in climate and surface-ocean conditions, 

five environmental variables were chosen and compared to Macrourid and M. productus data. 

Certain variables, despite not being classified as “climate” or “surface-ocean condition” 

variables, were chosen due to their strong relationships with climate and surface-ocean 

conditions. The five environmental variables used in the study are the following: sea surface 

temperature (SST), particulate organic carbon (POC) flux reaching the deep sea, carbon to 

nitrogen ratio (C:N) of sinking particulate matter, net primary production (NPP), and the 

Multivariate ENSO index (MEI). NPP, POC and C:N are indicators of food supply 

(Buesseler et al., 2008; Steinberg et al., 2012), however, they are useful for monitoring 

climate-related changes because such changes affect NPP, POC, and C:N (Moore et al., 

2013), ultimately affecting factors such as export efficiency and the community structures of 

abyssal and deep-sea ecosystems (Kuhnz et al., 2014; Moore et al., 2013). Climate change is 

predicted to increase certain phytoplankton C:N ratios (Burkhardt et al., 1999). Increased 

C:N ratios could result in decreased export efficiency (Burkhardt et al., 1999), likely 

resulting in less POC reaching the seafloor in deeper waters (Moore et al., 2013)). By 

contrast, export efficiency is expected to increase due to climate-related declines in primary 

production, ultimately increasing export efficiency of POC (Arteaga et al., 2018; Chavez et 

al., 2011). This predicted increase in export efficiency will likely outweigh the declines 

caused by increased C:N ratios of phytoplankton (Chavez et al., 2011). Regardless, C:N, 

NPP, and POC are useful in assessing associations between fish populations and 

climate/surface-ocean conditions (Moore et al., 2013). Throughout the remainder of this 

paper, the variables relating to “climate and surface-ocean conditions” mentioned above, 

including indirect indicators of food supply, will be referred to as “environmental variables” 

for the sake of simplicity.  

APPROACH  

 This project focuses on studying correlations between changes in deep-sea 

benthopelagic groundfish populations over time in relation to changes in climate and surface 

ocean conditions, as well as changes in indirect indicators of food supply. Four research 
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questions are addressed in this project; Q1) Has Macrourid population structure (abundance, 

body length, biomass) changed over time in relation to changing climate and surface-ocean 

conditions? Q2) Has Merluccius productus’ population structure (abundance, body length, 

biomass) changed over time in relation to changing climate and surface-ocean conditions? 

Q3) Has the depth range of Macrourid species changed over time with changing climate and 

surface-ocean conditions? Q4) Has the depth range of Merluccius productus changed over 

time with changing climate and surface-ocean conditions? Question 1 addresses Macrourids 

using two separate means: 1) analyzing a time-series of benthic imagery annotations, and 2) 

analyzing Macrourid data collected from external sources. Questions 2-4 were addressed 

strictly through mined external data.  Questions 2 and 4 address potential changes relating to 

M. productus. Due to separate data collection methods for Q1, there are separate component 

hypotheses for each method, as well as for each of the various fish variables obtained within 

the mined data. Further details regarding each question, their component hypotheses, and the 

population structure variables used are given below (See Appendix A). 

 

This thesis involves a two-part study to address the four research questions. Part 1 of 

the study addresses Q1. Part 2 of the study addresses all four questions. Part 1 of the study 

involved conducting an hourly benthic imagery annotation to determine changes in adult 

Macrourid spp. abundance during a 6-year period at a station in the northeast Pacific (Sta. 

M). The annotation focused on data collected from 2011 to 2017. For Part 2 of the study, two 

existing NOAA databases (ERDDAP & FRAM; see methods section) were examined to 

determine potential changes in M. productus and Macrourid population structures/depth-

distributions over time (2011-2017). The databases contained data from a continuous 64-year 

time-series, however, only data from the study period (2011-2017) relating to life stages of 

M. productus and Macrourid species residing along the California coast were used in 

analyses. Population structure and depth distribution data collected at Sta. M and obtained 

from NOAA databases were then compared to environmental variables relating to climate 

and surface-ocean conditions to determine if similar temporal trends occurred along the 

California coast. 
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CHAPTER 2 

METHODS 

STUDY AREA 

Station M (Sta. M) is an 

abyssal station in the northeast 

Pacific, approximately 220 km west 

of Point Conception along the 

central California coast (34º 50'N, 

123º 00'W). The station is 

approximately 4,100 m deep. This 

time series study is maintained by 

the Smith lab at the Monterey Bay 

Aquarium Research Institute 

(MBARI) and has been monitored 

consistently since 1989 (Smith et al., 

2020).  

 

INSTRUMENTATION 

A number of autonomous long-

term instruments have been deployed 

on the seafloor at Sta. M to collect 

various types of data. The instruments 

used in part 1 of this study are 

currently deployed at Sta. M and 

include 2 sediment traps moored 600 

and 50 meters above the seafloor 

(mab) (Smith et al., 2013), as well as 

2 benthic time-lapse cameras (Smith et al., 2017). The sediment traps collect particulate 

Figure 2. Station M. (Image Credit: MBARI) 

Figure 3. Instruments currently deployed at Sta. M   
(Image credit: MBARI) 
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matter that falls through the water column, eventually reaching the seafloor (Smith et al., 

2013).  The traps collect sinking material at 10-day intervals with a rotating carousel of 

21 bottles (Smith et al., 1994). Once recovered, these bottles are taken back to the lab 

where the contents are analyzed for total and organic carbon, allowing for estimates of 

POC flux (Smith et al., 2013). The time-lapse cameras took a still image of the seafloor 

every hour for the duration of this study period (Smith et al., 1993), with gaps for periods 

when the camera systems were being serviced or did not work (Smith et al., 1994). 

Continuous deployment periods range from 3 to 12 month time spans.  The cameras are 

mounted on a titanium frame at angles of 1) 35º in the vertical plane and 31º in the 

horizontal plane (Smith 1993), and the camera lens is situated approximately 2 m above 

the seafloor (Smith et al., 1994). The fields of view extend to 6.5 m from the tripod frame 

base and begins at 1.8 m in front of the cameras.  An area of the seafloor, approximately 

20 m², is illuminated by the two strobes on either side of the camera housings (Lemon, 

2018). High-resolution digital imagery is used for deployments since 2007 (Sherman & 

Smith, 2009. Time-lapse imagery allows for observational estimates of various factors, 

including species’ abundances and spatial patterns of individual organisms (Lemon, 

2018). Satellite color imagery is also used to obtain SST and regional surface water 

chlorophyll, providing the data necessary for estimating NPP in surface waters above Sta. 

M (Smith et al., 2017). Around Sta. M, a radius of 100 km was used for the daily satellite 

sensing (Smith et al., 2017). Refer to Smith et al., 2017 for a description of full methods.  

 

IMAGE ANALYSIS (PART 1)  

Each hourly image from the time-lapse camera, taken from 2007 to 2017, was 

reviewed for presence of identifiable Macrourids using MBARI’s open-source Video 

Annotation and Reference System (VARS) software (Schlining & Stout, 2006). VARS 

allows for annotation at any level of detail, including measurements of individual animals 

on the sea floor and comments on behavior and color. However, individuals in this study 

were not measured because they were typically in the water column. The VARS software 

stores all of the data and annotations within the system (Schlining & Stout, 2006). The 

lower 75% of each 20 m2 image was used as an effective field of view due to the uneven 
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lighting and angle of the tripod images, increasing confidence in the identification of 

Macrourid species.  

 

QUESTION 1(A): 

Has Macrourid species complex’ population structure changed over time in relation to 

changing climate and surface-ocean conditions?  

Null Hypothesis: With changes in climate and surface-ocean conditions over time, there 
is no significant change (increase or decrease) in Macrourid species complex’ abundance.  

Alternative Hypothesis: With changes in climate and surface-ocean conditions over time, 
there is a significant change (increase or decrease) in Macrourid species complex’ 
abundance. 

Counts of all benthopelagic Macrourid species present at Sta. M from 2011-2017 

were analyzed to determine changes in Macrourid abundance. The three dominant species 

present at Sta. M were C. armatus, C. leptolepis, and C. yaquinae. As a proxy for local 

abundance, counts of individuals per frame were determined. Counts were determined by 

visually counting the number of individuals present in each image’s effective field of 

Figure 4. Time-lapse camera tripod image. The number of  individual Macrourids 
present is counted for each hourly image (indiv./hr) and averaged weekly. 



 

 

14 

view every hour. Due to difficulty distinguishing the three species from one another in 

the images, all three species were grouped together as one complex (Coryphaenoides 

armatus-leptolepis-yaquinae complex) when counting the number of individuals present. 

The number of fish present per hour (i.e. per image) was averaged over each week. 

Weekly averaged Macrourid count data were compared to the environmental variables to 

determine potential correlations between changes in fish populations at Sta. M. and 

climate. As previously stated, the variables used in the study included the following: sea 

surface temperature (SST), particulate organic carbon flux (POC flux), net primary 

production (NPP), carbon to nitrogen ratio (C:N) in the sinking particulate matter, and the 

Multivariate ENSO Index (MEI). Once these variables used in the data analyses were 

extracted for the entire time-series, they were averaged to obtain weekly averages to 

compare to weekly averaged fish count data using statistical analyses. 

 

MINING DATA FROM OUTSIDE SOURCES (PART 2) 

Existing NOAA databases containing data from a continuous 64-year time-series 

were examined to obtain Macrourid spp.’ population structure and depth-distribution data 

for all life stages of the species present at Sta. M when data were available. Additionally, 

similar data for the shallower living M. productus, C. acrolepis, and all deep-sea 

Macrourid species residing along the California coast were obtained and included in the 

analyses when data were available. All extracted data falls within the time period of 2011 

to 2017. The two NOAA databases include the data server ERDDAP and the data 

warehouse FRAM (refer to the Literature Cited section for links to both sources). 

QUESTIONS 1(B)-4:  

Q1(B) & Q2) Has groundfish (specifically Macrourid spp. (Q1) and M. productus (Q2)) 
population structure changed over time in relation to changing climate and surface-
ocean conditions?  

Q3 & Q4) Has the depth range of groundfish species (specifically Macrourid spp. (Q3) 
and M. productus (Q4)) changed over time with changing climate and surface-ocean 
conditions?  
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The collected NOAA groundfish data were also averaged (weekly) and compared 

to the same physical variables as the fish density data from Sta. M via statistical analyses 

to address the separate research questions. Comparing early life stage data to adult 

abundance data provides valuable insight into possible larval or juvenile density decline 

due to climate and surface conditions. A decline in adult fish populations will reflect this 

early life-stage density decline and can be predicted in the future. Early life stage data, 

adult abundance data, and other data relating to population structure obtained from 

NOAA databases were then compared to the adult fish density data collected at Sta. M 

for the study period (2011-2017) to determine if there are similar temporal trends in 

population structure occurring at Sta. M and along the California coast. Values derived 

from statistical analyses on Sta. M and NOAA mined data were assessed to determine 

possible and/or similar trends. The mined fish variables used in population structure 

analyses included the following: 1) regional (CA) Macrourid spp. biomass, 2) regional 

Macrourid spp. catch per unit effort (CPUE), 3) regional and local (relating to Sta. M) M. 

productus biomass, 4) regional and local M. productus CPUE, 5) regional Macrourid 

body length, 6) regional M. productus body length, 7) regional Macrourid spp.’ larval 

abundance, and 8) regional M. productus’ larval abundance. 

Depth-distribution data were also extracted along with the NOAA time-series 

quantitative data to assess any changes in species’ depth distributions over time. 

Statistical analyses were used to determine any potential relationships between changes 

in species’ depth distributions over time and changes in climate and surface conditions. 

Depth-distribution data were compared to the same environmental variables as the fish 

density data from Sta. M in statistical analyses. Findings from statistical analyses were 

compared between Macrourid spp. and M. productus to determine similar trends among 

the different species regarding depth-distributions. The mined fish variables included in 

depth-distribution analyses were the following: 1) regional Macrourid spp. depth, and 2) 

regional and local M. productus depth.  
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STATISTICAL ANALYSES: 

All data derived from Sta. M annotations and mined NOAA sources were 

averaged to obtain weekly averages to compare averaged fish population structure 

variables using three methods of statistical analyses, including; 1) Man-Kendall Trend 

Test, 2) Cross correlation (CC) analyses, and 3) Spearman’s rho. Weekly averages for all 

previously stated fish variables were obtained and ranked using Excel. In order to detect 

any statistically significant trends in the time-series (2011-2017) data, the Mann-Kendall 

method was applied. Simply put, the Mann-Kendall method was used to establish 

whether Macrourid and M. productus variables were increasing or decreasing 

consistently over time. This is the first step in answering the study questions because we 

must first establish possible trends in fish variables before we can determine how climate 

and surface-ocean conditions are affecting or causing such trends. CC analyses were used 

to determine the separate relationships and the degree of correlation between changes in 

fish populations, at Sta. M and along the California coast, and changes in climate and 

surface ocean conditions over time. CC analyses were run in the statistical program R, 

and accounted for time lags between variables, as well as measured similarity between 

the variable series. To evaluate the linear relationship between variables, scatter plots 

were created to incorporate the shifted weekly variables and fish variables. To evaluate 

the monotonic relationship between variables (i.e., the strength of association between 

two variables), as well as for comparison purposes, Spearman’s rho was used alongside 

CC analyses. Lag periods, correlation strengths (+, -), and Spearman’s rho values, 

derived from CC analyses on Sta. M and mined data, were assessed to determine possible 

trends over time. In other words, CC analyses and Spearman’s rho were used to answer 

the remaining portions of this study questions, by determining relationships (and 

relationship strengths) between Macrourid and M. productus population structure 

variables and variables relating to climate and surface-ocean conditions. CC analyses also 

allowed us to determine the lag times of the relationships, i.e., the amount of time it takes 

for fish variables to change in relation to changes in the associated environmental 

variables.  
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CHAPTER 3 

RESULTS 

Findings from this study provided answers to the four research questions 

addressed in this thesis.  These questions are relisted below. Page numbers for the 

complete list of research questions, their associated component hypotheses, and statistical 

analyses results tables can be found in the Table of Contents. Three of the fourteen fish 

variables used in the Mann-Kendall analyses showed significant trends over the time-

series (2011-2017). Macrourid length and abundance increased significantly over the 7-

year period (Macr. spp. comp.’ abundance: p < 0.0001; Macr. length: p = 0.0023). 

Similarly, local Merluccius productus biomass significantly increased over time (M. 

productus biomass: p = 0.0170). 

 

Population Structure: 

Question 1: 

HAS MACROURID SPECIES’ POPULATION STRUCTURE CHANGED OVER TIME IN RELATION 
TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

QUESTION 2: 

HAS MERLUCCIUS PRODUCTUS’ POPULATION STRUCTURE CHANGED OVER TIME IN 
RELATION TO CHANGING CLIMATE AND SURFACE OCEAN CONDITIONS? 

Depth: 

QUESTION 3: 

HAS THE DEPTH RANGE OF MACROURID SPECIES CHANGED OVER TIME WITH CHANGING 
CLIMATE AND SURFACE-OCEAN CONDITIONS?  

QUESTION 4: 

HAS THE DEPTH RANGE OF MERLUCCIUS PRODUCTUS CHANGED OVER TIME WITH 

CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS?  

 



 

 

18 

1.) Macrourid Species Complex’ Abundance 
 

 
 

Cross correlation analysis showed a positive relationship between MEI and 

Macrourid species complex’ abundance (rho = 0.40; p = 0.0000), with the strongest 

correlation when fish abundance was lagged 56 weeks after MEI data (Refer to Table 1 in 

Appendix B). There was significant evidence of a moderate monotonic association 

between these two variables (rho = 0.40; p = 0.0000). An inverse relationship was found 

between NPP and Macrourid species complex’ abundance (rho = -0.35; p = 0.0000), with 

the strongest correlation present when fish abundance was lagged 50 weeks after NPP 

data. A significantly weak monotonic trend was exhibited over the time series between 

these two variables (rho = -0.35; p = 0.0000). An inverse relationship between Macrourid 

species complex’ abundance and C:N was also found (rho = -0.32; p = 0.0000), with the 

strongest correlation present when fish abundance lagged 67 weeks after changes in C:N 

data. A significantly weak monotonic relationship between these two variables over time 

was determined (rho = -0.32; p = 0.0000).  

Relating back to the research question (Q1(A)), results from the Mann-Kendall 

tests, carried out on Macrourid species complex’ abundance, showed a significant 

increasing trend in the series over time (alpha < 0.05; See Table # above). Results from 

the Mann-Kendall analysis, in combination with the findings mentioned above from CC 

and Spearman rank analyses, allow us to reject the null hypothesis (Ho) and accept the 

alternative hypothesis (Ha), which is stated below.  

Fish Variable Species Included Data Source Time-Series

2011-2017

Climate/Surface Condition Variables

Macrourid species complex' 
abundance                                        

(# ind. /hr/ week)
Sta. M

Coryphaenoides armatus 
Corphaenoides leptolepis 
Coryphaenoides yaquinae 

POC C_N MEI SST NPP

Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid species complex' population structure changed over time in relation to changing climate and surface-ocean 
conditions?

Mann-Kendall

1 A
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species complex' abundance. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid species 
complex' abundance. Spearman Rank
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(Q1(A)): HAS MACROURID SPECIES COMPLEX’ POPULATION STRUCTURE CHANGED 
OVER TIME IN RELATION TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HA: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO MEI, NPP AND C:N, THERE IS A 

SIGNIFICANT INCREASE IN MACROURID SPECIES COMPLEX’ ABUNDANCE; 
THEREFORE, THERE IS A SIGNIFICANT CHANGE IN MACROURID SPECIES COMPLEX’ 

POPULATION STRUCTURE OVER TIME. 
 

2.) Macrourid Body Length 
 

 
 

The two strongest negative relationships associated with Macrourid body length 

were with NPP and C:N (NPP: rho = -0.58, p = 0.0000; C:N: rho = -0.53, p = 0.0004). 

Strongest correlations were found when fish lengths were lagged 56 weeks after NPP 

data and 39 weeks after C:N data (Refer to Fig. in Appendix). There is significant 

evidence of independent moderate monotonic associations between these two variables 

and Macrourid length (NPP: rho = -0.58, p = 0.0000; C:N: rho = -0.53, p = 0.0004). A 

positive relationship between Macrourid length and SST was found (rho = 0.40; p = 

0.0005) with the strongest correlation when fish abundance was lagged 30 weeks after 

SST data. A significantly moderate monotonic relationship existed between these two 

variables over time (rho = 0.40; p = 0.0005). Lastly, a positive association was found 

between Macrourid length and MEI (rho = 0.35; p = 0.0023), when fish lengths were 

lagged 23 weeks behind NPP data. The two variables exhibited a significantly weak 

monotonic relationship over time (rho = 0.35; p = 0.0023).  

Relating back to the research question (Q1(F)), results from the Mann-Kendall 

tests, carried out on Macrourid lengths, showed a significant increasing trend in the time-

Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid sp.'  population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

1 D
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species' body lengths. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid 
species' body lengths. Spearman Rank

Fish Variable Species Included Data Source Time-Series

2011-2017

Climate/Surface Condition Variables

Macrourid length (cm)       
(Regional) Mined

Nezumia stelgidolepis    
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Nezumia liolepis

POC C_N MEI SST NPP
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series (alpha < 0.05; See Table # above). Results from the Mann-Kendall analysis, in 

combination with the findings mentioned above from CC and Spearman rank analyses, 

allow us to reject the null hypothesis (Ho) and accept the alternative hypothesis (Ha), 

which is stated below.  

 

(Q1(F)): HAS MACROURID SP.’ POPULATION STRUCTURE CHANGED OVER TIME IN 
RELATION TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HA: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO NPP, C:N, SST, AND MEI, THERE IS A 

SIGNIFICANT INCREASE IN MACROURID LENGTHS; THEREFORE, THERE IS A 

SIGNIFICANT CHANGE IN MACROURID SP.’ POPULATION STRUCTURE OVER TIME. 

 

3.) Local Merluccius productus Biomass 
 

 

 
 

Overall, local M. productus’ biomass data were found to have the strongest 

relationships between the climate/surface ocean condition variables out of the three fish 

variables exhibiting trends over time. More specifically, SST exhibited the strongest 

association with local biomass. The relationship between local M. productus’ biomass 

(kg per ha/der) data and SST was positive (rho = 0.75; p = 0.0005), with the strongest 

correlation present when local M. productus’ biomass was lagged 6 weeks after SST data 

(Refer to Fig in Appendix). There is significant evidence of a strong monotonic 

association between these two variables (rho = 0.75; p = 0.0005). A positive relationship 

between local M. productus’ biomass and MEI was also found (rho = 0.76; p = 0.0003). 

The strongest correlation occurred when local M. productus’ biomass was lagged 15 

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

2 A
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 

productus'  biomass. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  biomass. Spearman Rank

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017
M. productus  biomass                                 

(kg per ha/der)                       
(Regional & Local)

Merluccius productus Mined

Climate/Surface Condition Variables
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weeks after MEI data. A significantly strong monotonic relationship was determined 

between these two variables over time (rho = 0.76; p = 0.0003). Lastly, NPP was found to 

be inversely associated with local M. productus’ biomass data (rho = -0.68; p = 0.0027), 

with the strongest correlation when local M. productus’ biomass was lagged 2 weeks 

after NPP data. A significantly strong monotonic relationship existed between these two 

variables over time (rho = -0.68; p = 0.0027).  

Relating back to the research question (Q1(D)), results from the Mann-Kendall 

tests, carried out on local M. productus’ biomass, showed a significant increasing trend in 

the series over time (alpha < 0.05; See Table # above). Results from the Mann-Kendall 

analysis, in combination with the findings mentioned above from CC and Spearman rank 

analyses, allow us to reject the null hypothesis (Ho) and accept the alternative hypothesis 

(Ha), which is stated below.  

 

(Q1(D)): HAS MERLUCCIUS PRODUCTUS’ POPULATION STRUCTURE CHANGED OVER 
TIME IN RELATION TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HA: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO SST, MEI, AND NPP, THERE IS A 

SIGNIFICANT INCREASE IN LOCAL MERLUCCIUS PRODUCTUS’ BIOMASS; THEREFORE, 
THERE IS A SIGNIFICANT CHANGE IN MERLUCCIUS PRODUCTUS’ POPULATION 

STRUCTURE OVER TIME. 

 

4.) Other Noteworthy Relationships 
 

 

 

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface ocean conditions? Mann-Kendall

2 B Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  CPUE. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  CPUE. Spearman Rank

Fish Variables Species Included Data Source Time-Series

NPP 2011-2017

Climate/Surface Condition Variables

M. productus  CPUE                                            
(num per ha/der)                 
(Regional & Local)      

Merluccius productus Mined POC C_N MEI SST
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The associations discussed below are statistically significant and noteworthy, 

despite lacking trends over time, as determined by the Mann-Kendall tests.  The strongest 

statistical relationship existed between local M. productus depth data and C:N. The 

relationship between local M. productus depth and C:N was positive (rho = 0.90; p = 

0.0046), with the strongest correlation when local M. productus depth data were lagged 3 

weeks after C:N data. There was a very strong monotonic association between these two 

variables (rho = 0.90; p = 0.0046). The second strongest relationship existed between 

local M. productus catch per unit effort (CPUE) data and SST. The relationship between 

these two variables was positive (rho = 0.86; p < 2.2 e^(-16)), with the strongest 

correlation when local M. productus CPUE was lagged 6 weeks behind SST data. A very 

strong statistically significant monotonic association between these two variables over 

time was found (rho = 0.86; p < 2.2 e^(-16)). The third strongest relationship existed 

between the same local M. productus CPUE data and NPP. The relationship between 

these two variables was negative (rho = -0.80; p = 0.0001), with the strongest correlation 

when local M. productus CPUE was lagged 2 weeks behind NPP data. A very strong 

monotonic association between these two variables was determined (rho = -0.80; p = 

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface ocean conditions? Mann-Kendall

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  larval abundance. Spearman Rank

2 D Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  larval abundance. Cross Correlation Analysis

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017

Climate/Surface Condition Variables

M. productus larval abundance      
(10 m2)                                

(Regional)
Merluccius productus Mined

Question # Question Section Question & Hypotheses Statistical Tests

Has the depth range of Merluccius productus changed over time with changing climate and  surface ocean conditions? Mann-Kendall

4 A

Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  depth distribution. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus' depth distribution. Spearman Rank

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017

Climate/Surface Condition Variables

M. productus  depth (m)                          
(Regional & Local) Merluccius productus Mined
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0.0001). Lastly, M. productus’ larval abundance was significantly associated with C:N, 

SST, and NPP. The separate relationships of C:N and SST with M. productus’ larvae 

were both positive (C:N: rho = 0.58, p = 0.0000; SST: rho = 0.55, p = 0.0000). The 

strongest correlation was present when M. productus’ larval abundance data were lagged 

4 weeks after C:N data and when lagged 14 weeks after SST data, respectively. M. 

productus’ larvae were determined to have a significantly inverse association with NPP 

(rho = -0.45; p = 0.0003), with the strongest correlation when M. productus’ larvae were 

lagged 2 weeks behind NPP. Results determined independent and statistically significant 

moderate monotonic associations between M. productus’ larvae and these three variables 

(C:N: rho = 0.58, p = 0.0000; SST: rho = 0.55, p = 0.0000; NPP: rho = -0.45; p = 

0.0003).  

Relating back to the research question (Q1(E)), results from the Mann-Kendall 

tests, carried out on local M. productus CPUE, showed a computed p-value greater than 

the significance level (alpha = 0.05); and can therefore be interpreted as local M. 

productus CPUE lacking a significant trend in the series over time (See Table # above). 

Results from the Mann-Kendall analysis, in combination with the findings mentioned 

above from CC and Spearman rank analyses, lead us to the conclusion that one cannot 

reject the null hypothesis (Ho), which is stated below.  

 

(Q1(E)): HAS MERLUCCIUS PRODUCTUS’ POPULATION STRUCTURE CHANGED OVER 
TIME IN RELATION TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HO: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO SST AND NPP, THERE IS NO SIGNIFICANT 

CHANGE IN LOCAL MERLUCCIUS PRODUCTUS’ CPUE; THEREFORE, THERE IS NO 

SIGNIFICANT CHANGE OVER TIME IN MERLUCCIUS PRODUCTUS’ POPULATION 

STRUCTURE IN RELATION TO LOCAL MERLUCCIUS PRODUCTUS’ CPUE, SST AND 

NPP. 

 

The null hypothesis could not be rejected on account of there being no significant 

trend in local M. productus CPUE over time. It is worth noting that local M. productus 

CPUE, and therefore local M. productus population structure, did exhibit changes in 

relation to environmental variables (SST and NPP) despite the lack of a significant trend 

over time. Similarly, results from the Mann- Kendall test carried out on regional M. 
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productus’ larvae (Q1(I)) showed a computed p-value greater than the significance level 

(alpha = 0.05); and can therefore be interpreted as regional M. productus’ larvae lacking a 

significant trend in the series over time (See Table # above). Results from the statistical 

analyses lead us to the conclusion that one cannot reject the null hypothesis (Ho), which 

is stated below.  

(Q1(I)): HAS MERLUCCIUS PRODUCTUS’ POPULATION STRUCTURE CHANGED OVER 
TIME IN RELATION TO CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HO: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO C:N, SST AND NPP, THERE IS NO 

SIGNIFICANT CHANGE IN REGIONAL MERLUCCIUS PRODUCTUS’ LARVAE; THEREFORE, 
THERE IS NO SIGNIFICANT CHANGE OVER TIME IN MERLUCCIUS PRODUCTUS’ 

POPULATION STRUCTURE IN RELATION TO REGIONAL MERLUCCIUS PRODUCTUS 

LARVAE, C:N, SST, AND NPP. 

 

The null hypothesis could not be rejected on account of there was no significant 

trend in regional M. productus’ larvae over time. It is worth noting that regional M. 

productus’ larvae, and therefore M. productus’ population structure, did exhibit changes 

in relation to environmental variables (C:N, SST, and NPP) despite the lack of a 

significant trend over time. Finally, results from the Mann-Kendall test carried out on 

local M. productus depth (Q2(B)) showed a computed p-value greater than the 

significance level (alpha = 0.05); and can therefore be interpreted as local M. productus 

depth lacking a significant trend in the series over time (See Table # above). Results from 

the statistical analyses lead us to the conclusion that one cannot reject the null hypothesis 

(Ho), which is stated below.  

(Q2(B)): HAS THE DEPTH RANGE OF MERLUCCIUS PRODUCTUS CHANGED OVER TIME 
WITH CHANGING CLIMATE AND SURFACE-OCEAN CONDITIONS? 

HO: WITH INCREASING CHANGES IN CLIMATE AND SURFACE OCEAN CONDITIONS 

OVER TIME, SPECIFICALLY IN REGARD TO C:N, THERE IS NO SIGNIFICANT CHANGE IN 

LOCAL MERLUCCIUS PRODUCTUS’ DEPTH DISTRIBUTION OVER TIME.  
 

The null hypothesis could not be rejected on account of there being no significant 

trend in local M. productus depth over time. Like the two previous variables mentioned 

above, it is worth noting that local M. productus depth, and therefore local M. productus’ 
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depth distribution, did exhibit changes in relation to environmental variables (C:N) 

despite the lack of a significant trend over time. In summary, the answers to the two 

research questions, determined from the results, are as follows:  

Q1 & Q2: With increasing changes in climate and surface-ocean conditions over 

time, there is a significant change in both Macrourid species’ population structure and M. 

productus population structure over time.  

Q4: With increasing changes in climate and surface-ocean conditions over time, 

there is no significant change in M. productus’ depth distribution over time.  

Q3: Regarding potential changes in Macrourid species’ depth distributions, this 

question couldn’t be answered due to insufficient sampling sizes in the mined Macrourid 

species depth data.  
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CHAPTER 4 

DISCUSSION & CONCLUSIONS 

Findings from this study provide a clearer picture of how marine ecosystems are 

being affected by changes in climate and surface ocean conditions over time. For 

instance, shifts in nekton abundance within the California Current ecosystem (CCE) have 

been observed in various studies (Zeidberg & Robison, 2007; Brodeur et al., 2006; 

Drazen et al., 2012).  Changes in Macrourid abundance over time are driven by carrion 

fluxes (Drazen et al., 2008; Jeffreys et al., 2010; Drazen et al., 2012). Merluccius 

productus nekton being the main source of carrion supply for benthopelagic Macrourids 

(Drazen et al., 2009; Dufault et al., 2009; Drazen et al., 2012).  Prior to this study, a 

similar time-series analysis was conducted for an earlier period, 1989-2007, by Drazen et 

al. (2012) with the goal of evaluating whether changes in Macrourid abundance over time 

were driven by changes in M. productus carrion supply. The goal of this thesis study, 

however, was to determine: 1) whether Macrourid spp. and/or M. productus population 

structures have changed over time in relation to changing climate and surface-ocean 

conditions and 2) whether the depth ranges of Macrourid spp. and/or M. productus have 

changed over time with changing climate and surface-ocean conditions. While the two 

studies sought to answer different questions, results from this thesis study corroborate 

Drazen et al., 2012’s findings for the CCE area, as well as for the vicinity of Sta. M. 

Comparing observations from the two studies, one presenting weekly averages and one 

presenting x-scale data, can give broader scale insights into how changes in climate and 

surface ocean conditions might be indirectly influencing population structures and depth 

distributions of fish species’, expanding our understanding in ways that would not be 

possible using findings from this study alone. More specifically, comparing findings can 

increase our understanding of how potential impacts of changing climate and surface-

ocean conditions on M. productus’ population structure and depth distribution could 

indirectly affect  Macrourid populations, due to their close relationship with M. 

productus. It is worth noting that, although M. productus was a focal species for both 

studies, fish variables (M. productus biomass & larval abundance vs. M. productus egg 

abundance) used in the analyses were not directly comparable to one another due to life-
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stage differences. Despite this, it is still beneficial to compare the findings indirectly, 

giving insight into trends occurring over the life-history of M. productus.  

 

4.1) Macrourid & Merluccius productus Observations (2011-2017) 

Comparable to Drazen et al. (2012) findings for the years 1989-2007, we 

observed continued increases in both local Macrourid abundance at Sta. M and regional 

Macrourid length over the period 2011-2017. Local Macrourid abundance was 

moderately associated with MEI (+) and weakly associated with NPP (-) and C:N (-). 

Local Macrourid body length was moderately associated with NPP (-), C:N (-), and SST 

(+), and weakly associated with MEI (+). When M. productus data from the region were 

localized within 100 nmi of Sta. M, we observed an increase in M. productus biomass 

over time, despite lacking a regional trend. Additionally, out of the fish variables 

exhibiting trends over time, local M. productus biomass was found to have the strongest 

relationships with climate/surface condition variables. More specifically, strong 

associations were found between local M. productus biomass and SST (+), MEI (+), and 

NPP (-). Similarly, local M. productus CPUE was also strongly associated with SST (+) 

and NPP (-). Despite lacking a trend over time, regional M. productus larval abundance 

was also significantly correlated to SST (+) and NPP (-), as well as C:N (+). It is worth 

noting that M. productus larval abundance data were not localized for this study.  

 

 Similar to this study, Drazen et al. (2012) observed a significant increase in local 

Macrourid abundances over the time period 1989-2007 and found significant correlations 

(+) between M. productus egg abundance and local Macrourid abundance at all spatial 

scales. Aside from a four year gap in data between the two time-series studies, combining 

findings sheds light on the temporal trend occurring from 1989-2017 at Sta. M, in 

reguards to increased Macrourid abundances .Increases in M. productus egg abundance 

were followed by increases in Macrourid abundance following a lag of 6-7 months at the 

100 nautical miles (nmi) scale (Drazen et al., 2012). Correlations between M. productus 

egg abundance and Macrourid abundance were strongest when egg abundances were 

localized to Sta. M at this smaller spatial scale resolution of 100 nmi, compared to the 

broader regional (CA) scale.  When comparing Macrourid abundances at Sta. M with 
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annual estimates of M. productus female spawning stock biomass, for the entire North 

American west coast, no significant correlations were found. Drazen et al. (2012) also 

observed a significant increase in average local Macrourid size over time. Combining 

Macrourid size and abundance allowed for biomass estimates to be assessed, in which a 

~6 fold increase in Macrourid biomass was observed over the time period. Changes in 

local Macrourid population structure was determined to follow metrics for M. productus 

biomass, suggesting M. productus carrion supply may be the driving factor contributing 

to changes in some Macrourid population structures (Drazen et al., 2012).   

 

 As previously mentioned, results from this study found increases in local M. 

productus biomass, local Macrourid abundance, and regional Macrourid length over time. 

Despite lacking Macrourid biomass data, observed increases in the abundance and length 

of local Macrourids over time matches findings from Drazen et al. (2012). The two 

studies used different analyses to assess Macrourid and M. productus populations, 

however, we can still compare the findings indirectly to gain further insight into what the 

separate results might signify.  Observed positive correlations between local M. 

productus egg abundance and local Macrourid abundance (Drazen et al., 2012) suggest 

that an increase in one variable would lead to an increase in the other. M. productus larval 

abundance was not found to increase over time in this thesis study, however, an 

increasing trend over time may have been observed if the larval data had been localized 

relative to Sta. M. Regardless, Drazen et al. (2012) found that changes in local M. 

productus biomass were followed by changes in local Macrourid population structure. 

Findings from this thesis study compliment this finding, in that we observed increases in 

both local M. productus biomass and local Macrourid abundance and length. It is also 

worth noting that all local M. productus variables (biomass, CPUE, & larval abundance) 

were all significantly correlated with SST (+) and NPP (-), suggesting changes in local 

larval abundance, driven by SST and/or NPP, are likely to somewhat resemble changes in 

local adult biomass.  

 

4.2) Spatial Scale & Location Significance 
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As previously stated, M. productus carrion has been found to be the largest and 

most important food source for Macrourids (Drazen et al., 2009; Dufault et al., 2009), 

making up 61% of pelagic biomass in the California Current ecosystem (CCE) (Agostini 

et al., 2006; Drazen et al., 2012). For this study, spatial scale was a determining factor in 

the significance of the observed findings. When localized to Sta. M, we observed 

significant increases in Macrourid abundance and length, as well as increased M. 

productus biomass over time. When cross correlations were run for the broader region of 

California waters, these trends were not significant. Similar to findings from this study, 

Drazen et al., 2012 found that the relationships between M. productus egg abundance and 

Macrourid abundance increased significantly when localized to Sta. M at 100 nmi. Sta. M 

is unique for many reasons, including spatial, temporal and biogeochemical processes 

(Smith et al., 2006); which may explain the significance found when localizing the 

datasets. In regard to Macrourid population structure dynamics, various studies suggest 

location of M. productus spawning may be more of a factor than spawning stock size 

(Bailey 1982; Mullin et al., 2000;  Horn & Smith, 1997; Drazen et al., 2012). 

 

 Station M, underlying part of the California Current (CC) (Smith et al., 2017), lies 

within the inshore region known as the Southern California Bight (SCB) (Bograd et al., 

2015). POC flux varies seasonally and interannually at this site (Ruhl, 2008). The CCE is 

an important and highly productive upwelling region due to Ekman transport (Pickett & 

Paduan, 2003; Bograd et al., 2019). The California Undercurrent (CU) has a strong 

impact on the SCB, particularly in regard to areas over the continental slope (Bograd et 

al., 2015; Bograd et al., 2019). The southern CCE region acts as a transitional boundary 

between various water masses, including the Pacific Equatorial Water (PEW), Eastern 

North Pacific Central Water (ENPCW), and the Pacific Subarctic Upper Water (PSUW) 

(Brodeur et al., 2003; Bograd et al., 2019). PEW, ENPCW, and PSUW strongly influence 

the CU, lateral shifts in the North Pacific subtropical gyre boundary, and the CC 

respectively (Bograd et al., 2019). These water masses have different physical properties 

and their separate relative influences can vary interannually (Bograd et al., 2019). Such 

variations can have multi-scale consequences on ecosystem structure and biogeochemical 

processes (Bograd et al., 2015). 



 

 

30 

 

Merluccius productus is a highly valued target species for fisheries around the 

world, including US and Canadian fisheries (Agostini et al., 2006). Fish yields between 

these two countries are strongly influenced by interannual biomass distribution of the 

species.  Substantial variability in year-class strength upsets this distribution, potentially 

impacting the fisheries in a negative way (Agostini et al., 2006). Studies found that year-

class strength may depend on survival of the larval stages, specifically the late stage 

(Hollowed, 1992; Smith, 1985b). Locations such as Sta. M and the SCB are significant 

for the US and Canadian  fisheries for this reason.  Studies have determined the SCB, 

where M. productus nursery grounds are located, and regions west of Point Conception 

(Sta. M) are favorable to the survival of M. productus larvae, and late stage larvae have 

been shown to congregate in these areas regularly (Hollowed, 1992; Walker et al., 1987). 

This is largely due to the layered physical structure of this particular region (Sta. M and 

SCB) (Hollowed, 1992). The survival of M. productus larvae may rely on reduced 

offshore advection (Bailey et al., 1982; Bailey, 1981). The layered structure of the region 

results in subsurface waters from the CU being directed onshore while surface waters 

stemming from the CC are directed offshore (Hollowed, 1992). Nearshore, offshore 

transport is minimized (Morgan & Fisher, 2010). This, combined with the diurnal vertical 

migration of M. productus larvae, reduces offshore advection, allowing larvae to remain 

in the study region where prey abundance is high (Hollowed, 1992).  

 

Prey availability is another important factor contributing to the survival or 

mortality of M. productus larvae (Bailey, 1981). Prey is more than abundant in the study 

area (Sta. M) due to the high productivity of the region. Extended periods of high-nutrient 

conditions caused by upwelling in this region result in high productivity (Pickett & 

Paduan, 2003; Bograd et al., 2019). Increases in phytoplankton from optimal-nutrient 

conditions results in high zooplankton abundances (Danger et al., 2007; Vanni, 1987). 

Calanus pacificus is a primary prey item for M. productus adults. Increased abundances 

of phytoplankton cause increased production in this prey species, which are then prey for 

larval M. productus (Hollowed, 1992). This is in line with findings from this thesis study, 

in that NPP was found to be significantly and positively associated with M. productus 
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regional biomass and CPUE. Local M. productus biomass and CPUE were found 

exhibiting inverse trends associated with NPP. This makes sense in theory because M. 

productus adults migrate north, a long distance away from Sta. M, to feed and are less 

dependent on NPP associated with the Sta. M region. The influence of NPP on M. 

productus larval abundance, Macrourid length, and local Macrourid abundance in this 

study were less clear.  Significant inverse associations between NPP and these three 

variables were observed. It is possible that abundance changes of dominant zooplankton 

species could result in a loss of prey for M. productus larvae, negatively affecting 

Macrourid population structure as well (Brodeur et al., 2006). Another possibility is that 

observed correlation directions associated with the relationships between NPP and 

Macrourid length/M. productus larvae could potentially switch to positive correlations if 

length and larval abundance data were localized to Sta. M.  

 

Carbon to nitrogen ratios (C:N) were selected as a food supply variable focused 

on in this study and goes hand in hand with NPP. Higher C:N ratios in mixed layer waters 

signifies the use of nitrogen for primary production, resulting in increased food supply for 

larvae (Körtzinger et al., 2001). Higher C:N ratios also denote more refractory, lower 

food quality at abyssal depths and hence less nitrogen compared to carbon (Burkhardt et 

al., 1999). By contrast, lower C:N ratios in mixed layer waters signifies higher food 

quality in the sinking particulate matter food for Macrourids in the deep sea (Körtzinger 

et al., 2001). C:N ratios were significantly and positively associated with M. productus 

larval abundance. The influence of C:N ratios on adult fishes in this study were less clear.  

Significant inverse associations between C:N ratios and local Macrourid abundance and 

length were observed. These findings make sense in theory, in that higher C:N ratios 

signify lower quality food for Macrourids in the deep-sea (Ken Smith, pers. comm.), and 

increased food supply for larvae in the shallower mixed layer waters. Not surprisingly, 

C:N had the strongest correlations with M. productus (+) and Macrourid depth ranges (-) 

among the environmental variables analyzed in this study.  

  

In addition to spawning location, the spawning migration route of M. productus 

may be another potential factor contributing to the significance of the localized small 
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spatial scale in relation to Station M and fish associations. Factors including temperature, 

depth, upwelling, and currents within the CCE contribute significantly to the migration 

route taken by M. productus adult fishes (Peterson et al., 2006; Bailey et al., 1982). 

Upwelling plays a significant role in the life-stages of M. productus, in that for at least 

half of the year, adults reside in upwelling regions (Cushing, 1971). M. productus travel 

south at a depth of 350-400 m via the CC to warmer offshore waters in the fall and 

winter, in order to spawn where larvae can take advantage of productive upwelling 

(Cushing, 1971; Drazen et al., 2012). Point Conception is considered the southern 

boundary of the major CCE upwelling zone (Cudaback et al., 2005). The location of 

spawning can vary slightly with temperature, with observed shifts towards the equator 

during cold years and shifts poleward during warm years (near Point Conception) 

(Agostini, 2005). Winds north of Point Conception influence inner shelf currents, 

specifically the inshore Davidson current (Mazzini et al., 2014).  Adult fish take 

advantage of this countercurrent as the upwelling season advances, riding it north in the 

spring and summer at a depth of <100 m in order to feed (Cushing, 1971; Stauffer, 1985). 

Studies have suggested changes in Macrourid length and abundance may be due to 

migration patterns associated with M. productus migrations (Drazen et al., 2012; Priede 

et al., 2003; King & Priede, 2008), which aligns with results from this study.  

 

 As stated above, temperature plays a significant role in the patterns exhibited by 

M. productus life stages throughout the year (Agnostini, 2005). SST has an effect on 

spawning location (Agnostini, 2005) and NPP (Körtzinger et al., 2001), which in turn 

affects M. productus year-class strength and larval abundance (Hollowed, 1992), 

consequently affecting local Macrourid population structure (Drazen et al., 2012). Results 

from this study reflect this, in that local M. productus larvae and adult biomass, as well as 

local Macrourid length, are significantly associated with SST. SST is one of the six 

variables associated with the MEI index (Sukresno, 2010);  an assessment of ENSO that 

considers atmospheric and oceanic variables of tropical Pacific (Wolter & Timlin, 2011). 

Studies have shown source water contributions (PEW, ENPCW, and PSUW) of the CCE 

are affected by the ENSO cycle, specifically in relation to PEW during La Nina events 

(Bograd et al., 2019). During these events, changes in depth distribution of this water 
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source, in combination with fluctuations of upwelling strength, result in primary 

producers gaining better access to the nutrient-rich waters below (Bograd et al., 2019). 

During such events, scientists have observed southern shifts in M. productus spawning 

activity (Drazen et al., 2012). Findings from this study compliment this, in that MEI was 

found to be positively associated with local M. productus biomass, Macrourid abundance 

and length. 

 

4.3 Potential Impacts of Climate and Fishing Pressure 

Climate and fishing pressure can have drastic impacts on marine ecosystems, 

including the deep-sea (Overland et al., 2010). Increases in anthropogenic climate change 

has the potential to dramatically alter biogeochemical processes within the world’s 

oceans, and the population structures of important fish species targeted by fisheries 

(Doney, 2010). In light of anthropogenic climate change, ENSO events have become 

more frequent and have increased in intensity in recent years, and this is predicted to 

continue in the future (Cai et al., 2015). In addition, ENSO events have been assumed to 

resemble future warming events (Meehl et al., 2000), which are predicted to cause sea 

level rise and increases in surface water temperatures along the coast, upwelling, and 

stratification (Hoegh-Guldberg & Bruno, 2005; DiNezio et al., 2010). Additionally, 

thermocline depth is expected to get deeper (DiNezio et al., 2010).  La Nina events have 

also been found to impact near surface expression of source waters mentioned above, and 

this is known to cause amplified low pH and hypoxic events (Bograd et al., 2019).  

Macrourid and M. productus populations residing in the CCE could be affected by 

changes in climate in various ways, including those residing in the vicinity of Point 

Conception and the SCB. For instance, the location of M. productus spawning shifts in 

regard to temperature, moving poleward in warm years (Agnostini, 2005). As previously 

stated, M. productus is one of the most important and largest commercial groundfish 

species in the U.S. (Drazen et al., 2012; Zeidberg & Robison, 2007), and shifts in the 

distribution of biomass can affect the annual yields for Canadian and US fisheries 

(Agostini et al., 2006). In addition, the most valuable fish migrate further north (Emmett 

et al., 2006; Agostini et al., 2006). Increased surface temperature may result in further 

migrational shifts northward, potentially benefitting northern US and Canadian fisheries. 
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By contrast, these shifts could potentially reduce abundance in waters off California 

(Emmett et al., 2006). Aside from shifts in distribution, surface warming may also cause 

declines in zooplankton-copepod abundances (Smith, 1985a) and community 

composition changes due to nutrient changes (Pinhassi et al., 2006; Suikkanen et al., 

2013) and greater offshore transport (Bakun et al., 2015). Declines in zooplankton-

copepod abundances could mean a decrease in the food source for M. productus larvae 

(Sumida & Moser, 1980) (reducing year-class success) and thus a decrease in food for 

Macrourids and other species relying on M. productus carrion (Bailey, 1981; Hollowed, 

1992; Dufault et al., 2009; Brodeur et al., 2003). By contrast, surface warming may favor 

M. productus populations in California waters. During warmer years, spawning locations 

shift poleward near Point Conception, as previously stated. Spawning in this location 

reduces offshore advection for larvae, increasing their chances of survival. This study’s 

findings are in line with this assumption because we found positive correlations between 

SST and M. productus larval abundance. Reduction in year-class success from shifts in 

larval distributions may negatively impact fisheries in future years as well (Agostini et 

al., 2006). Increased temperature also leads to low productivity (Behrenfeld et al., 2006). 

Many species will likely move closer to the coast and northward (Cushing, 1971), 

however, some species may not be able to. For instance, the habitat range of the deep-sea 

Macrourid C. yaquinae is limited to the North Pacific central gyre (Drazen et al., 2012). 

C. yaquinae may not be able to adapt or relocate as the regions with low productivity 

expand in the gyre, likely reducing the abundance of their food source (Drazen et al., 

2012).  

 

Finally, a big impact of climate change on marine ecosystems (i.e. a significantly 

higher stress level) stems from declining midwater oxygen concentrations and shoaling of 

oxygen minimum zones (OMZs) (Booth et al., 2012). OMZ expansion in the Eastern 

Pacific was found to be correlated with CU intensification (Czeschel et al., 2012). Such 

intensification of the CU can significantly affect the CCE (Bograd et al., 2019). CU 

intensification is one of the factors contributing to the poleward shift in M. productus 

feeding and spawning grounds (Bograd et al., 2019).  Shoaling of the thermocline and 

OMZs could potentially affect vertical migrations of M. productus larvae and could 
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compress the vertical habitat of adult fish as well, making them more vulnerable to 

commercial fishing (Gilly et al., 2013). One study found that in summer 1955, a short-

term shift in water masses (from PSUW to PEW) at certain depths caused variations in 

“depth and thermosteric anomaly surfaces on either side of the transition” (Blanton & 

Pattullo, 1970]. These two OMZ zones, were separated by an oxygen enriched zone 

caused by vertical mixing. The enriched zone was located within my study site area near 

Point Conception (Blanton & Pattullo, 1970). This may be a clue as to why the location 

of Sta. M was primarily significant for correlations relating to M. productus (i.e. local 

biomass, local CPUE, and local depth range). This region and regions with similar 

characteristics (i.e. upwelling and location relative to currents) should be considered in 

future fishery and climate-mitigation decisions, as they are extremely important areas for 

fisheries and marine ecosystems. Future climate variation could alter the water properties 

of source waters (Bograd et al., 2015), causing variation in OMZ zones and other factors. 

Locations such as Sta. M may provide safe zones in the future for M. productus and other 

species in light of future climate impacts; unless upwelling of hypoxic waters occurs 

(Booth et al., 2012); in which the impacts would be devastating.  Lastly, climate-related 

factors such as OMZ shoaling has resulted in a range expansion for the Humboldt Squid, 

potentially contributing to top-down forcing on local M. productus populations (Gilly et 

al., 2013; Zeidberg & Robison, 2007). Range expansions and increases in Humboldt 

Squid abundance within these ranges have been correlated with declines in M. productus 

biomass (Mooney & Zavaleta, 2016; Zeidberg & Robison, 2007), and studies have 

determined this species’ principal prey over the coastal California slope and shelf is M. 

productus. (Zeidberg & Robison, 2007). Increased predation, schooling structure 

changes, and competition between and among Humboldt squid and M. productus could 

potentially threaten fisheries, Macrourid populations, and the ecosystems they reside in 

(Gilly et al., 2013).  

 

Regarding fisheries, increased bycatch from commercial fishing can positively 

impact Macrourid populations short term due to increased carrion fluxes (Dayton et al., 

2003; Drazen et al., 2012; Wallace, 2015). However, commercial overfishing may lead to 

a reduction in carrion flux in the deep-sea, negatively impacting Macrourids and other 
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species long-term (Wallace, 2015; Drazen et al., 2012). This is especially true for species 

whose migration patterns reflect that of M. productus, and who may have grown 

dependent on bycatch as their primary food source (Gage et al., 2005).  Macrourids and 

other scavengers may expand their populations in response to bycatch, potentially 

altering the balance of ecological function (Gage et al., 2005).  Additionally, overfishing 

can potentially lead to shifts in population structure. Such shifts could negatively impact 

recruitment of M. productus larvae, as well as cause shifts in the location and range of 

adult spawning (Horn & Smith, 1997). Future studies should seek to understand trends 

and the state of primary producers and zooplankton populations, as well as M. productus 

and Macrourid stocks, and bycatch distribution ranges/intensities in order to better 

predict, mitigate, and adapt to climate change and commercial fishing related impacts. 
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Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid species complex' population structure changed over time in relation to changing climate and surface-ocean 
conditions?

Mann-Kendall

1 A
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species complex' abundance. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid species 
complex' abundance. Spearman Rank

Fish Variable Species Included Data Source Time-Series

2011-2017

Climate/Surface Condition Variables

Macrourid species complex' 
abundance                                        

(# ind. /hr/ week)
Sta. M

Coryphaenoides armatus 
Corphaenoides leptolepis 
Coryphaenoides yaquinae 

POC C_N MEI SST NPP

Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid sp.'  population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

1 B
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species' biomass. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid 
species' biomass. Spearman Rank

Fish Variables Species Included Data Source Time-Series

NPP 2011-2017

Climate/Surface Condition Variables

Macrourid biomass                                        
(kg per ha/der)                   

(Regional)             

Nezumia stelgidolepis    
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Nezumia liolepis 

Coryphaenoides cinereus 
Coelorinchus scaphopsis 
Malacocephalus laevis 

Grenadier unident.

Mined POC C_N MEI SST

Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid sp.'  population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

1 C
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species' CPUE. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid 
species' CPUE. Spearman Rank

Fish Variable Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017
Macrourid CPUE                                        

(num per ha/der)                
(Regional)             

Nezumia stelgidolepis    
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Nezumia liolepis 

Coryphaenoides cinereus 
Coelorinchus scaphopsis 
Malacocephalus laevis 

Grenadier unident.

Mined

Climate/Surface Condition Variables
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Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid sp.'  population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

1 D
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species' body lengths. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid 
species' body lengths. Spearman Rank

Fish Variable Species Included Data Source Time-Series

2011-2017

Climate/Surface Condition Variables

Macrourid length (cm)       
(Regional) Mined

Nezumia stelgidolepis    
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Nezumia liolepis

POC C_N MEI SST NPP

Question # Question Section Question & Hypotheses Statistical Tests

Has Macrourid sp.'  population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

1 E Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid sp.' 
larval abundances. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid sp.' 
larval abundances. Spearman Rank

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017
Macrourid larval abundance          

(10 m2)                                
(Regional)

Nezumia sp.          
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Macrouridae sp.

Mined

Climate/Surface Condition Variables

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface-ocean conditions? Mann-Kendall

2 A
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 

productus'  biomass. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  biomass. Spearman Rank

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017
M. productus  biomass                                 

(kg per ha/der)                       
(Regional & Local)

Merluccius productus Mined

Climate/Surface Condition Variables

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface ocean conditions? Mann-Kendall

2 B Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  CPUE. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  CPUE. Spearman Rank

Fish Variables Species Included Data Source Time-Series

NPP 2011-2017

Climate/Surface Condition Variables

M. productus  CPUE                                            
(num per ha/der)                 
(Regional & Local)      

Merluccius productus Mined POC C_N MEI SST
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Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface ocean conditions? Mann-Kendall

2 C Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  body lengths. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  body lengths. Spearman Rank

Fish Variable Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017

Climate/Surface Condition Variables

M. productus length (cm)                           
(Regional) Merluccius productus Mined

Question # Question Section Question & Hypotheses Statistical Tests

Has Merluccius productus' population structure changed over time in relation to changing climate and surface ocean conditions? Mann-Kendall

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus'  larval abundance. Spearman Rank

2 D Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  larval abundance. Cross Correlation Analysis

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017

Climate/Surface Condition Variables

M. productus larval abundance      
(10 m2)                                

(Regional)
Merluccius productus Mined

Question # Question Section Question & Hypotheses Statistical Tests

Has  the depth range of Macrourid species changed over time with changing climate and surface ocean conditions? Mann-Kendall

3 A
Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Macrourid 

species' depth distributions. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Macrourid 
species' depth distributions. Spearman Rank

Fish Variable Species Included Data Source Time-Series

2011-2017

Climate/Surface Condition Variables

Macrourid depth (m)                
(Regional)

Nezumia stelgidolepis    
Albatrossia pectoralis          

Coryphaenoides acrolepis       
Nezumia liolepis 

Coryphaenoides cinereus 
Coelorinchus scaphopsis 
Malacocephalus laevis 

Grenadier unident.

Mined POC C_N MEI SST NPP

Question # Question Section Question & Hypotheses Statistical Tests

Has the depth range of Merluccius productus changed over time with changing climate and  surface ocean conditions? Mann-Kendall

4 A

Ho:  With increasing changes in climate and surface ocean conditions over time, there is no significant change in Merluccius 
productus'  depth distribution. Cross Correlation Analysis

Ha:  With increasing changes in climate and surface ocean conditions over time, there is a significant change in Merluccius 
productus' depth distribution. Spearman Rank



 

 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fish Variables Species Included Data Source Time-Series

POC C_N MEI SST NPP 2011-2017

Climate/Surface Condition Variables

M. productus  depth (m)                          
(Regional & Local) Merluccius productus Mined
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RESULTS TABLES 
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MACROURIDS (GROUPED)  

 
 

Fish Variable Scale Environmental Variable Correlation Lag (# weeks) Direction (+/-) rho P-Value Hypothesis Trend S (Test Statistic) Trend Direction P-Value

POC -0.23 6 (-) -0.22 0.001

C_N -0.31 67 (-) -0.32 0.000

SST 0.21 22 (+) 0.20 0.001

NPP -0.36 50 (-) -0.35 0.000

MEI 0.39 56 (+) 0.40 0.000

POC 0.33 0 (+) 0.27 0.042

C_N 0.24 1 (+) 0.29 0.043

SST -0.15 2 (-) -0.15 0.181

NPP -0.23 3 (-) -0.28 0.010

MEI 0.24 102 (+) 0.21 0.073

POC -0.29 14 (-) -0.24 0.041

C_N 0.26 3 (+) 0.25 0.084

SST -0.13 3 (-) -0.13 0.244

NPP -0.16 3 (-) -0.20 0.072

MEI 0.14 50 (+) 0.15 0.181

POC 0.27 3 (+) 0.23 0.099

C_N -0.33 2 (-) -0.35 0.020

SST 0.19 36 (+) 0.14 0.254

NPP -0.20 25 (-) -0.23 0.048

MEI 0.15 8 (+) 0.15 0.211

POC 0.27 0 (+) 0.04 0.801

C_N -0.48 39 (-) -0.53 0.000

SST 0.33 30 (+) 0.40 0.001

NPP -0.52 56 (-) -0.58 0.000

MEI 0.34 23 (+) 0.35 0.002

NA

Regional NA

Regional 0.0023

Cross Correlation

Increasing

Variables  Spearman Rank Mann-Kendall Trend Tests (Time Series Trend)

Local    
(Sta. M)

< 0.0001

Regional NA

Regional

Macrourid length Ha Yes 640

NA

Macrourid depth H0 No NA NA

Macrourid CPUE H0 No NA

Increasing

Macrourid biomass H0 No NA NA

Macrourid spp. complex' 
abundance

Ha Yes 8590

Table #1. Table of statistical analyses results for relationships between Macrourid spp.’ variables and environmental variables. Gray 
and bold cells represent most significant findings.    
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MERLUCCIUS PRODUCTUS   

 
 

Fish Variable Scale Environmental Variable Correlation Lag (# weeks) Direction (+/-) rho P-Value Hypothesis Trend S (Test Statistic) Trend Direction P-Value

POC -0.25 4 (-) -0.21 0.101

C_N 0.34 2 (+) 0.32 0.024

SST -0.19 38 (-) -0.17 0.114

NPP 0.34 12 (+) 0.35 0.001

MEI -0.20 4 (-) -0.23 0.033

POC 0.31 16 (+) 0.30 0.013

C_N 0.35 18 (+) 0.33 0.007

SST -0.27 39 (-) -0.27 0.012

NPP 0.30 7 (+) 0.34 0.002

MEI -0.26 1 (-) -0.29 0.008

POC 0.25 0 (+) 0.07 0.839

C_N -0.53 3 (-) -0.55 0.171

SST 0.73 6 (+) 0.75 0.000

NPP -0.53 2 (-) -0.68 0.003

MEI 0.68 15 (+) 0.76 0.000

POC 0.53 7 (+) 0.47 0.070

C_N 0.45 0 (+) 0.53 0.148

SST 0.83 6 (+) 0.86 < 2.2e-16

NPP -0.67 2 (-) -0.80 0.000

MEI 0.48 15 (+) 0.55 0.018

POC 0.35 14 (+) 0.30 0.010

C_N 0.34 39 (+) 0.31 0.027

SST 0.22 1 (+) 0.30 0.006

NPP 0.24 16 (+) 0.26 0.017

MEI -0.13 0 (-) -0.15 0.180

POC -0.58 8 (-) -0.58 0.016

C_N 0.57 3 (+) 0.90 0.005

SST -0.32 6 (-) -0.30 0.232

NPP 0.20 12 (+) 0.26 0.294

MEI 0.10 6 (+) 0.07 0.794

POC -0.39 4 (-) -0.45 0.000

C_N 0.24 2 (+) 0.22 0.125

SST -0.25 4 (-) -0.28 0.010

NPP -0.22 15 (-) -0.24 0.028

MEI 0.23 52 (+) 0.25 0.024

POC -0.32 5 (-) -0.20 0.168

C_N 0.64 4 (+) 0.58 0.000

SST 0.58 14 (+) 0.55 0.000

NPP -0.39 2 (-) -0.45 0.000

MEI -0.18 0 (-) -0.17 0.198

NA

M. productus larval 
abundance

Regional H0 No NA NA NA

M. productus  length Regional H0 No NA NA

NA

M. productus  depth Local H0 No NA NA NA

M. productus  depth Regional H0 No NA NA

0.017

M. productus  CPUE Local H0 No NA NA NA

M. productus  biomass Local Ha Yes 63 Increasing

NA

M. productus  CPUE Regional H0 No NA NA NA

Variables Cross Correlation Spearman Rank Mann-Kendall Trend Tests (Time Series Trend)

M. productus  biomass Regional H0 No NA NA

Table #2. Table of statistical analyses results for relationships between M. productus’ variables and environmental variables. Gray 
and bold cells represent most significant findings.    
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APPENDIX C 

RESULTS PLOTS 
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VARIABLES OVER TIME 

Environmental Variables 
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Plot 1. Weekly averaged POC flux (mg C/m
2
/d), at Station M, during the 2011-2017 study period. 

 

Plot 2. Weekly averaged carbon to nitrogen ratios, at Station M, during the 2011-2017 study period. 
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Plot 3. Weekly averaged SST (℃), for the California coast, during the 2011-2017 study period. 

 

Plot 4. Weekly averaged NPP (mg C/m2/d), at Station M, during the 2011-2017 study period. 
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Macrourid Variables 
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Plot 5. Weekly averaged MEI (σ), for the California coast, during the 2011-2017 study period. 

 

Plot 6. Ranked weekly averaged Macrourid species complex’ abundance (# indiv./hr), at Station M, 

during the 2011-2017 study period. 
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Plot 7. Ranked weekly averaged regional Macrourid spp.’ biomass (CPUE kg/ha), for the California 

coast, during the 2011-2017 study period. 

 

Plot 8. Ranked weekly averaged regional Macrourid spp.’ CPUE (num/ha), for the California coast, 

during the 2011-2017 study period. 
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Plot 9. Ranked weekly averaged regional Macrourid spp.’ length (cm), for the California coast, during 

the 2011-2017 study period. 

 

Plot 11. Ranked weekly averaged regional Macrourid spp.’ depth (m), for the California coast, during 

the 2011-2017 study period. 
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Merluccius Productus Variables  
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Plot 12. Ranked weekly averaged regional M. productus biomass (CPUE kg/ha), for the California 

coast, during the 2011-2017 study period. 

 

Plot 13. Ranked weekly averaged M. productus biomass (CPUE kg/ha), localized within 100 nmi 

of Station M, during the 2011-2017 study period. 
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Plot 14. Ranked weekly averaged regional M. productus CPUE (num/ha), for the California coast, 

during the 2011-2017 study period. 

 

Plot 15. Ranked weekly averaged M. productus CPUE (num/ha), localized within 100 nmi of Station 

M, during the 2011-2017 study period. 
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Plot 16. Ranked weekly averaged regional M. productus length (cm), for the California coast, during 

the 2011-2017 study period. 

 

Plot 17. Ranked weekly averaged regional M. productus larval abundance (10m
2
), for the California 

coast, during the 2011-2017 study period. 
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Plot 18. Ranked weekly averaged regional M. productus depth (m), for the California coast, during 

the 2011-2017 study period. 

 

Plot 19. Ranked weekly averaged M. productus depth (m), localized within 100 nmi of Station M, 

during the 2011-2017 study period. 
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MACROURID PLOTS 
CROSS CORRELATION                    SCATTER PLOT
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MERLUCCIUS PRODUCTUS  PLOTS 
CROSS CORRELATION    SCATTER PLOT  
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