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CRITICAL VALUE OF LIMITS OF AGREEMENT  

AND SIMULATION-BASED SAMPLE SIZE  
CALCULATION IN BLAND ALTMAN ANALYSIS 

STEVEN B. KIM 

Department of Mathematics and Statistics 
California State University, Monterey Bay 
100 Campus Center 
Seaside, CA 93955 
USA 
e-mail: stkim@csumb.edu 

Abstract 

Bland Altman analysis is a statistical method for assessing the degree of 
agreement between two methods of measurement. In medical and health 
sciences, it is a popular method because of its simple calculation and 
visualization. Under normality assumption, the calculation is based on two 

sufficient statistics d  and s, where d  is the sample mean of differences and s 

is the sample standard deviation of the differences. The interval sd 96.1±  is 
referred to as 95% limits of agreement (LOA) in literature. In a seminar paper, 
Bland and Altman [2] interpreted LOA as “If the differences are normally 
distributed, 95% of differences will lie between these limits”. This interpretation 
seems to be widely accepted, but there is a caveat because the coverage 
probability of LOA is a random variable. In this article, we demonstrate the 
sampling distribution of its coverage probability by simulation, and we discuss 
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an alternative choice for the critical value. In addition, using simulation, we 
perform sample size calculation which satisfies a specified condition for the 
sampling distribution of coverage probability. 

1. Introduction 

Researchers and practitioners in medical and health sciences are 
interested in accurate and precise measurement methods. They make 
important decisions based on measurement readings, and there is often a 
gold standard method of measurement. When a new method of 
measurement is developed, researchers would like to compare the 
validity and reliability of the new method. Bland Altman analysis is a 
method of assessing the degree of agreement between the gold standard 
method and the new measurement method (Altman and Bland [1, 2]). It 
gained popularity due to its simple calculation and visualization, it has 
been understood by many researchers and practitioners, and it has been 
further developed to account for more complex situations (Hopkins [3]; 
Giavarina [4]; Schluter [5]; and Taffe [6]). 

In a seminar paper of Bland and Altman [2], under the normality 
assumption for differences between measurement by one method and 
measurement by another method, the degree of agreement between two 
measurements is assessed by an interval referred as limits of agreement 
(LOA). It is an approximate 95% prediction interval (PI) for differences 
with the critical value of 1.96 or 2 calculated from the standard normal 
distribution. An exact 95% PI can be used with the critical value which 
can be obtained from a T distribution (Geisser [7]). Whether it is 
approximate or exact, in this article, we challenge the common 
interpretation of 95% LOA. The coverage probability of 95% LOA can 
converge to 0.95 as the sample size n increase, but it cannot be exactly 
0.95 for finite n. In fact, under- or over-coverage can be severe for small 
n. Therefore, it is worth discussing the sampling distribution of the 
coverage probability of LOA. In this article, we demonstrate the sampling 
distribution using simulation. 
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For conservative researchers, the sampling distribution of coverage 
probability by a 95% PI can be worrisome for small n. To address this 
concern, severe under-coverage in particular, a 95% tolerance interval 
(TI) is considered for 95% LOA instead of a 95% PI. A TI has a different 
critical value which is devised to guarantee the coverage probability of 
0.95 or higher for a fixed confidence level (Howe [8]; Guenther [9]; 
Vardeman [10]; and Hahn et al. [11]). To avoid the opposite concern of 
being too conservative, a reasonably large sample size is needed. In this 
regard, we can find a sample size such that the coverage probability of 
95% LOA is about 0.95 within a given range at a fixed confidence level. 
In this article, a simulation-based method of sample size calculation is 
demonstrated, and a sample code in statistical software R is given in the 
Appendix for practitioners. 

The sample size calculation discussed in this article is to control the 
coverage probability of LOA (PI or TI) which is different perspective from 
the sample size calculation to perform hypothesis testing for a fixed 
significance level, statistical power and effect size discussed by Lu et al. 
[12]. The sample size calculation discussed in this article helps more 
accurate interpretation of 95% LOA. 

2. Choosing the Critical Value in Bland Altman Analysis 

2.1. Limits of agreement (LOA) 

Let ( )ii yx ,  be paired measurements obtained from the i-th subject 

for ,,,2,1 ni …=  where ix  is observed from a current standard method 

and iy  is from a new method. Let ,iii xyd −=  the difference between 

two observed outcomes for .,,1 ni …=  Assume ( )ndd ,,1 …  is a simple 

random sample from a normal distribution with unknown mean µ  and 

unknown standard deviation .σ  Let i
n
i dnd ∑ =

= 1
1  and 1

1
−

= ns  

( )21 ddi
n
i −∑ =

 be the sample mean and standard deviation of the 
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differences. Let sdl γ−=  and sdu γ+=  be a lower limit and an upper 

limit, for some critical value γ  devised to capture future values ,1+nd  

…,2+nd  with a target coverage probability of .95.0=τ  Then the 

interval ( )ul,  is referred to as 95% limits of agreement (LOA). 

2.2. Challenging interpretation of LOA 

In a seminar paper of Bland and Altman [2], γ  was approximated by 

,96.1975.01 ==γ z  the 97.5th percentile of the standard normal 

distribution, and resulting LOA was interpreted as “If the differences are 
normally distributed, 95% of differences will lie between these limits”. It 
is not an accurate interpretation particularly when n is not large. It is 
meant to cover 95% of differences to be observed from the population, but 
the coverage probability of resulting LOA must be less or greater than 
0.95. Since l and u are random from sample to sample, and a future value 

1+nd  is also random, the true coverage probability p is not a fixed 

number from sample to sample. In fact 

( )

,
2
1 22

2

2
dtep

tu

l
σ

µ−−

πσ
= ∫  (1) 

is random from sample to sample, so it has a sampling distribution which 
depends on n. 

Given n, the sampling distribution of p can be simulated as follow. 
From Equation (1), we have 

,
2
1 2

2

dtep
tu

l

−

π
= ∫

∗

∗
 

where 

,
σ

γ−
σ
µ−=∗ sdl  

.
σ

γ+
σ
µ−=∗ sdu  
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Note that ( ) σµ−d  is from ( ),,0 1−nN  and ( ) ( )21 σ− sn  is from ,2
1−χn  

and d  and s are independent. To this end, we can simulate z from 

( )1,0N  and w from 2
1−χn  independently, then let nzz =∗  and 

( )1−=∗ nww  to simulate ∗∗∗ γ−= wzl  and .∗∗∗ γ+= wzu  Then 

the coverage probability is ( ) ( ),∗∗ Φ−Φ lu  where Φ  is the cumulative 

distribution function of ( ).1,0N  Figure 1 shows simulated sampling 

distributions based on 100,000 replicates for n = 10, 20, 30, 50, and it 
demonstrates why providing an accurate interpretation of observed LOA 
is challenging. The approximated probability of 95.0≥p  is 0.369, 0.403, 

0.419, 0.437 for n = 10, 20, 30, 50, respectively. 

 

Figure 1. Sampling distribution of coverage probability p by LOA when 
.96.11 =γ=γ  
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2.3. Prediction interval 

If the author correctly understood the original motivation of Bland 
and Altman [2], the LOA with 96.11 =γ  is meant to approximate a 95% 

prediction interval (PI) because the exact choice of γ  for a 95% PI is 

,111,975.02 nt n +=γ −  (2) 

where 1,975.0 −nt  is the 97.5th percentile of T distribution with 1−n  

degrees of freedom (Geisser [7]). (Note that 96.112 =γ→γ  as .∞→n ) 

Using the critical value ,2γ  simulated sampling distributions of coverage 

probability are shown in Figure 2 for n = 10, 20, 30, 50. In the simulation, 
the approximated probability of 95.0≥p  is 0.668, 0.614, 0.593, 0.572 for 

n = 10, 20, 30, 50, respectively. 

 

Figure 2. Sampling distribution of coverage probability p by LOA when 
.2γ=γ  

 

 



AN ALTERNATIVE CHOICE FOR THE CRITICAL … 125

2.4. Tolerance interval 

When a practitioner desires 95.0=≥ τp  with a probability κ  before 

analyzing data, κ  is referred to as the confidence level. A 95% tolerance 
interval (TI) at confidence level κ  is devised for this purpose. In this 
case, the choice of the critical value γ  is 

,1
1,1

2
975.03

−−

−=γ
nnc

nz
κ

 

where 1,1 −− nc κ  is the ( ) th-1100 κ−  percentile of chi-square distribution 

with 1−n  degrees of freedom (Howe [8]). At ,9.0=κ  using simulation of 

100,000 replicates, the approximated probability of 95.0≥p  is 0.898, 

0.899, 0.900, 0.899 for n = 10, 20, 30, 50, respectively, as shown in Figure 3. 

 

Figure 3. Sampling distribution of coverage probability p by LOA when 
.3γ=γ  
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There are alternative choices of γ  for a TI. For example, an 

alternative choice is 34 γ=γ a  with a correction factor 

( )2
1,1

12

3
1

+

−−
+= −−

n

cn
a nκ  

(Guenther [9]). When 4γ  is used for a TI, the sampling distribution of p 

is very close to Figure 3, and the approximated probability of 95.0≥p  is 

0.902, 0.901, 0.902, 0.900 for n = 10, 20, 30, 50, respectively, using 
simulation of 100,000 replicates. 

2.5. Trade-off between confidence and precision (length) 

Bland and Altman [2] provided an example of comparing two 
methods (a large meter and a mini meter) of measuring peak expiratory 

flow rate (l/min). The LOA was calculated by sufficient statistics 1.2−=d  

and s = 38.8 from a sample of size n = 17. Using the approximate critical 
value ,96.1=γ  the resulting 95% LOA was ( ).9.73,1.7896.1 +−=± sd  

Using ,181.22 =γ=γ  the exact critical value of a 95% PI, resulting 95% 

LOA would be (−86.7, +82.5). The resulting LOA was interpreted as “95% of 
differences will lie between these limits”. By carefully observing Figure 2 
for n = 10 and n = 20, however, it is likely that the true coverage 
probability is far below 0.95. Using simulation, for a sample of size           
n = 17, we can approximate that the coverage probability is below 0.9 
with a probability 0.25 when 96.1=γ  and 0.12 when .181.2=γ  

Using ,644.23 =γ=γ  the critical value of a 95% TI at confidence 

level ,9.0=κ  the 95% LOA would be (−104.7, +100.5) which is 1.2 times 

longer than (−86.7, +82.5). At the cost of increasing the length by 1.2 
times, we used the procedure which guarantees “at least 95% of 
differences will lie between these limits with a probability 9.0=κ ”. For 
conservative researchers, this operating characteristic may be worth the 
cost. 
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For a given confidence level ,κ  we define the relative length of a 95% 

TI to a 95% PI as 

.
1

11

1,1

2
975.0

1,975.0

2
3

−−

−

−

+
=

γ
γ

=ρ

n

n

nc
nz

nt

κ

 

Figure 4 shows ρ  with respect to n at .99.0,95.0,9.0=κ  The relative 

length ρ  is between 1.09 and 1.27 for 10010 ≤≤ n  for ,9.0=κ  between 

1.12 and 1.43 for ,95.0=κ  and between 1.18 and 1.80 for .99.0=κ  

 

Figure 4. Relative length of a 95% TI to a 95% PI at .99.0,95.0,9.0=κ   

3. Sample Size Calculation 

3.1. Simulation-based sample size calculation for desired rate of 
coverage probability 

In a small-sample study, 95% LOA with 2γ  suffers from under-

coverage (i.e., likely to see 95.0p ), and 95% LOA with 3γ  for 9.0≥κ  

can be too conservative (i.e., likely to see ,95.0p  close to one). In 
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practice, we may desire ≤− 95.0p  with for a fixed probability κ  and a 

fixed small .0>  Using the simulation, we can determine n which 
satisfies 

( ) .95.0Pr κ=≤− p   (3) 

By letting 2γ=γ  of Equation (2), the exact critical value for a 95% PI, we 

can search for n such that Equation (3) is satisfied for given κ  and .  

A more general procedure for ( )%100×τ  LOA follows, where τ  is a 

target coverage probability. For a ( ) ,PI%100×τ  we can search for n such 

that 

( ) ( ) κ=+≤≤−=≤−  τττ pp PrPr  

by choosing γ  to be ( ) .1,2112 −−−=γ nt τ  Similarly, for a ( ) ,TI%100×τ  we 

can search for n such that 

( ) δ−=+≤≤ κ2Pr ττ p  

by choosing γ  to be 

( ) .1
1,1

2
2113

−−
−−

−=γ
nnc

nz
κ

τ  

Distinction between κ  and δ  is needed for the TI approach because a 
( ) TI%100×τ  requires ( ) κ=≥ τpP  at confidence level κ  by definition. 

3.2. Numerical example of sample size calculation 

For a PI with ,9.0,01.0,95.0 === κτ  and ,1,975.02 −=γ nt  our 

goal is to find the sample size n such that ( ) .9.001.095.0Pr =≤−p  By 

simulation, we can search from low n to high n until the condition is 
satisfied. As shown in Figure 5, we find n = 710 by simulation of 100,000 
replicates for each candidate n. Instead of the naive search from small n 
to high n, the bisection method can be more efficient computationally. A 
sample code of bisection method is given in the Appendix. 
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Table 1 shows resulting n for 2γ  which satisfies ( ) κ=≤− τpPr  

for .99.0,95.0,9.0;1,,01.0;99.0,95.0,9.0 =−== κττ …  Table 2 

shows resulting n for 3γ  which satisfies ( ) δ−=+≤≤ κ2Pr ττ p  for 

comparable values of ,,, κτ  and .δ  It appears that the use of 3γ  (i.e., TI 

approach targeting above τ ) requires a smaller sample size than the use 
of 2γ  (i.e., PI approach targeting around τ ) for similar conditions. For 

example, we need n = 1562 to satisfy ( ) 9.001.09.0Pr =≤−p  by a 90% 

( ),646.1PI 2 =γ  and we need n = 1400 to satisfy ( ) 9.092.09.0Pr =≤≤ p   

by a 90% ( ).05.0and95.0at698.1TI 3 =δ==γ κ  For another 

example, we need n = 173 to satisfy ( ) 9.002.095.0Pr =≤−p  by a 95% 

( ),974.1PI 2 =γ  and we need n = 76 to satisfy ( ) 9.099.095.0Pr =<< p  

by a 95% ( ).05.0and95.0at282.2TI 3 =δ==γ κ  

 

Figure 5. Searching for sample size for 9.0=κ  and .01.0=  
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Table 1. Searching for sample size for using 2γ  (PI approach) 

τ    9.0=κ  95.0=κ  99.0=κ  

0.90 0.01 1562 2210 3822 

0.90 0.02 389 553 958 

0.90 0.03 173 246 430 

0.90 0.04 96 138 246 

0.90 0.05 61 88 162 

0.90 0.06 42 61 116 

0.90 0.07 30 45 88 

0.90 0.08 22 35 70 

0.90 0.09 17 28 58 

0.90 0.10 13 24 48 

0.95 0.01 710 1004 1745 

0.95 0.02 173 250 453 

0.95 0.03 73 109 215 

0.95 0.04 38 62 130 

0.95 0.05 22 42 90 

0.98 0.01 195 289 552 

0.98 0.02 37 76 170 

0.99 0.01 53 110 248 
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Table 2. Searching for sample size for using 3γ  (TI approach) 

τ    ( ) ( )05.0,95.0, =δκ  ( ) ( )04.0,99.0, =δκ  ( ) ( )005.0,995.0, =δκ  

0.90 0.005 5927 9092 14455 

0.90 0.010 1400 2156 3410 

0.90 0.015 585 900 1418 

0.90 0.020 306 472 742 

0.90 0.025 180 279 434 

0.90 0.030 114 175 273 

0.90 0.035 74 114 175 

0.90 0.040 48 74 114 

0.90 0.045 30 46 70 

0.95 0.005 2488 3834 6048 

0.95 0.010 526 814 1278 

0.95 0.015 188 291 454 

0.95 0.020 76 118 181 

0.98 0.005 526 811 1278 

4. Discussion 

In Bland Altman analysis, particularly in a small-sample experiment, 
inaccurate interpretation of LOA is often overlooked in literature. As 
demonstrated by the sampling distribution of p, under-coverage can be 
severe when n is small, but the interpretation of LOA does not account 
for this fact. For conservative researchers, it is recommended to use a 
95% TI for 95% LOA instead of using an approximated 95% PI. The 
critical value of a 95% TI guarantees that the coverage probability is at 
least 0.95 at a fixed confidence level κ.  This known operating 
characteristic may be worth the cost of wider limits. If a researcher wants 
to determine a sample size for LOA based on the operating characteristic 
of PI or of TI, the simulation method can be used as demonstrated in 
Section 3 with the code in the Appendix. 
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Under the normality assumption, the 95% LOA, which is calculated 

by ,96.1 sd ±  can serve as the point estimation for the population 

parameters, namely the 2.5th and 97.5th percentiles of the population 
distribution of the differences between measurements provided by two 
devices. The original interpretation of 95% LOA (i.e., capturing 95% of 
random differences observed from the population) is valid when resulting 
95% LOA is equal to the true values of ,96.1 σ±µ  but it is unlikely or 

impossible. When sd 96.1±  is devised from the perspective of capturing 
random differences, the coverage probability is a random variable, so a 
special care is needed for its interpretation. 

Some authors mentioned and addressed proportional bias and 
homoscedasticity of variance of measurement errors (Taffe [6, 14]; 
Nawarathna and Choudhary [15, 16]; and Carstensen [17]). In this 
complicated case, simultaneous confidence bands based on a regression 
model would be more appropriate than a pointwise interval. If such a 
case is predictable before data collection, the simulation design for 
sample size calculation will be more complicated than discussed in this 
article. 

Lastly, sample size procedures for precise interval estimation of 
normal percentiles, ,96.1 σ±µ  were discussed (Shieh [13]). Researchers 

shall distinguish that the objective of CIs for σ±µ 96.1  and the objective 

of LOA are different. The CIs are devised to capture unknown σ±µ 96.1  

which are fixed numbers (i.e., parameters), and the LOA is devised to 
capture future outcomes which are random numbers (i.e., random 
variables). 
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Appendix 

# # #  SAMPLE SIZE CALCULATION USING PREDICTION INTERVAL 

n.sim = 100000 # # # SIMULATION SIZE 

tau = 0.9 # # # TARGET COVERAGE PROBABILITY 

alpha = 1 – tau 

kappa = 0.9 # # # CONFIDENCE LEVEL 

epsilon = 0.01 # # # ROOM FOR ERROR 

n0 = 2 # # # LOWER END FOR SEARCH 

n1 = 10000 # # # UPPER END FOR SEARCH 

 

for ( i in 1:1000 ) { 

m = round ( 0.5 ∗ ( n0 + n1 ) ) 

gamma = qt( 1 – 0.5∗alpha , m –1 ) ∗ sqrt ( 1 + 1/m ) 

set.seed(123); z.sim = rnorm (n.sim ) ∗ sqrt (1/m) 

set.seed(123); w.sim = rchisq ( n.sim , m –1 ) 

q.sim = sqrt ( w.sim / ( m – 1 ) ) 

u.sim = z.sim + gamma ∗ q.sim 

l.sim = z.sim – gamma ∗ q.sim 

p.sim = pnorm (u.sim) – pnorm (l.sim) 

p.m = mean ( abs( p.sim – tau ) < epsilon ) 

if ( p.m > kappa ) n1 = m 
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if ( p.m < kappa ) n0 = m 

if ( abs( n1 – n0 ) == 1 ) break 

} 

print (n1) 

# # # SAMPLE SIZE CALCULATION USING TOLERANCE INTERVAL 

n.sim = 100000 # # # SIMULATION SIZE 

tau = 0.9 # # # TARGET COVERAGE PROBABILITY 

alpha = 1 – tau 

kappa = 0.95 # # # CONFIDENCE LEVEL 

delta = 0.05 

epsilon = 0.01 # # # ROOM FOR ERROR 

n0 = 2 # # # LOWER END FOR SEARCH 

n1 = 10000 # # # UPPER END FOR SEARCH 

 

for ( i in 1:10000 ) { 

m = round ( 0.5 ∗ ( n0 + n1 ) ) 

temp1 = qnorm ( 1 – 0.5∗ alpha ) 

temp2 = sqrt ( ( m^2 – 1 ) / ( m ∗ qchisq ( 1 – kappa , m – 1 ) ) ) 

gamma = temp1 ∗ temp2 

set.seed(123); z.sim = rnorm (n.sim ) ∗ sqrt (1/m) 

set.seed(123); w.sim = rchisq ( n.sim , m – 1 ) 
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q.sim = sqrt ( w.sim / ( m – 1 ) ) 

u.sim = z.sim + gamma ∗ q.sim 

l.sim = z.sim – gamma ∗ q.sim 

p.sim = pnorm (u.sim) – pnorm (l.sim) 

p.m = mean ( tau < p.sim & p.sim < tau + 2 ∗ epsilon ) 

if ( p.m > kappa – delta ) n1 = m 

if ( p.m < kappa – delta ) n0 = m 

if ( abs( n1 – n0 ) <= 2 ) break 

} 

print (n1) 
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