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ABSTRACT

Abiotic Factors Related to Accrual of Common Filamentous
Macroalgae in California’s Central Coast Streams
by
Lisa Dillon
Master of Science in Coastal and Watershed Science and Policy
California State University Monterey Bay, 2009

In an effort to develop regional autecological information on nuisance-prone
filamentous macroalgae in the Mediterranean climate of California’s Central Coast, 1
explored relationships between stream conditions and presence and abundance of 4 common
macroalgal taxa. Algae samples and stream data were taken from a regional bioassessment
study conducted during the dry seasons of 2006 and 2007 at 199 low-gradient streams. I
developed a priori hypotheses based on a review of algal ecology literature. Within a two-
part conditional model framework, I used an information theoretic approach to compare algal
presence and abundance (biovolume per area of substrate) response to cover of riparian
canopy, total nitrogen (TN) and total phosphorus (TP) concentrations, flow velocity,
substrate size, pH, conductivity, and season. Model comparison and multi-model inference
results supported two main findings for each of three target taxa: Cladophora spp. presence
and abundance increased with a higher percentage of stable substrata in the stream reach and
a lower percentage of riparian canopy cover; Spirogyra spp. presence increased with a lower
canopy cover and lower TP concentrations; and Ulva spp. presence increased with lower
canopy cover of and higher conductivity. Post hoc analyses showed dissolved oxygen
saturation to be higher in the presence of Cladophora spp. and Ulva spp. These results
highlight the role of riparian canopy in regulating filamentous macroalgal accrual and
maintaining stream health in the region.
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DOCUMENT ORGANIZATION

This thesis is organized into three main sections. Chapter one is a discussion of the
policy background and policy implications of the study. Chapter two is a manuscript written
for publication in a peer-reviewed science journal. The appendix contains extra material

included to compliment chapter two.

vi



TABLE OF CONTENTS

PAGE

LIST OF TABLES ... .ottt e st X

LIST OF FIGURES ..ottt sttt et et n et xi
CHAPTER

1  THESIS INTRODUCTION......c.oiiriiteitiieieesenieieesseesnes e snenessssssse e e 1

Nuisance Algae: Too Much of a Good Thing.........c.ccoeviiniiiiiiiinccicniice 1

Linkages to California’s Central Coast Region ..........cccccvceeniiininiiniivnniicninnenne 3

Impaired Waters and Biostimulatory Substances ..........c.ccoceceveneniincciniinncicnennen. 5

Managing Stream Habitat ...........c.cceierevereninieiene st 7

2 ABIOTIC FACTORS RELATED TO ACCRUAL OF COMMON

FILAMENTOUS MACROALGAE IN CENTRAL COAST STREAMS .................. 10

INEPOQUCTION. ...ttt b e et e ere e e e 10

METROMS. ....ceececiit ettt e e s 12

SHUAY ATCA......ccviiieriiere ettt st sate st see s 12

Dataset and study deSign.........ccooevvereririernieninieriniererce e 14

WaAter CHEIMISIIY ..euveevieuieeieeetie et e s e enbean b s n e anes 15

Physical habitat........c..ccooeeieiiiee et e s 15

Benthic alae.......coceeviiieiiieniecsc et 16

ANALYSES ..c.erriiccnerieer ettt ettt r ettt e ra e 18

RESUILS ...ttt ettt et 22

ClAdOPROTA SPP.cveeeeieeeeeeeeetere ettt b e ettt sae st see e 25

SPIFOZYFA SPP. eevverrererierientiieseerteseetesessesseessessessesssrsesseessessseseesaessssaseesesconses 30

UIVA SPP. oottt ettt et sttt s e e b e bas s aaesabesanaesaeesreessaeaneanne 33

POSt hoC ANAlYSIS.....coeiuiiiiiieiee et 35

DIISCUSSION ...evecniireeit ettt sttt b et s he et n s e a e e s e et s b b ens 36

ClAdOPROTA SPP.ccviriririi ittt et 36

SPIFOZYFA SPP- eererreeeueeeirie et es ettt e resee st eseesaesr e et e s b e s e ab b s e esmnsrneene 38

UG SPP. covveiieetesceeceerte ettt esee st beate e sr e e besate s r e sate s teasts s sseastesnbesnbesssassrenns 38

vil



EnvIronmental faCTOTS ... veeee e e e ee et e s eserarae s e s e enasaenens 39

DiSSOLVEd OXYZEM.c.eueiuieuiiriinieieiee sttt et e en e 43

Management IMPlICALIONS ........c.ceerereereerirrirrnreiereer et 44

CONCIUSIONS ...ttt bbb e 45
REFERENCES ...ttt ettt et eh et e e bbbt 47
APPENDICES ..ottt sttt et b et sr e 60
A A PRIORIMODELS ...ttt et e een e se e s sree e sreesresae s 61

B R CODE FOR STATISTICAL ANALYSES ..ottt 68

Vil



LIST OF TABLES

PAGE

Table 1. Description of terms used to evaluate models when applying an information

111510) 18 (62 o] o) (0 7: o] « S POTOUORPPPOTTOPI 19
Table 2. Descriptive statistics on environmental variables..............ccccccniiiiciniinnnnnniinnen 23
Table 3. Model-averaged coefficient estimates and their upper and lower confidence

limits (95%) derived from the 90% confidence set of Cladophora spp.

presence-absence Models.. ... 25
Table 4. Model selection results showing 90% confidence set on a priori models for

probability of Cladophora spp. PrESENCE. ........cuurverreceeeriererieteeeeereestriee e e e 26
Table 5. Model-averaged coefficient estimates and their upper and lower confidence

limits (95%) derived from the 90% confidence set of Cladophora spp.

abundance MOAEIS.. ..........coeieeiiiiiec et ettt sr e e eaae s 27
Table 6. Model selection results showing 90% confidence set on a priori models for

abundance of Cladophora Spp. ZIVEN PrESENCE. .......cccervvirerierreininiiiiniee e seecnenens 28
Table 7. Model-averaged coefficient estimates and their upper and lower confidence

limits (95%) derived from the 90% confidence set of Spirogyra spp. presence-

ADSENCE MOAEIS.. ....eieiiiiiei et b et n b 30
Table 8. Model selection results showing 90% confidence set on a priori models for

probability of Spirogyra Spp. PIESENCE.. ......ocueiiririiiiiiire et 31
Table 9. Model-averaged coefficient estimates and their upper and lower confidence

limits (95%) derived from the 90% confidence set of Spirogyra spp.

abundance MOAEIS.. .......coceviiiiiiiiiiee e e 32
Table 10. Model selection results showing 90% confidence set on a priori models for

abundance of Spirogyra Spp. ZIVEN PIESENCE. .......cccvvvreirireerieierieieiereeseeesesiesee e 33
Table 11. Model-averaged coefficient estimates and their upper and lower confidence

limits (95%) derived from the 90% confidence set of Ulva spp. presence-

ADSENCE MOMEIS.. .....couiiiiiiiiiiiiicteie et a e e s s 34
Table 12. Model selection results showing 90% confidence set on a priori models for

probability of Ulva SPP. PIESEIICE. . ......cccverieiririicreriienteseee s e seesee b e sas 35
Table A.1. Complete model suite used in logistic regression analysis to evaluate

factors influencing probability of Cladophora spp. presence in Central Coast

R0 (T2 04 OO OO USSP 62

ix



Table A.2. Complete model suite used in logistic regression analysis to evaluate
factors influencing probability of Spirogyra spp. presence in Central Coast

Table A.3. Complete model suite used in logistic regression analysis to evaluate
factors influencing probability of Ulva spp. presence in Central Coast streams.......... 64

Table A.4. Complete model suite used in logistic regression analysis to evaluate
factors influencing probability of Vaucheria spp. presence in Central Coast
SITEAIIIS. ..e.vviveiiiiiir ittt ettt st s e 65

Table A.5. Complete model suite used in linear regression analysis to evaluate factors
influencing Cladophora spp. abundance given presence in Central Coast
SITEAIIIS. ..eeeiiiiriitiieeiieeee e ettt ece et e e sre e s e e e sae e e s r e sar et et et eamn et eaene e s e e e e e sseesaneesnnneens 66

Table A.6. Complete model suite used in linear regression analysis to evaluate factors
influencing Spirogyra spp. abundance given presence in Central Coast
SITCAINIS. L.ttt rr s s b e s sa b b e e sab b s aa s s aae e e 67



LIST OF FIGURES

PAGE

Figure 1.1 Four nuisance-potential macroalgae common to Central Coast streams: A)

Cladophora sp., B) Spirogyra sp., C) Ulva sp., and D) Vaucheria sp...........ccccceunuen. 2
Figure 2. Location of sampling sites within Central Coast Region 3 study area..................... 13
Figure 3. Locations of six filamentous macroalgae found in the Central Coast study

area during 199 single sampling events from Jun. 2007 to Aug. 2008............c..couevue. 24
Figure 4. Estimates of probability of presence of Cladophora spp. plotted against

percent hard substrate and percent cover of riparian canopy.........ccccccceeevcrreccriiniinens 26
Figure 5. Estimates of Cladophora spp. abundance given presence plotted against

percent cOVer Of TIParian CaNOPY.........cocvueuererreirrrereerereer et ses e eessrssene s 28
Figure 6. Plot of predicted vs. expected abundance of Cladophora spp. on a log-log

scale with one-to-one line shows weakness of predictions of the two-part

117016 L) O OO PO UPPOUORRTU 29
Figure 7. Estimates of probability of presence of Spirogyra spp. plotted against

percent cover of riparian canopy and total phoSphOTUS. ......cccccoereiiiriinneeceneere e 31
Figure 8. Estimates of probability of presence of Ulva spp. plotted against percent

cover of riparian canopy and specific conductance. ........c..coccoveevvninieenienirncnneeinenens 34
Figure 9. Dissolved oxygen concentrations in presence and absence of Cladophora

SPP- ANA UIVA SPP. «e ettt e sttt e ettt e st e e te s aae e e e et e et eeeeebesarenns 36
Figure 10. Arrow diagram summarizing relationships between predictor and response

variables arrived at using an information theoretic approach. ...........cccocoeeveevercnnenee 40
Figure 11. Distribution of TN and TP water column concentrations over the entire

TANEE OF VAIUES. ....ooveiiiiiiieie ittt b et ae st s s e b sbe s renaenenns 42

xi



CHAPTER 1
THESIS INTRODUCTION

NUISANCE ALGAE: TOO MUCH OF A GOOD THING

Prolific growth of benthic algae in freshwater streams can create conditions that
interfere with human uses and ecosystem function. While such prolific growth can result
from anthropogenic stressors, these algae are often a natural periodic component of
healthy stream ecosystems. As primary producers, algae sustain the nutrient demands of
higher trophic organisms and provide valuable aquatic habitat. In healthy systems, algal
growth and accrual is limited by a number of ecological factors including nutrient and
light availability, algivory, and hydrologic disturbance (Horner et al. 1990, Hill at al.
1995, Feminella and Hawkins 1995, Borchardt 1996). But given significant changes in
the factors that regulate growth, such as significant loss of riparian canopy or cultural
eutrophication, algae may proliferate to excessive levels (Biggs 2000a, Dodds and Welch
2000). These proliferations, also known as nuisance algae, affect the stream environment
by reducing water clarity, creating harmful diel fluctuations in pH and dissolved oxygen
concentrations, reducing habitat quality for macroinvertebrates and spawning fish, and
increasing probability of fish kills (Carpenter et al. 1998; Smith et al. 1999; Dodds and
Welch 2000). In addition, nuisance blooms can impede recreational, industrial,
agricultural, and municipal uses, leading to economic losses (Carpenter et al. 1998,
Dodds and Welch 2000, Biggs 2000a). Biggs (2000a) suggests that algal biomass levels
>150-200 mg/m’ chlorophyll a can interfere with contact recreation and sport fishing, are
very noticeable, and are likely to be unnaturally high.

Nuisance blooms manifest in different forms depending on the dominant algal
functional group. Blooms can appear as phytoplankton-rich green water, carpets of short-
stalked benthic diatoms, floating gelatinous colonies, and filamentous mats. The latter are
made up of benthic filamentous green algae that tend to dominate the climax community
in eutrophic waters (Chetelat et al. 1999, Biggs 2000b). Filamentous algal proliferations

can lead to higher biomass accrual than other functional groups (Dodds 1991) and are



more nuisance-prone in lotic ecosystems (Homer et al. 1983, Welch et al. 1989). In the
western U.S., filamentous nuisance blooms are dominated by Cladophora glomerata,
Rhizoclonium spp., Oedogonium spp., Spirogyra spp., Stigeoclonium spp., Ulothrix spp.,
and Ulva spp. (Figure 1; Biggs and Price 1987, Welch et al. 1998, Lembi 2003, Busse et
al. 2000).

Figure 1.1 Four nuisance-potential macroalgae common to Central Coast streams:
A) Cladophora sp., B) Spirogyra sp., C) Ulva sp., and D) Vaucheria sp. Photo: Lisa
Dillon.

Nuisance algal blooms were first reported from the U.S. in lakes of densely
populated areas of the Midwest around the early 1900s (Prescott 1948). In the 1930s and
40s the full scope of ecological and human use issues associated with prolific algal
growth, such as fish kills and livestock poisoning, were brought to light (Fitch and
Bishop 1934, Prescott 1948). Prescott (1948) identified high nitrogen and phosphorus
content in these lakes as a leading cause of nuisance algal blooms. Although algal

production in streams requires higher nutrient concentrations than in lakes, increases in



stream algal biomass, as well, can be found following eutrophication (Smith et al. 1999).
In 1970, Whitton (1970) found an increasing number of reports of nuisance growth in
streams. By the 1980s, several steam researchers were investigating nutrient influence on
algal proliferations (Horner et al. 1983, Biggs 1985, Welch et al. 1988). But study results
differ, perhaps due to environmental factors that vary regionally, such as density of
riparian canopy, grazing pressure, algal community composition, and frequency of high
velocity flows (Dodds 1991, Peterson and Stevenson 1992, Taulbee et al. 2005). Thus,
study results from one region may not be applicable in another.

Whether or not algal blooms proliferate to nuisance levels on the Central Coast is
challenging to determine. Freshwater researchers (Biggs and Price 1987, Dodds et al.
1998) have suggested that, in general, filamentous algae exceeding 30 — 40% cover
adversely impacts recreational and aesthetic uses, but few regulatory agencies have
assigned numeric thresholds for prolific growth in streams. Florida proposed stream
listing for nutrient impairment if annual mean chlorophyll a concentrations exceed 20
pg I"! or if data indicate annual mean chlorophyll @ values increased by more than 50%
over historical values for at least two consecutive years (Florida DEP 2007). A Montana
watershed stakeholder group that included local governments developed an EPA-
approved threshold of an annual average not to exceed 100 mg/m2 chlorophyll @ or a
maximum of 150 mg/m? (Watson et al. 1999). While these proliferations are often
thought to be associated with high nutrient concentrations, many factors play a role in the
accrual of benthic filamentous algae. Although the aforementioned taxa have been
documented at nuisance levels elsewhere, few studies exist for California’s Central Coast
region (RWQCB 2005). Consequently, policy makers may lack sufficient published

autecological algal research to support scientifically sound decision making in the region.

LINKAGES TO CALIFORNIA’S CENTRAL COAST REGION

While the potential for nuisance proliferation remains relatively unstudied in
California’s Central Coast region, studies conducted elsewhere indicate that agricultural
and urban activity may set the stage for nuisance blooms and subsequent negative effects
on water quality, such as low levels of dissolved oxygen, through elevated nutrient

loading (Sharpley et al. 1994, Howarth et al. 1996, Busse et al. 2006, Morgan et al.
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2006). In the Central Coast region, cultivated lands have been heavily fertilized, resulting
in substantially increased nitrogen (N) and phosphorus (P) concentrations in soil, surface
water, and ground water (Anderson et al. 2003, Hartz et al. 2003, Jones et al. 2006, Los
Huertos et al. 2006). Irrigation practices alter timing and volume of groundwater and
surface water flows (Thompson and Reynolds 2002). Riparian canopy in the region has
been diminished by livestock grazing and vegetation removal practices associated with
fruit and vegetable production (Roberts et al. 1981, Larsen et al. 1998, FDA 1998,
Newman et al. 2003). Urban activities as well, may contribute to nuisance generating
conditions (Walsh et al. 2005, Catford et al. 2007). Sewage input and failed septic
systems can lead to high nutrient input to surface and groundwater (Sabater et al. 2000).
Impervious surfaces can carry nutrient rich urban runoff to local receiving waters (Taylor
et al. 2004). Urban development too has caused the loss of riparian ecosystems and
altered stream flow (Beighley et al. 2003, Catford et al. 2007). Natural sources in the
regions, such as soil, rocks, and organic debris, also supply nutrients to surface waters
(Mueller and Helsel 1996).

Streams of Mediterranean climates, such as California’s Southern and the Central
Coasts, are characterized by long periods of low flow during dry summer months. The
absence of periodic high flows allows for accumulation of algae and stabilized nutrient
concentrations (Busse et al. 2006). Periphyton communities of nutrient enriched summer
low flow streams in New Zealand contained more filamentous algae than non-enriched
summer low flow streams (Suren et al. 2003). More frequent algal proliferations were
observed in streams where nutrient concentrations exceeded 0.02 mg 1" soluble inorganic
nitrogen and 0.002 mg 1" soluble reactive phosphorus and accrual periods exceeded 50
days (Biggs 2000a). Nutrients may thus have a more influential role in streams that
experience long periods of low flow such as in Mediterranean climates. Indeed, percent
cover of filamentous algae in Southern California streams exceeded Biggs’ (2000b)
recommended cover levels of less than 30% (Busse et al. 2006). Nutrient levels were
found to be higher in these streams than in more commonly studied temperate streams
(Dodds et al. 1998, Busse et al. 2006), and Busse et al. (2006) determined that total
nitrogen (TN) and total phosphorus (TP) were related to algal biomass (chlorophyll a

concentration) in this region.



IMPAIRED WATERS AND BIOSTIMULATORY SUBSTANCES

The 1972 Federal Clean Water Act (CWA) was passed to address growing water
pollution issues and to restore the health of impaired water bodies of the United States.
Today, this includes protecting the designated uses (e.g., drinking water supply,
recreation, aquatic habitat) assigned to particular water bodies. Section 303(d) of the
CWA requires that states list impaired water bodies (i.e., those that do not meet the
criteria of the designated use) and establish pollutant load standards for each listing.
These standards, called total maximum daily loads (TMDL), establish limits for pollutant
loads in water bodies according to pollutant tolerance limits of designated uses.

The 1969 California Porter-Cologne Water Quality Control Act created water
pollution legislation and state and regional boards (SWRCB and RWQCB) to oversee
water quality policy. The regional boards establish and enforce Basin Plans for water
quality regulation. These plans include beneficial use designations (i.e., designated uses)
and water quality objectives (Sunding and Zilberman 2006).

Under the Central Coast Basin Plan (SWRCB 1994), there are 2 types of
objectives for water quality: numeric and narrative. A numeric objective determines the
amount of pollutant allowed in a given water body so as not to impinge upon its
beneficial uses. A narrative objective, however, is qualitative and may not articulate
numeric concentration limits. While such statements are subject to interpretation, they
were frequently used as grounds for 303(d) listing (Painter 2005). For listed waterbodies,
these objectives present general descriptions of water quality that must be attained.
Narrative water quality objectives can include descriptive standards for biostimulatory
substances, color, dissolved oxygen, taste and odor, and turbidity. Algal proliferations
affect all of these objectives, but are most commonly cited in association with the
biostimulatory objective.

The biostimulatory objective states that waters “shall not contain biostimulatory
substances in concentrations that promote aquatic growths to the extent that such growths
cause nuisance or adversely affect beneficial uses (SWRCB 1994).” Thus, prolific algal
growth caused by excess N or P in the waterway violates the biostimulatory objective if
the proliferation interferes with a beneficial use. While this objective guards against

biostimulatory conditions, it fails to identify both a numeric standard at which algal



accrual is considered a nuisance and numeric criteria for pollutants that cause nuisance
growth. The only numeric objective regulating any biostimulatory substance, albeit
indirectly, is the California drinking water standard for nitrate. In fact, as of 2005, most
states had no standards for N and P (Painter 2005). On the other hand, assigning such
numeric objectives is not a simple task. Each waterbody must be individually evaluated
as each has a unique suite of designated uses, algal species, and environmental
conditions.

In California’s Central Coast region, numerous streams have been found in
violation of water quality regulations and added to the CWA 303(d) impaired water body
list. Twenty-two of these are listed for nutrient impairment and 10 have TMDL
requirements for N or P (EPA 2009). In the case of the Pajaro River and Llagas Creek,
however, original 1998 listings due to nutrient impairment did not specify which water
quality objective the impairment was attributed to (RWQCB 2005). Listings were based
on information gathered from academic, consulting, and agency reports, but none
documented a violation of the narrative objective for biostimulatory substances. The U.S.
EPA provided states with ecoregional recommendations for nutrient criteria (TN and TP),
but on the Central Coast, the standards were found to be unattainably low and impractical
(EPA 2000). In the end, RWQCB staff reccommended a TMDL be developed due to a
documented nitrate violation of the municipal and domestic supply numeric objective.
The objective follows the drinking water standard (10 mg 1" as nitrogen) from the
California Safe Drinking Water Act. The 2005 TMDL for nitrate in the Pajaro River
addresses the municipal use violation while further research is conducted to determine
whether or not the TMDL should be altered to address nuisance algal conditions
(RWQCB 2005). Findings could result in further nutrient restrictions as well as
requirements for the increased assimilative capacity of the water bodies.

The next steps in preventing nuisance proliferations are to (1) set quantifiable
standards for nuisance growth and (2) develop numeric objectives for biostimulatory
substances or conditions that cause nuisance growth. Improving knowledge of the
region’s algal ecology will aid policy makers in identifying the main factors regulating

algal accrual. This understanding will, in turn, help formulate a picture of potential



biostimulatory stream conditions in this region of concentrated agricultural activity

(RWQCB 2004).

MANAGING STREAM HABITAT

In the present investigation, I began to address the uncertainties associated with
the Central Coast’s biostimulatory objective in a region-wide field study of the effects of
stream characteristics and known biostimulatory substances on algal growth. I examined
the response of potential nuisance filamentous algae to in situ conditions in low gradient
streams. This evaluation considers the role of water chemistry, riparian canopy, flow
velocity, substrate size, and season in the presence and abundance of four potential
nuisance taxa. Additionally, I took a preliminary look at associations between algal taxa,
riparian canopy, and dissolved oxygen concentrations. The results regarding
biostimulatory substances, TN and TP, were inconclusive. Instead, riparian canopy was
the strongest predictor of filamentous algal accrual.

Since the 2006 Central Coast spinach E. coli outbreak, the debate over the
function of riparian canopy in the human landscape has escalated. Historically,
agriculture and urban development have reduced riparian habitat, and the consequent
impacts to riparian ecosystem functions have been a concern of environmentalists. As a
result of the recent food safety scare, increased attention is being paid to 1998 FDA
recommendations (FDA 1998) to remove all vegetation, including riparian, growing near
crops due to its potential to harbor pathogen vectors (Lieberman 2008). The Western
Growers Association is advocating stricter standards and grower-wide compliance with
vegetation removal recommendations.

Riparian buffer zones, however, are recommended for the protection of water
quality under the Central Coast’s Conditional Waiver of Waste Discharge Requirements
for Discharges from Irrigated Lands program (RWQCB 2006). Buffers can filter runoff
through naturally occurring physical and biological processes by reducing, converting, or
storing pollutants on land rather than allowing them to enter aquatic systems (Basnyat et
al. 2000). Given well dispersed surface water flow and sufficient vegetation, buffer zones
have proven efficient at removing sediment and sediment-adhering phosphorus. Riparian

rooting zones can reduce nitrate concentrations in lateral ground water flows through



denitrification and uptake by plants (Correll 1996, Anbumozhi et al. 2005). Under
favorable conditions, intact riparian buffers can substantially reduce concentrations of
biostimulatory substances in receiving waters (Fennessy and Cronk 1997). A cost-benefit
model has shown that restored riparian zones have greater benefits through water quality
improvements than the same land under crop production (Fennessy and Cronk 1997).
But, water quality mandates that require growers to maintain riparian zones are costly in
a competitive market concerned with food safety. However, local taxpayers may support
funding to ensure the integrity of these ecosystems (Fennessy and Cronk 1997).

For management of nuisance algae in streams, the results of this study indicate
that biostimulatory conditions, in addition to the biostimulatory substances already
regulated, should be addressed. As light conditions are attenuated by riparian canopy, it
would be prudent to sustain this aspect of the stream habitat for the control of nuisance
growth. However under current California policy, the SWRCB and the majority of
regional water boards, including the Central Coast, have not consistently managed
riparian canopy due in part to the lack of a formal definition of riparian areas (SWRCB
2008). Analysis of the local data presented here bolsters both the adoption of a definition
of riparian areas by the Central Coast RWQCB and Phase 3 of the SWRCB’s proposed
Wetlands and Riparian Area Protection Policy. During Phase 3, the SWRCB will
consider new beneficial uses definitions, water quality objectives, and an implementation
program to achieve the objectives to protect riparian area-related functions (SWRCB
2008).

As the biological integrity of these streams appears to be strongly linked to the
riparian zone, the RWQCB should at minimum recommend the maintenance of riparian
vegetation to land use planning agencies and include riparian protection in best
management practice recommendations. The Central Coast RWQCB may coordinate
with the Wildlife Conservation Board, created through the California Fish and Game
Code, to identify areas needing protection via the California Riparian Habitat
Conservation Program (WCB 2007). Of course management strategies involving habitat
manipulation will need to consider appropriateness of the application, both ecologically
and socio-economically, but riparian revegetation may prove highly successful in

protecting the designated uses of streams. Not only does shade-providing riparian
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vegetation maintain lower stream temperatures, filter nutrients and sediment from runoff,
and provide streams with a source of carbon and large woody debris (Vought et al. 1994,

Correll 1996, Anbumozhi et al. 2005), this study suggests Central Coast water quality can
benefit from the riparian zone by reducing the potential for nuisance algal growth. Here, I
explored characteristics of stream environments in the Central Coast that could turn

generally beneficial primary producers into too much of a good thing.



10

CHAPTER 2

ABIOTIC FACTORS RELATED TO ACCRUAL
OF COMMON FILAMENTOUS
MACROALGAE IN CENTRAL COAST
STREAMS

INTRODUCTION

Algal proliferations become a water quality management concern when they
interfere with the designated use of a water body (e.g., drinking water supply,
recreational use, and functional aquatic habitat). These problem proliferations, or
nuisance algae, can alter water characteristics and prohibit fishing and swimming,
directly affecting human uses (Dodds and Gudder 1992, Dodds and Welch 2000). They
can also lead to harmful diel fluctuations of dissolved oxygen in the water column,
affecting macroinvertebrate and fish species intolerant of anoxic conditions (Nebeker
1972, Richardson et al. 2001, Connolly et al. 2004). Prolific growth and accrual can vary
at the regional scale due to a wide range of environmental factors (Biggs 1996, Stevenson
1997). Thus regional scale knowledge of algal response to local conditions can greatly
aid the development of appropriate local management strategies where proliferations are
a concern.

To understand the causes of prolific growth, and algal ecology in general,
previous studies have examined relationships between algal productivity and
environmental factors. Field studies, however, are fraught with contradictory results (see
reviews in Borchardt 1996, Hill 1996, and Stevenson 1996). Inconsistencies likely derive
from regional differences in lotic ecosystem structure and function, as well as the general
complexity of physical and biological interactions that influence accrual of algal biomass
(Biggs 1996, Stevenson 1997). A body of scientific literature has amassed, nonetheless,
in favor of several rudimentary factors that may influence algal growth.

Algae respond to a number of stream chemistry variables. Nutrients, particularly

nitrogen (N) and phosphorus (P), are essential to productivity and can be limited in the
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stream environment (Borchardt 1996). Increases in N and P concentrations have been
linked to high algal production and resulting stream impairment (Horner 1983, Dodds et
al. 1997). Algal species vary in their ability to tolerate dissolved ions (Potapova and
Charles 2003). For example, Biggs and Price (1987) found Spirogyra biomass to be
associated with low conductivity, while Cladophora biomass was associated with high
conductivity. In a study spanning North America, Cladophora glomerata was also found
to have found a positive correlation with pH and temperature (Sheath and Cole 1992).

Stream habitat factors can also influence the distribution and abundance of
macroalgae. In the stream environment, canopy cover has the greatest effect on light
availability. Dense canopy can intercept over 95% of incoming solar irradiance, and this
reduction in light reduces photosynthetic activity (Hill et al. 1995). Stream flow rate and
substrate size can control accrual of filamentous algal biomass at attachment sites. Stream
currents enhance algal production rates by stimulating nutrient uptake and metabolism
(Stevenson 1996). High current velocities, however, cause sloughing of attached
filaments due to sheer stress and scour (Homer et al. 1990, Stevenson 1996). Filamentous
green algae were found to achieve peak biomass at velocities ranging from 20 — 70 cm/s
(Biggs and Stoketh 1996, Biggs et al. 1998). Stream substrates that are relatively large in
size (e.g., cobble, boulder) are less susceptible to tumbling and subsequent filament loss
at high current velocities allowing greater algal accrual (Power and Stewart 1987). Also,
growth and senescence, of filamentous algae may be a function of seasonal cycling in
biotic, abiotic, and autogenic factors (Biggs 1996, Francoeur et al. 1999). Therefore,
changes in biomass or taxon presence may be observed over the course of inter-seasonal
sampling.

This investigation aimed to explore the primary abiotic factors related to benthic
filamentous algal distribution and abundance in California’s Central Coast region. To
accomplish this, I postulated that the aforementioned environmental factors (nitrogen,
phosphorus, conductivity, pH, temperature, canopy cover, current velocity, substrate size,
and season), may each influence algae distribution and abundance. I built hypotheses in
the form of linear regression models and compared them using an information theoretic
approach (Burnham and Anderson 2002). The environmental data and benthic algal

samples examined in this study were obtained from a concurrent Central Coast stream
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bioassessment study. The variables I included in the hypotheses were chosen from the
bioassessment dataset and were supported by findings reported in the literature.
Additionally, I explored associations between filamentous algal taxa and daytime water
column dissolved oxygen concentrations. Few investigations have focused on macroalgae
in this region, and little is known about their autecology or the conditions that could lead

to nuisance blooms in this area.

METHODS

Study area

The study area covers 17,945 km® of coastal central California from the Santa
Cruz Mountains south to the Santa Ynez Mountains and east through the Salinas Valley
(Figure 2). This area is mainly defined by the Central Coast Regional Water Quality
Control Board Region 3, but also includes 23 sites in adjacent watersheds to the north
with similar ecosystem structure. Soils and alluvium of the region chiefly derive from
shale, sandstone, and granodiorite parent material (Schoenherr 1992). Elevation ranges
from sea level to 2078 m. The climate of the region is characterized by mild dry summers
and cool moist winters, though coastal portions of this region experience fog. Average
temperatures range from a high of 85°F in the summer to a low of 35°F in the winter
(PRISM 2006). Mean annual precipitation is spatially heterogeneous, ranging from less
than 25 cm in the Salinas Valley to over 170 cm in the Santa Cruz Mountains (PRISM
2006). Rainfall occurs primarily from October through May with heaviest rain events
typically occurring in January and February. Grasslands, chaparral, and oak woodlands
make up most of the region’s natural vegetation, while coniferous forests are found in
localized coastal and montane zones. Major watersheds of the region include the Salinas,
Pajaro, Cuyama, Santa Ynez, Estrella, and Sisquoc.

Undeveloped natural areas and grazing lands dominate the foothiils and
mountains of the Central Coast landscape, while irrigated crops and urban development
occupy the valley floors (Newman et al. 2003). As of 2001, land cover in the study area
included forest/shrubland (57.4%), grassland and rangeland (28.9%), cultivated crops
(6.2%), light urban (4.5%), barrens (1.6%), urban (1.1%), and water (0.3%) (MRLC

2001). Agricultural and urban activities, such as irrigation, municipal water use,



fertilization, urban development, livestock grazing, and gravel mining, affect stream

nutrient and sediment concentrations, stream flow, and riparian habitat in the region

(Newman et al. 2003).

> ° ¥
. - % .*
J .r L ] ‘ .
Y . 4 * 'y
o, e
Santa Cruz e _.‘
*"salinas © .
.,
<’ ® \
. H $. . o ~ .
R King City
. R )
e
. s
* .'
San Luis Obispo -
*  Site « .
Y City | .
»
Major river | .
fx el
0 10 20 40 60 80 Santa Barbara

N R e Kilometers

Figure 2. Location of sampling sites within Central Coast Region 3 study area.
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Dataset and study design

Site characteristics and algal samples were acquired from a regional stream
bioassessment study designed for the development of multimetric and multivariate
assessment tools using benthic diatoms (Los Huertos and Rollins in progress). Sites were
selected in an effort to capture both least-impaired and highly impaired low-gradient (i.e.,
slope < 2%) stream conditions representative of the Central Coast region. In the field, site
selection was further constrained by access and flow conditions. As a result, sites reflect a
range of stream impairment within the region. Sites were distributed among the Southern
and Central California Chaparral and Oak Woodlands Ecoregion (102), the Coast Range
Ecoregion (55), and the Southern California Mountains Ecoregion (42) (Omemik 1987)..
Catchments above the sites ranged in size from 1 to 10,884 kmz, draining to both
ephemeral and perennial streams.

Water samples and physical habitat data were collected by field teams of 3-5
technicians following methods described in Ode (2007) and Stevenson and Rollins
(2006). Benthic algae sampling protocols were modified from Peck et al. (2006). Two-
hundred seventy-three site visits were conducted during the dry season of 2 dry years,
June-October 2007 and April-August 2008, at a total of 214 sites. I analyzed data from
199 sites, excluding those with incomplete data and high salinity due to tidal influence. In
2007, field teams noted clumping of algal filaments in the composite sample which may
have led to unequal distribution of filaments in the aliquots. In 2008, clumps of
filamentous algae were manually shredded prior to depositing into the composite sample.
Where repeat site visits occurred, I chose samples from 2008 over 2007 due to the
improved sampling protocol and minimized algae sample holding times. Although the
change in protocol may have affected cell counts between years, I chose to keep 2007
samples in an effort to maintain a large sample size and maximize usage of available
information. Thus, an assumption of this work is that 2007 and 2008 data are comparable.
And, while a difference between years may be difficult to detect due to a high amount of
variance in the data, a Wilcoxan rank sum test showed no difference in abundance

between 2007 and 2008 samples (p > 0.1).
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Water chemistry

Water samples and in situ measurements were collected at the stream thalweg.
Temperature, pH, dissolved oxygen (DO) and specific conductance were measured using
a Hydrolab DSX water quality multiprobe (Hach Company, Loveland, CO). Field teams
collected total N (TN) and total P (TP) samples from the water column in acid-washed
polyethylene bottles and placed them on ice during transport. Following acid/oxidant
digestion, TN and TP concentrations were determined colorimetricaily using a Flow
Injection Analyzer (Lachat Instruments, Inc. QuikChem 8000 Series, Hach Company,
Loveland, CO; APHA 1998, Wendt 2000, Diamond 2007). Method detection limits were
0.01 mg N 1" and 0.009 mg P 1",

Physical habitat

Physical habitat data were collected from 11 transects and 10 inter-transects (i.e.,
an additional transect equally spaced between each main transect) oriented perpendicular
to stream flow and spaced every 7.5 m within a 150 m reach of the stream. At each
transect, field teams measured wetted width and estimated canopy cover using a
Strickler-modified 17-point spherical densiometer (Strickler 1959). Points were counted
facing four directions (upstream, left bank, downstream, and right bank) one foot above
the water surface at the center of each transect (44 readings). Reach slope was measured
using an auto level or clinometer and a stadia rod held at the water surface at each
transect. Slope was calculated as the average of the measurements. Site latitudinal and
longitudinal coordinates were recorded using a Trimble Geo Explorer 3 GPS (70% of

sites) or were estimated using Google Maps (http:/maps.google.com/) when satellite

signals were blocked by steep terrain (30% of sites).

Substrate size class (e.g., cobble, gravel, sand) and stream depth were measured at
five equidistant points along each transect and inter-transect. Stevenson et al. (2006)
determined substrata suitable for algal accrual to be > 2 cm. For this study, I re-classified
substrate from 8 size classes to 2, hard (> 16 mm diameter) and soft (< 16 mm diameter),
in order to attain a single continuous substrate variable (% hard) with a cutoff as close to
2 cm as possible. Field teams measured current velocity at five equidistant points along

each transect using a FlowTracker Acoustic Doppler Velocimeter (Son Tek, San Diego,
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CA) positioned at 0.6-depth to capture mean velocity in the vertical of the water column
(USGS 1983). Mean current velocity was calculated for each of the 11 transects using
wetted width, depth, and velocity measurements. Means velocities were averaged to

characterize the reach.

Benthic algae

A composite periphyton sample was collected from the reach substrate at 11
transects. At each transect, field teams alternated substrate collection from the right,
middle, or left region and sampled from the substrate type that best represented the entire
transect. Rocks were removed by hand and placed in a collection bin while maintaining
their up facing orientation. A rubber washer and sampling strap delineated a 12 cm” area
of the up-facing rock surface. Periphyton was dislodged from this area using a plastic
spatula and toothbrush followed by a rinse with stream water. Depositional substrate,
composed of fine gravel, sand, or silt, was delimited using a 12 cm” PVC pipe placed at 1
cm depth and transported to the collection bin using a spatula. The periphyton slurry and
any depositional substratum were placed in a plastic bottle and gently shaken to dislodge
algae from sand and gravel particles. The composite sample was then decanted into a
graduated cylinder in order to record volume. Next, the sample was homogenized in a
large plastic bottle by manual shaking. Homogenized sample was divided into 45-mL
aliquots and preserved with 2.5% glutaraldahyde. Samples were stored at approximately
4°C until analyzed. To assist with identification of filamentous algal fragments during
enumeration, a grab sample of macroalgae was collected from each reach. This sample
included any visible macroalgae seen during the survey. The macroalgae grab samples
were also preserved with 2.5% glutaraldahyde.

A pilot study identified the most common filamentous taxa in the samples:
Cladophora, Spirogyra, Ulva (a filamentous-like colonial species), Vaucheria,
Mougeotia, and Zygnema. Each of these taxa occurred at > 18 sites. Species within
genera could not be distinguished due to a lack of reproductive structures which, for
many soft algae, are necessary for species level identification (Stevenson and Pan 1999).
Although John (2003) asserts that Ulva flexuosa is the only freshwater species of the

genus Ulva in North America, several other authors have found additional species in
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North American freshwaters (Kamer and Fong 2001, Lougheed and Stevenson 2004,
McAvoy and Klug 2005). U. flexuosa was identified in the pilot samples, but due to
uncertain taxonomy, I limited identification to the genus level. Through further
examination, I found Ulva spp. and Vaucheria spp. to be difficult to identify from
composite sample fragments. While Mougeotia and Zygnema were not listed in the
literature as potential nuisance algae, these genera did occur frequently in the samples
and were included in the study to advance knowledge of macroalgae of the region.
Zygnema was excluded from analyses but included in a distribution map due to a low
proportion of detection at sampling sites. Thus, abundance data were collected on
Cladophora and Spirogyra while the remaining taxa were recorded as either present or
absent from the composite and macroalgae grab samples. The following taxonomic keys
were used for identification: Prescott (1970), John (2003), Gerrath (2003), Ott and
Oldham-Ott (2003), and Skinner and Entwisle (2004).

Abundance (biovolume per unit area) of filamentous algae was determined
microscopically by enumerating taxa over a fixed area of substrate (76.8 mmz). The fixed
area method equalizes the enumeration effort between composite samples of unequal
volume and was accomplished by adjusting the concentration of a subsample of
homogenized composite. In 15-mL centrifuge tubes, subsamples were twice rinsed with
DI water and centrifuged to remove preservative and to concentrate algal cells. Prior to
microscopy, 14.5 mL of supernatant were removed and the remaining 0.5 mL of sample
homogenized by stirring. Eighty microliters of this homogenized sample were placed on
each slide. The number of slides enumerated was determined by the concentration of the
subsample. In some cases, subsamples contained large amounts of sediment and thus
required further dilution. As a result, I used conversion factors to make abundance
estimations comparable with undiluted samples.

To prepare for enumeration, 80 uL of sample plus 1-2 drops of DI were placed
onto a standard microscope slide and covered with a large cover slip (24 x 40 mm).
Target algae were identified and individual cells counted at 100-200x magnification
using a Nikon Labophot-2 compound light microscope. Enumeration transects covered
the entire area of the cover slip so that all 80 uL of sample were examined. Using a

Micrometrics digital camera and software, I calculated the median length and width from
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15 cells of each target taxon in the sample. Cell volume was calculated as the volume (V)

of a cylinder (Hillebrand et al. 1999):
v =Zhd?
4

where # is median height and d is median diameter. If fewer than 15 cells were found in a
sample, additional measurements were taken from the macroalgae grab sample.

Abundance was calculated as density multiplied by cell volume.

Analyses

I used an information theoretic approach (Burnham and Anderson 2002) to make
inferences about the relationship between the macroalgal taxa and stream characteristics
commonly attributed to algal presence and abundance in freshwater streams. From my
postulates, I derived 32 a priori hypotheses about macroalgae presence-absence and 25
hypotheses about macroalgae abundance (see Appendix A). Each hypothesis was
represented by a linear regression model. I used Akaike’s Information Criterion,
corrected for small sample size (AIC,), to determine the likelihood of each model given
the data and the set of models (Bumham and Anderson 2002). I inferred that the best
supported hypotheses were those whose corresponding regression models received the
most support in the AIC analysis. More specifically, a given predictor variable was
inferred to be related to the algal response if 95% confidence limits for model-averaged
coefficient estimates did not include zero. The models were evaluated based on support
given by their delta AIC, values, Akaike weights (w;), and evidence ratios (refer to Table
1 for description of terms). If no single model received w; > 0.90, a 90% confidence set
was averaged to determine parameter coefficients, standard errors, and coefficient
confidence intervals. The 90% confidence set of models is the subset of models in a suite
that has a probability of 0.9 of including the best model (i.e., the model that loses the
least amount of information when used to approximate reality) given the suite of models
(Burnham and Anderson 2002). The use of multi-model inference (i.e., model averaging)
allows the information from more than one model to be considered when there is

uncertainty regarding the best model.
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Table 1. Description of terms used to evaluate models when applying an information
theoretic approach (Burnham and Anderson 2002; after Croyle 2009).

Term

Definition

Use in evaluation of model comparison results

AIC,

Delta AIC, (A;)

Akaike weight (w)

90% confidence set

Evidence Ratio (ER)

A measure of the goodness of fit of a
model given the data. Competing models
are ranked based on AICc score.

Difference in AIC value between the
model with the lowest score and every
other competing model in the set.

The probability of being the best model
given the set of models and the data.

A subset of models that have a
probability of .90 of containing the best
model. Determined by summing w; from
highest to lowest until 2 .90 {or other
desired level of confidence).

The ratio of one model's w; relative to
another in the set (ER = w; /w;). Ratio
definitions are based on Bayes Factors
(Jeffreys 1961 in Stauffer 2008).

Lowest AIC, = Best model: model that is
estimated to be closest to full reality given the
set of models

A, £ 2 = substantial support
4 < A, <7 = considerably less support
A; > 10 = essentially no support

w; =.90: 90% probability of being the best
model among the competing models

w; > .90 = appropriate for single-model
inference

Y w; = .90 = appropriate for multi-model
inference

IfER = w,/w; then,

ER < V10 = minimal evidence for w; over w;
ER > V10 = minimal evidence for w; over w;
ER > 10 = substantial evidence for w; over w;
ER > 100 = strong evidence for w; over w;

ER > 100 = decisive evidence for w; over w;

I developed the set of competing hypotheses and corresponding models using

results from the algal literature and personal knowledge of the stream systems under

investigation (Appendix A). These linear regression models contained a combination of
seven predictor variables: canopy cover (%), mean current velocity (cm/s), hard substrate
(%), TN (mg 1), TP (ug I'"), day of year (a proxy for season), specific conductance
(uS/cm) and pH. Canopy cover is a measure of light availability and was included in the
majority of models to account for the hypothesized importance of this variable. Nutrients,
particularly TP, were also included in a large percentage of the models due to support
from the literature regarding algal response to stream nutrient concentration. To model
the hypothesis that macroalgae are light limited in the presence of high nutrient
concentrations (Hill and Knight 1988, Rosemond 1993, Taulbee et al. 2005), I included
interaction terms between canopy cover and nutrients in the abundance model suite.
Although current velocity and day of year could have been included in the models as

quadratic terms, I modeled them with a monotonic response due to the limited range of
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stream conditions in which sampling occurred. Lastly, I included a null model in the set
to represent a constant response.

Prior to model fitting, I calculated Moran’s I using ArcGIS v. 9.2 to check for
spatial autocorrelation among algae samples, and used Spearman rank correlation to
check for collinearity among predictor variables. Moran’s I values indicated no spatial
autocorrelation in occurrence or abundance of taxa between sites, with the exception of
Mougeotia which was further examined for ecoregion preferences using Pearson’s Chi-
squared test. Due to the lack of independence in the data, Mougeotia was excluded from
the modeling analyses. Spearman rank correlation coefficient (r;) showed moderate
correlation between riparian canopy cover and stream temperature (rs = -0.50, p <0.001).
Temperature was, therefore, removed from all models suites. Several predictor variables
failed to demonstrate uniform distribution. In particular, values for TN and TP
concentrations, current velocity, and conductivity were more frequent in the low end of
their ranges.

Due to the occurrence of many zeroes in the abundance data, I used AIC, within
the framework of a two-part conditional model (Stefansson 1996, Fletcher et al. 2005). I
first created 2 data sets: one containing presence-absence data for all sites and the other
containing abundance data for only those sites where Cladophora or Spirogyra were
present. If these taxa were present in the macroalgae grab sample but not the composite
sample, I imputed an abundance value for them that was greater than 0 but less than the
lowest recorded abundance value. Hence, to estimate imputed values, I averaged 4
replicates from the lowest abundance site and divided by 2. Thirty-eight and 19 values
were imputed for Cladophora and Spirogyra respectively. I fit models to both sets of data
using the generalized linear model (glm) procedure in R version 2.7.2 (R Development
Core Team 2005). From presence-absence data, I estimated the probability of taxon
occurrence using logistic regression, and from abundance data I predicted taxon
abundance given presence using multiple linear regression. Due to the positive skew of
abundance data, I log-transformed the response and assumed a normal distribution of the
errors, although the data were still somewhat positively skewed (Fletcher et al. 2005).
The 90% confidence set of models from each of the 2 parts were combined to predict

taxon abundance in the Central Coast region. When predicting taxon abundance in a 2-
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part model, let Z(x) represent a binary variable indicating presence or absence (i.e. one
equals present, zero equals absent) where x is the vector of predictor variables, and Y(w)
represent the abundance of a taxon where w is the vector of predictor variables. The

expected value of Y is then given by:

EX)=Pu(Z=1)EX |Z=1)+Pr(Z =0)E(Y |Z =0),
EX)=Pr(Z=1)EY|Z=1),
E(Y)=nmpy,

where 1 =Pr(Z=1) and p= E(Y| Z = 1). Thus algal abundance can be estimated as the
product of the estimated probability of occurrence (7 ) and the estimated abundance

given presence ( 4 ) calculated as follows (Stefansson 1996):

5o _exp(x'p)
1+ exp(x',é)

and

A2

[ = exp(w'6 + %) s

where x’ and S are the vectors of predictor variables and their coefficients from the

averaged 90% confidence set of logistic regression models. Similarly, w’ and g are the
vectors of predictor variables and their coefficients and 67 is the residual mean square
from the averaged 90% confidence set of log-normal regression models. It should be
noted that the predictors in the logistic and log-normal regression models need not be
identical.

I used global models containing all predictor variables to check model fit. The
global presence-absence model had a total of 10 parameters, while the global abundance
model had 11 parameters. Although not included in the model suites, I checked the fit of
the global logistic regression models using the Le Cessie-van Houwelingen goodness-of-
fit test (Ie Cessie and van Houwelingen 1991) and the model-averaged logistic models
using Receiver Operating Characteristic Curves (ROC; Fielding and Bell 1997). ROC

curves evaluate model accuracy. The greater the area under the curve (AUC), the better a
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model is expected to perform. I assessed the fit of the global log-normal regression model
using the adjusted coefficient of multiple determination (Rzadj) and of the combined
model using mean absolute error.

Following a priori model comparison, I examined post hoc the potential effects of
filamentous macroalgae on water column dissolved oxygen (DO) concentration. I
conducted a Wilcoxon rank sum test to test for differences in DO saturation (%) in the
presence and absence of the macroalgal taxa. Along these lines, I also conducted

Spearman rank correlation on percent cover of canopy and DO saturation.

RESULTS

Large-scale single-event sampling captured the range of environmental variables
for streams of the Central Coast (Table 2). During the time of sampling, highest mean
current velocities (~55-70 cm/s) were found in the Salinas, San Antonio, Sisquoc, and
San Benito Rivers. Currents at most sites however were much slower (median mean
velocity = 7 cm/s); 31 sites had mean velocities < 1 cm/s. Many sampling sites were well
shaded (median canopy cover = 73.8%), particularly smaller streams located in the Santa
Cruz Mountains. The percentage of hard substrate at sites was well distributed over the
range. Highest TN concentrations occurred in the Pajaro and Salinas Rivers and
tributaries of the Monterey Bay area (~10~40 mg I'"), followed by mid-range
concentrations in Santa Margarita Creek (4.43 mg ') and Chorro Creek (3.10 mg mg 1
of the San Luis Obispo area. However, most sites had concentrations below 1 mg I TP
concentrations were also mostly low (< 10 pg 1), but surprisingly, high concentrations
were found at several sites within the relatively remote Pinnacles National Monument
(431-2610 pg 1"). Groupings of high concentrations also occurred in the San Lorenzo
River and Soquel Creeks within the Santa Cruz region (40-513 pg . Twenty-two
inland streams exceeded the specific conductance freshwater limit (1300 pS/cm; Russell
and Kane 1993). Specific conductance was highest in upper Soquel Creek above Santa
Cruz (5077 uS/cm) and in San Lorenzo Creek upstream of King City (6000 puS/cm).
Throughout the region pH was slightly basic (mean = 8.02) with little variation.
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Table 2. Descriptive statistics on environmental variables measured at 199 sites.

————— e
= ————— ==

Variable Mean Median Minimum  Maximum
Canopy cover (%) 62 74 0 99
Specific conductance (uS cm'l) 740.2 575.1 97.6 5999.6
Mean current velocity (cm s'l) 10 7 0 71
Day of year 186 184 98 282
pH 8.02 8.09 6.92 8.77
Hard substrate (%) 56 60 0 98
Total nitrogen (mg 1'1) 1.45 0.34 0.01 39.60
Total phosphorus (pug 1'1) 153 80 <10 2610

The target taxa were found at a total of 152 out of 199 sampled sites (Figure 3).
There was some variation in the total number of sites examined for different taxa due to
late additions to the target group. Cladophora was the most commonly detected
macroalgae in the region, occurring at 64% of sites, while Zygnema was the least
common of the macroalgae examined and detected at 10% of sites. A Pearson’s Chi-
squared test conducted to investigate the spatial autocorrelation exhibited by Mougeotia,
detected at 45 out of 188 sites, indicated a preference for the Southern California
Mountains Ecoregion (X* = 9.59, df = 2, p = 0.008). Anecdotally, sites that had no
macroalgae were usually highly shaded or appeared to contain high sediment loads with
little to no hard substrate. Filamentous macroalgae generally appeared to occur on rocks
or stream banks under open canopy. Vaucheria was detected at 45 out of 198 sites. A
comparison of Vaucheria spp. presence-absence models was inconclusive as the null
model had substantial support (A; < 2), indicating no trend in occurrence (Appendix A).
Model comparisons concerning the remaining taxa presented no single best model from
which to make inferences. Thus, multi-model inference was derived from a 90%

confidence set for each model suite.
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Figure 3. Locations of six filamentous macroalgae found in the Central Coast study

area during 199 single sampling events from Jun. 2007 to Aug. 2008 ( * = detected,

x = not detected).
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Cladophora spp.

Cladophora was the most prolific of filamentous macroalgae in the region,
detected at 128 of the 199 sites. Abundance (biovolume/area) ranged from a minimum of
6.02 x 10° um3/mm2, for imputed values, to 1.28 x 10’ um>/mm? with four outliers in the
range of 2.47 x 107 t0 9.68 x 107 um*/mm?. Cell width ranged from 18.38-138.42 um and
cell length ranged from 79.10-500.34 pm.

Substrate and canopy cover occurred in all presence-absence models of the 90%
confidence set. These were the only two predictors whose model-averaged coefficient
confidence intervals did not include zero (Table 3). Standardized estimates showed
percent hard substrate to have 1.2 times greater effect on probability of presence than
canopy cover. Presence of Cladophora spp. can be estimated as a function of these two
parameters and has a negative relationship with canopy cover and a positive relationship
with hard substrate (Figure 4). All presence-absence models of the 90% confidence set
had substantial support and additionally included TP, current, day of year, and
conductivity (Table 4). The le Cessie-van Houwelingen goodness of fit test of the global
model indicated good fit (p = 0.60). The ROC showed moderate accuracy of the averaged
presence-absence model (AUC = 0.73).

Table 3. Model-averaged coefficient estimates and their upper and lower confidence
limits (95%) derived from the 90% confidence set of Cladophora spp. presence-
absence models. Standardized estimates are included for comparison of the relative
influence of each variable on estimated probability of presence. Values in bold
indicate coefficient intervals that do not include zero; all other 95% confidence
intervals around coefficient estimates include zero, thus the data do not support an
affect of these variables on Cladophora spp. probability of presence.

Variable Estimate LCI U.CI Standardized estimate
Hard substrate 2.65x 107 1.24x107 4.06 x 107 6.75x 10
Canopy cover -1.72 x 107 -2.86 x 107 5.84x10° 5.65x10"
Total phosphorus -9.87x 10" 2.43x10° 4.59x 10 -2.45x% 10"
Current velocity 1.15x 107 7.57 x 10° 3.06x 107 1.38x 10"
Day of year -8.18x 10 2.51x10° 8.77x 10 3.62x 107

Sp. conductance 477x10° 6.76 x 107 1.63 x 10 3.24x 107
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Figure 4. Estimates of probability of presence of Cladophora spp. plotted against
percent hard substrate and percent cover of riparian canopy. Predictions use model
averaged coefficients with all other environmental variables held at their means
(Vincenzi et al. 2006). Tick marks show distribution of the data.

Table 4. Model selection results showing 90% confidence set on a priori models for
probability of Cladophora spp. presence. Evidence ratios are relative to the best
model in the set. These models were used for multi-model inference.

Model k A, w; ER
Substrate + canopy + TP + current 6 0.00 0.27 1.00
Substrate + canopy + TP 5 0.60 0.20 1.35
Substrate + canopy + current 5 1.12 0.16 1.75
Substrate + canopy + TP + conduct 6 1.33 0.14 1.95
Substrate + canopy + DOY 5 1.45 0.13 2.07
Substrate + canopy 4 2.16 0.09 295

Abbreviations: Substrate, hard substrate; canopy, canopy cover; TP, total phosphorus; current, current velocity; conduct,
specific conductance; DOY, day of year; £, no. of parameters; A;, delta AIC; w;, Akaike weights; ER, evidence ratio

Comparison of abundance given presence models showed that the null model (i.e.
the model representing the hypothesis that presence-absence did not depend on any of the
predictor variables) had a probability of less than 0.01 of being the best model in the set
of models. There was strong evidence (evidence ratio (ER) = 27) in favor of the top

model as compared to the null. However, the global model for this suite had a poor fit to
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the data (Rzadj = (.07, n = 128). Canopy cover was the only variable in the 90%
confidence set of models whose coefficient confidence interval did not include zero; all
others variables may not contribute to abundance (Table 5). Although this model lacks
the ability to make accurate predictions, a general trend of decreasing abundance with
increasing canopy cover can be seen (Figure 5). All models of the 90% confidence set

included canopy, and all had substantial support (Table 6).

Table 5. Model-averaged coefficient estimates and their upper and lower confidence
limits (95%) derived from the 90% confidence set of Cladophora spp. abundance
models. Standardized estimates are included for comparison of the relative
influence of each variable on estimated probability of presence. Values in bold
indicate coefficient intervals that do not include zero; all other 95% confidence
intervals around coefficient estimates include zero, thus the data do not support an
affect of these variables on Cladophora spp. abundance given presence.

Variable Estimate L.C1 u.ca Standardized estimate
Canopy cover -1.92 x 107 -3.23x107 -6.12x10° -6.23x10"
Hard substrate 546 x 10” -4.08x 10° 1.50 x 10 1.26 x 10"
Day of year -1.50 x 10 4.71x10° 1.72x10° -6.33x 107
Total nitrogen -1.46x 107 -4.85x 102 1.93x 107 -3.64x 107
Sp. conductance 5.12x10° -6.54x 10° 1.68 x 10 329x 107
Total phosphorus 237x10* 5.05x 10 9.80x 10 2.84 x 107

Current velocity -4.18x 10° -1.63x 107 1.55x 10° -5.46x 10
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percent cover of riparian canopy. Predictions use model averaged coefficients with

all other environmental variables held at their means (Vincenzi et al. 2006).

Table 6. Model selection results showing 90% confidence set on a priori models for
abundance of Cladophora spp. given presence. Evidence ratios are relative to the

best model in the set. These models were used for multi-model inference.

Model k A, w, ER
Canopy + substrate 4 0.00 0.17 1.00
Canopy 3 040 0.14 1.22
Canopy + substrate + DOY 5 0.66 0.12 1.39
Canopy + conduct 4 0.75 0.12 1.46
Canopy + DOY 4 0.75 0.12 1.46
Canopy + TN 4 1.09 0.10 1.72
Canopy + substrate + TP 5 1.45 0.08 2.07
Canopy + TP 4 2.19 0.06 2.99
Canopy + current 4 2.53 0.05 3.54
Canopy + TN + TP 5 2.69 0.04 3.83

Abbreviations: Canopy, canopy cover; substrate, hard substrate; DOY, day of year; conduct, specific conductance; TN,
total nitrogen; TP, total phosphorus; current, current velocity; &, no. of parameters; A,, delta AIC; w;, Akaike weights;

ER, evidence ratio
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The combined presence and abundance given presence models yielded a weak
predictive model of Cladophora spp. abundance with a high mean absolute error
(MAE =2 x 10% Figure 6). Removal of imputed values, used when Cladophora spp. was
undetected in the composite sample but observed in the macroalgae grab sample, made
no improvements, so they were retained in the dataset. Derived from these data, the two-

part conditional model has minimal predictive utility.

1107

3

Predicted abundance of Cladophora (um™ mm )

1x10°

—
o

1 [ I ]

0 10 1x10* Ix107

Observed abundance of Cladophora (;um3 mm'z)

Figure 6. Plot of predicted vs. expected abundance of Cladophora spp. on a log-log
scale with one-to-one line shows weakness of predictions of the two-part model. The
vertical line of points at p.mg‘/mm2 is due to the large number of zero observations,
while the vertical line of points at 9000 p.mg‘/mm2 is due to the large number of
imputed values.
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Spirogyra spp.

Spirogyra spp. was detected at 70 of 199 Central Coast samplings sites.
Abundance ranged from a minimum of 1.07 x 10° um3/mm2, for imputed values, to 3.05
x 10° pm*/mm? with one outlier near 3.92 x 10° pm*/mm?. Cell width and length ranged
from 22.05-109.76 pm and 24.91-239.21 pm respectively.

Of all predictor variables included in the 90% confidence set of Spirogyra spp.
presence-absence models only canopy cover and TP had model-averaged coefficients
whose confidence intervals did not include zero (Table 7). Presence of Spirogyra spp. can
be estimated as a function of these two parameters, both of which have a negative effect
on presence (Figure 7). Standardized estimates showed percent canopy cover to have 1.3
times greater effect on probability of presence than TP concentration. Other variables
included in the 90% confidence set of presence-absence models had substantial support,
including current, TN, substrate, conductivity, and day of year (Table 8). However,
without reliable coefficient estimates (i.e., estimates whose C.I.s do not include zero), the
remaining variables were considered unrelated to occurrence of Spirogyra spp. The
le Cessie-van Houwelingen goodness of fit test of the global model indicated good fit
(p =0.24). An ROC showed good predictive power from the model-averaged 90%
confidence set (AUC = 0.77).

Table 7. Model-averaged coefficient estimates and their upper and lower confidence
limits (95%) derived from the 90% confidence set of Spirogyra spp. presence-
absence models. Standardized estimates are included for comparison of the relative
influence of each variable on estimated probability of presence. Values in bold
indicate coefficient intervals that do not include zero; all other 95% confidence
intervals around coefficient estimates include zero, thus the data do not support an
affect of these variables on Spirogyra spp. probability of presence.

Variable Estimate L.CI u.cl Standardized estimate
Canopy cover -2.74x 107 -3.84x 107 -1.64 x 10” 9.01x 10"
Total phosphorus 2.74x10° -536x10° -1.24x 10" -6.82x 10"
Current velocity -1.23x 107 -3.08 x 107 6.30x 10 -1.47x 10"
Total nitrogen -1.71x 102 5,12 x 107 1.71x 107 -8.13x 107
Hard substrate 2.32x10° 273x10° 736x 107 5.91x 1072
Sp. conductance -6.21x10° 2.03x10* 7.87x10° 422 x 107

Day of year -8.64x10* 2.57x 107 843x10* -3.83x 10
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Figure 7. Estimates of probability of presence of Spirogyra spp. plotted against
percent cover of riparian canopy and total phosphorus. Predictions use model
averaged coefficients with all other environmental variables held at their means
(Vincenzi et al. 2006). Tick marks show distribution of the data.

Table 8. Model selection results showing 90% confidence set on a priori models for
probability of Spirogyra spp. presence. Evidence ratios are relative to the best model
in the set. These models were used for multi-model inference.

Model k A; w; ER
Canopy + TP + current + TN 6 0.00 0.17 1.00
Canopy + TP + current 5 0.41 0.14 1.23
Canopy + TP + current + conduct 6 0.46 0.13 1.26
Canopy + TP 4 0.62 0.12 1.36
Canopy + TP + TN 5 0.94 0.11 1.60
Canopy + TP + current + substrate 6 1.25 0.09 1.87
Canopy + TP + substrate 5 1.38 0.09 1.99
Canopy + substrate + DOY 5 2.02 0.06 2.75
Canopy + DOY 4 2.51 0.05 3.52
Canopy + TP + substrate + conduct 6 2.81 0.04 4.09

Abbreviations: Canopy, canopy cover; TP, total phosphorus; current, current velocity; TN, total nitrogen; conduct, specifi
conductance; substrate, hard substrate; DOY, day of year; k, no. of parameters; 4;, delta AIC; w;, Akaike weights; ER,
evidence ratio
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Comparison of abundance given presence models proved inconclusive for
Spirogyra spp. Although the no trend model (i.e., null) had zero probability of being the
best model in the set (w; = 0), the analysis did not identify any accurate predictors of
trend in abundance (Table 9). The most probable model of those considered (w; = 0.19)
includes TP and TN (Table 10). In addition the global model lacked good fit
(Rzadj =0.07, n=70). Because no accurate predictors of abundance were identified,

calculating a two-part model prediction was unwarranted.

Table 9. Model-averaged coefficient estimates and their upper and lower confidence
limits (95%) derived from the 90% confidence set of Spirogyra spp. abundance
models. Standardized estimates are included for comparison of the relative
influence of each variable on estimated probability of presence. Values in bold
indicate coefficient intervals that do not include zero; all other 95% confidence
intervals around coefficient estimates include zero, thus the data do not support an
affect of these variables on Spirogyra spp. abundance given presence.

Variable Estimate LCI U.CI Standardized estimate
Total phosphorus -3.50x 107 -7.86x 10° 8.50x 10™ 373x 10"
Total nitrogen -8.95x 107 2.09x 10" 3.04x 107 -324x 10"
Current velocity -6.68x 10 2.28x 107 9.43x 10 7.35x 107
Day of year -1.19x 107 3.66x 10° 1.28x10° -5.93x 107
Canopy cover 8.62x 10 2.82x10° 4.55x 10 2.71x 107
Sp. conductance 4.84x10° -839x10° 1.81x10* 2.39x 107

Hard substrate -1.49x 10* -1.83x 107 1.53x 107 3.79x 107
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Table 10. Model selection results showing 90% confidence set on a priori models for
abundance of Spirogyra spp. given presence. Evidence ratios are relative to the best
model in the set.

Model k A; w; ER
TP + TN 4 0.00 0.19 1.00
TP + TN + current 5 1.07 0.11 1.71
TN 3 1.14 0.11 1.77
TP 3 1.31 0.10 1.93
DOY 3 1.74 0.08 2.39
TP + TN + canopy 5 2.05 0.07 2.78
TP + conduct 4 2.54 0.05 3.56
TP + current 4 2.66 0.05 3.79
TP + canopy 4 3.14 0.04 4.81
TP + TN + current + substrate 6 3.17 0.04 4.88
TN + canopy 4 3.29 0.04 5.18
TP + canopy + substrate 5 3.72 0.03 6.41
Conduct 3 3.97 0.03 7.27
Current 3 3.99 0.03 7.34
Substrate 3 4.51 0.02 9.54

Abbreviations: TP, total phosphorus; TN, total nitrogen; current, current velocity; DOY, day of year; canopy, canopy cove
conduct, specific conductance; substrate, hard substrate; k, no. of parameters; A;, delta AIC; w,, Akaike weights; ER,
evidence ratio

Ulva spp.

Ulva spp. was detected at 31 of 198 sites and was not included in the two-part
conditional modeling. Accurate biovolume measurements were problematic because Ulva
spp. composite sample fragments were difficult to identify. Therefore, only occurrence
data were collected for this taxon. Canopy cover and specific conductance occurred in the
top three models with substantial support. Only these two parameters had model-
averaged coefficients whose confidence intervals did not include zero (Table 11).
Coefficient estimates indicated a negative relationship between Ulva spp. and canopy
cover and a positive relationship with specific conductance (Figure 8). Standardized
estimates showed percent canopy cover to have 1.5 times greater effect on probability of
presence than specific conductance. The 90% confidence set of models also included TP,
TN, current, and substrate (Table 12), but given the uncertainty of their coefficient
estimates, these variables cannot be used to predict probability of Ulva spp. presence. The
le Cessie-van Houwelingen goodness of fit test of the global model indicated good fit
(p = 0.19). ROC showed good predictive power from the model-averaged 90%
confidence set (AUC = 0.84).
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Table 11. Model-averaged coefficient estimates and their upper and lower
confidence limits (95%) derived from the 90% confidence set of Ulva spp. presence-
absence models. Standardized estimates are included for comparison of the relative
influence of each variable on estimated probability of presence. Values in bold
indicate coefficient intervals that do not include zero; all other 95% confidence
intervals around coefficient estimates include zero, thus the data do not support an
affect of these variables on Ulva spp. probability of presence.

Variable Estimate L.CI U.CI Standardized estimate
Canopy cover 2.95x10? -4.34x107 -1.55x 107 9.66x 10"
Sp. conductance 9.30x10™ 2.90x10™ 157x10° 6.34x 10"
Total phosphorus -1.72x 107 -450x10° 1.06 x 10° -427x 10"
Total nitrogen 1.98 x 107 -1.61x 107 5.56x 107 9.44 x 107
Current velocity 1.69x 107 5.70x 107 9.08 x 10° 1.93x 107
Hard substrate -3.92x 10* 4.08x 10° 330x10° -1.00x 107
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Figure 8. Estimates of probability of presence of Ulva spp. plotted against percent
cover of riparian canopy and specific conductance. Predictions use model averaged
coefficients with all other environmental variables held at their means (Vincenzi et
al. 2006). Tick marks show distribution of the data.



35

Table 12. Model selection results showing 90% confidence set on a priori models for

probability of Ulva spp. presence. Evidence ratios are relative to the best model in
the set. These models were used for multi-model inference.

Model k A, w; ER

Canopy + conduct 4 0.00 0.43 1.00
Canopy + conduct + TP + current 6 1.37 0.22 1.98
Canopy + conduct + TP + substrate 6 1.55 0.20 2.17
Canopy + TP + TN 5 2.73 0.11 3.92
Canopy + TN 4 4.76 0.04 10.83

Abbreviations: Canopy, canopy cover; conduct, specific conductance; TP, total phosphorus; current, current velocity;
substrate, hard substrate; TN, total nitrogen; &, no. of parameters; A, delta AIC; w;, Akaike weights; ER, evidence ratio

Post hoc analysis

In the interest of water quality management, post modeling analyses were

conducted to explore the effect of canopy cover on DO concentrations via macroalgal

presence. Spearman rank correlation indicated a weak but definite negative relationship

between DO and percent cover of canopy (rs =-0.32, p < 0.0001). A Wilcoxon rank sum

test showed an increase in DO saturation in the presence of Cladophora spp.

(p =0.0001), and Ulva spp. (p < 0.0001) (Figure 9).
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Figure 9. Dissolved oxygen concentrations in presence and absence of Cladophora
spp. and Ulva spp. Higher concentrations occurred in the presence of these two
macroalgae.

DISCUSSION

Cladophora spp.

Cladophora was the most commonly found macroalgae during the sampling
period indicating widespread distribution throughout the Central Coast. Indeed, it is
thought to be the most ubiquitous macroalgae of freshwaters worldwide (Dodds 1991),
though it continues to thwart attempts to understand the factors influencing its
distribution and abundance (Westlake 1981, Morgan et al. 2006). Of the model predictors
evaluated in this study, Cladophora spp. presence was most strongly associated with high
percent cover of hard substrate and low percent cover of canopy. Canopy cover was also
negatively related to Cladophora spp. abundance, but poor fit diminished the model’s
predictive utility.

In accordance with Dodds and Gudder (1992) and Ensminger et al. (2005), I
found Cladophora spp. probability of presence to be higher in streams with a higher
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percentage of stable substrate. Large substrates such as cobble are typically more stable
attachment sites at higher flows than smaller-sized grains such as sand. A higher
percentage of hard substrate in a reach may also indicate reduced bed load movement and
subsequent disturbance due to sediment scour (Biggs and Close 1989, Horner et al. 1990,
Power 2001). Cladophora glomerata growths tend to be most abundant in riffle habitats
(Stevenson et al. 2006), again indicating the importance of stable attachment sites to
Cladophora presence. Larger substrates also elevate filaments in the water column
thereby increasing access to light. However, Cladophora is not dependent on attachment
for survival. It can detach, drift, and be caught by other structures, such as a rocks or
branches, and continue to photosynthesize (Dodds and Gudder 1992).

Percent cover of canopy determined both Cladophora spp. occurrence and
abundance, likely indicating the importance of light to its growth habit. Likewise,
Robinson and Hawkes (1986), Sabater et al. (1998), Morgan et al. (2006), found
increases in Cladophora accrual with higher irradiance. This taxon, however, is also
tolerant of low light conditions (Dudley and D’ Antonio 1991, Ensminger et al. 2005),
which may contribute to its ubiquity. In this study it was detected under a wide range of
riparian coverage (0-98%). Although Cladophora spp. was present in highly shaded
streams, it was more abundant in full sun. In addition, Cladophora demonstrates
photosynthetic plasticity under changing environmental conditions and is capable of high
productivity rates at high levels of irradiance (Necchi 2004, Ensminger et al. 2005).

Over the course of the study, I observed excessive macroalgal proliferations at
several sites. Whether or not algal proliferations were a nuisance in these locations is
unknown. In some cases, proliferations were only localized, coinciding with open canopy
in an otherwise shaded stream. Such circumstances may have confounded model
predictive ability. Given the preference of Cladophora spp. for sunlight and stable
substrate, streams with sparse riparian vegetation and ample stable attachment sites in
regions of infrequent hydrologic disturbance may be prone to natural ephemeral algal

proliferations.
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Spirogyra spp.

Model selection results indicated increased probability of Spirogyra spp. presence
with decreased canopy cover and TP. While the negative response of Spirogyra spp. to
higher canopy cover was expected (Lowe et al. 1986, Steinman et al. 1991, Graham et al.
1995), a negative relationship with TP was not. Several studies report a positive effect of
phosphorus on Spirogyra (Borchardt et al. 1994, McCormick and O’Dell 1996,
Townsend and Padovan 2005). McCormick and Stevenson (1998) even noted its potential
as an indicator of high phosphorus concentration. Conversely, no studies were found to
support the result reported here. Where Ensminger et al. (2000) found a negative
correlation between soluble reactive phosphorus (SRP) and percent coverage of
Cladophora glomerata, they speculated that increased SRP uptake by highly productive
photoautotrophs resulted in lowered water column concentrations. If grazer densities
increase in nutrient enriched streams (Elwood et al 1981), herbivory could mask effects
of high TP concentration on Spirogyra productivity as it has on other benthic algae
(Rosemond 1994, Hillebrand 2002, Liess and Kahlert 2009). Alternatively, algae or
macrophytes better equipped to acquire and allocate phosphorus for growth may
outcompete Spirogyra in highly productive streams (Borchardt 1996, Suren et al 2003).

Members of this genus demonstrated a diversity of cell sizes and chloroplast
arrangements, which indicate detection of more than one species. At least 16 species
were found in a similar bioassessment study of coastal southern California streams
(Stancheva et al. 2009). It is thus likely that numerous species were not differentiated
during the analysis thereby convoluting results where species have unique responses to

ecological factors.

Ulva spp.

Ulva (formetly Enteromorpha (Hayden et al. 2003)) is a common estuarine
macroalgal genus. Although found primarily in saline waters, this genus appears to be
increasingly detected in freshwater systems of the United Kingdom and Great Lakes
region (Whitton 2000, Lougheed and Stevenson 2004). The current study reveals its
presence in partially shaded to open canopy freshwater streams up to 68 km from the

ocean with specific conductance ranging from 250-3000 pS/cm. McAvoy and Klug
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(2005) suggests that Ulva proliferations found in freshwaters are likely due to elevated
nutrient concentrations. Several studies of Ulva intestinalis support the hypothesis that
some species of this genus may be able to tolerate fresh water environments when
nutrient concentrations are high (Kamer and Fong 2001, McAvoy and Klug 2005).
Nutrient concentrations in the Central Coast stream reaches where Ulva spp. were found
ranged from low to high (0.01 - 40 mg I"' TN and 6 - 736 pg 1" TP), but model selection
results showed no evidence of a relationship between Ulva spp. and TN or TP. While
Ulva has a wide distribution in saline, fresh, and brackish waters, Shimada et al. (2008)
suggested that U. flexuosa survival in low salinity environments in Japan was temporary
and thus the species was not adapted to freshwater. Further research would be necessary

to determine the persistence of this genus in freshwater streams of the Central Coast.

Environmental factors

The overarching result of the study shows the importance of light to the
distribution of all three taxa and its association with Cladophora spp. abundance (Figure
10). These results are not unexpected as aquatic photoautotrophs respond directly to
changes in the amount of light energy reaching a stream (Ensminger et al. 2005).
Responses include changes in algal community composition and biomass. Light was
found to be a key limiting factor in the distribution and abundance of Cladophora in an
oligotrophic Mediterranean stream (Sabater et al. 1998) as well as in other systems
(Morgan et al. 2006). Streams that lost canopy cover to logging in northeast Spain
experienced chlorophyll a concentrations 10 times greater than forested areas (Sabater et
al. 1998).
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Figure 10. Arrow diagram summarizing relationships between predictor and
response variables arrived at using an information theoretic approach.

Other stream variables produced less certain results in this study. Contrary to
previous work and the expectation of the author, this study did not find a positive
relationship between nutrients and macroalgal abundance. This finding could be due to a
number of potential reasons: temporal fluctuations in nutrient concentrations and the
delayed response of algal biomass, clumped spatial distribution of filamentous algae,
right-skewed nutrient data, or community interactions. Nutrient concentrations were,
however, both above and below growth saturating levels for benthic algae (35-60 pg 1"
TP and 0.35-0.5 mg ' TN; Wong and Clark 1976, Dodds et al. and Dodds et al. 1997,
respectively).

Establishing algal-nutrient relationships is made difficult by temporally variable
nutrient concentrations and patchy algal distribution. Oscillations in stream nutrient
concentration can be caused by diurnal, daily, and seasonal factors such as microbial
activity, assimilation by photoautotrophs, and stormwater runoff (Meyer et al. 1988).
Algal growth response to these fluctuations is not immediately evident (Collos 1986), and
single event sampling may fail to capture nutrient-stimulated accrual (Hillebrand 2002).

Benthic filamentous algae exhibit patchy distribution at the reach scale (Stevenson et al.
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2006). Such heterogeneous macroalgal growth was observed during this study. At each
site a total of 132 cm” was sampled from 11 points within a 150 m reach. The location of
these points in relation to algal patches may have altered abundance estimates, possibly
masking subtle relationships within the noise of the data. Stevenson et al. (2006)
recommend an extensive and frequent sampling method in order to account for both
spatial heterogeneity and temporal fluctuations in nutrient concentrations and algal
biomass.

Some environmental variables lacked uniformly distributed data, which may have
affected model comparison results, Many of the sites sampled exhibited nutrient
concentrations on the low end of the scale while a smaller proportion of sites exhibited
high concentrations (Figure 11). This type of skewed condition makes it difficult to

estimate reliable regression parameters over the entire range of values.
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Figure 11. Distribution of TN and TP water column concentrations over the entire
range of values. Nutrient concentrations do not exhibit uniform distribution.

Community interactions, such as herbivory and competition, were not examined
in this study, however they may be integral in controlling algal biomass and could
account for a lack of strong patterns in the data. Benthic algae are strongly regulated by

stream herbivory (Feminella and Hawkins 1995). Filamentous macroalgae occupy
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multiple feeding zones and thus may be susceptible to grazing by numerous feeding
groups (Steinman 1996). In addition some ﬁlaméntous macroalgae, such as Cladophora
and Vaucheria, provide attachment sites for epiphytes. In the case of Cladophora, the
alga itself is not always the preferred food source, but is damaged in the process of
epiphyte grazing (Dodds and Gudder 1992). On the other hand, Roll et al. (2005) found
that rapid growth of filamentous macroalgae under high nutrient conditions produced
increasing biomass even in the presence of high grazer density. The chances for such a
response increase when the initial algal growth period precedes the recovery or
immigration of the grazer community (Power 1992). Algal communities are also affected
by competition between algal species or with macrophytes (McCormick and Stevenson
1991, Everitt and Burkholder 2001). Following disturbance events, colonization by
competitively similar species may occur stochastically, and early immigrants can
dominate the substrate to the exclusion of other species (Yodzis 1986, Townsend 1989).
Under high light, shallow, nutrient-enriched conditions, macrophytes outcompete benthic
macroalgae for space (Sand-Jensen and Borum 1991). Epiphyte load can also affect host
productivity through shading and competition for nutrients (Jansson 1969). These
community interactions, in part, dictate species abundance and can make it difficult to
identify taxon response patterns to nutrients or other environmental factors (Rosemond

1994, Hillebrand 2002).

Dissolved oxygen

Analyses of dissolved oxygen coupled with a priori model comparison results
support the hypothesis that riparian cover is also important in the prevention of extreme
fluctuations in DO and occurrence of nighttime anoxia. When percent cover of riparian
canopy is low, solar irradiance is more available in the water column. The probability of
presence of 3 common filamentous macroalgae increased under these conditions.
Presence of the 2 more prolific taxa, Cladophora spp. and Ulva spp., was related to
higher daytime DO concentrations. Morgan et al. (2006) found that when present,
Cladophora glomerata biomass explained 64% of the variation in the diel ranges of DO
saturation in agricultural streams of Illinois. Daytime levels of DO > 125% saturation

(found at 16 sites) have been linked to anoxic conditions at night in the Pajaro River
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watershed as algae continue to use oxygen for respiration but cease oxygen production

(Los Huertos et al. 2004).

Management implications

The Central Coast Basin Plan outlines water quality directives to be upheld by
regional resource managers. Among the directives, the biostimulatory objective requires
control of nuisance algal proliferations that interfere with the designated uses of streams.
This study took an exploratory approach to garnering autecological information about
nuisance-prone macroalgae by utilizing a large regional dataset.

While the study found no indication of a stimulatory effect of nutrients on
potential nuisance taxa, overwhelming evidence from the literature indicate that a
relationship does exist (Borchardt 1996). Future research should further test the algal-
nutrient relationship in the Central Coast. Refinements to the approach taken here may
include stratification by canopy cover, flow, and substrate in a longitudinal study (i.e.,
multiple sampling events). Biotic factors as well may be too important to exclude from
future work.

This study suggests that higher cover of canopy may reduce dissolved oxygen
fluctuations through its regulation of macroalgae. Because aquatic fauna rely on high and
stable dissolved oxygen concentrations for health and survival (Nebeker 1972,
Richardson et al. 2001, Connolly et al. 2004), it is imperative that water quality managers
understand the factors that can cause and mediate potentially harmful fluctuations. A
confirmatory study could evaluate the interaction between riparian canopy and
macroalgae in influencing extreme fluctuations in stream dissolved oxygen
concentrations in Mediterranean climates.

Model comparison results suggest that riparian revegetation is an important tool
with which managers (e.g., RWQCB, California Department of Fish and Game) can
control nuisance proliferations and improve biotic integrity. When implemented
appropriately, riparian vegetation is thought to provide a multitude of other water quality
benefits as well (e.g., reduced instream temperature, filtration of nutrient and sediment

from runoff, source of carbon for heterotrophs, and source of large woody debris for
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habitat structure; Vought et al. 1994, Correll 1996, Anbumozhi et al. 2005), and so may

be an obvious choice for water quality improvement measures.

CONCLUSIONS

This is the first regional assessment of filamentous macroalgae in Central Coast
streams. The main objective of the study was to explore the ecological relationships
between filamentous macroalgal taxa and abiotic stream conditions using model
comparison methods. Cladophora spp., found at 64% of sites, was the most commonly
detected macroalgae. The estuarine alga Ulva spp. was detected in inland streams up to
68 km from the coastline. The strongest evidence supports canopy cover as the primary
abiotic factor responsible for the probability of Cladophora spp., Spirogyra spp., and
Ulva spp. presence. These taxa responded negatively to increases in percent cover of
canopy over a reach. Canopy cover was also negatively related to Cladophora spp.
abundance, but the degree of the relationship is unknown. These data did not support a
biostimulatory effect of nutrients on the target taxa. On the contrary, increases in TP
concentration appeared to decrease probability of Spirogyra spp. presence. A positive
relationship with nutrients may have been obscured by overriding physical habitat
characteristics and several confounding factors. Additional findings showed evidence in
support of a positive influence of large substrate on Cladophora spp. presence and a
positive influence of conductivity on Ulva spp. presence. Finally, presence of
Cladophora spp. and Ulva spp. was correlated with higher dissolved oxygen
concentrations. These findings support the use of shade-providing riparian vegetation to
limit nuisance algae proliferations and thereby protect the designated uses of streams in
the Central Coast.

To avoid the confounding factors that may have influenced the results of the
present study, future work should be conducted through a longitudinal study. In this way,
the data will capture temporal fluctuations in nutrient concentrations and algal biomass
and potential patterns may be observed. Due to the clumped spatial distribution of
filamentous algae, abundance may be best estimated using in situ percent cover

measurements within a stratified sampling design. Care should be taken to attain
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uniformly distributed data for all independent variables and consideration given to biotic

factors that can strongly influence algal accrual.
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Table A.1. Complete model suite used in logistic regression analysis to evaluate factors

influencing probability of Cladophora spp. presence in Central Coast streams. Models

are ranked by AIC, results.

Model k AlC, A, w;

Canopy + current + substrate + TP 6 236.9 0.00 0.27
Canopy + substrate+ TP 5 237.5 0.60 0.20
Canopy + current + substrate 5 238.0 1.12 0.15
Canopy + conduct + substrate + TP 6 2382 1.33 0.14
Canopy + DOY + substrate 5 238.3 1.45 0.13
Canopy + substrate 4 239.0 2.16 0.09
Current + substrate + TN + TP 6 244.6 7.68 0.01
Substrate + TP 4 246.4 9.57 <0.01
Canopy + TN+ TP 5 246.5 9.64 <0.01
Canopy + current + TN + TP 6 246.7 9.84 <0.01
Canopy + current + TP 5 248.2 11.30 <0.01
Canopy + TP 4 248.8 11.88 <0.01
Current + TN + TP 5 249.3 12.47 <0.01
Current + TP 4 249.5 12.60 <0.01
DOY + TN + TP 5 250.0 13.09 <0.01
Canopy + conduct + current + TP 6 250.1 13.27 <0.01
Substrate 3 251.0 14.11 <0.01
TN + TP 4 251.3 14.39 <0.01
Canopy + TN 4 251.9 15.02 <0.01
TP 3 251.9 15.02 <0.01
Canopy + DOY 4 253.1 16.24 <0.01
Conduct + TP 4 253.6 16.77 <0.01
Canopy + current 4 2549 18.03 <0.01
Canopy 3 256.3 19.45 <0.01
Current 3 257.5 20.64 <0.01
DOY 3 257.7 20.83 <0.01
Canopy + conduct 4 258.4 21.48 <0.01
pH 3 258.6 21.75 <0.01
TN 3 258.7 21.87 <0.01
Conduct + current 4 259.1 22.24 <0.01
Null 2 261.3 24.46 <0.01
Conduct 3 263.2 26.35 <0.01

Abbreviations: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; &, no. of parameters;

Ai, delta AIC; w;, Akaike weights
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Table A.2. Complete model suite used in logistic regression analysis to evaluate factors
influencing probability of Spirogyra spp. presence in Central Coast streams. Models are

ranked by AIC, results.

Model k AIC, A; w;
Canopy + current + TN + TP 6 226.1 0.00 0.16
Canopy + current + TP 5 226.5 0.41 0.13
Canopy + conduct + current + TP 6 226.5 0.46 0.12
Canopy + TP 4 226.7 0.62 0.11
Canopy + TN + TP 5 227.0 0.94 0.10
Canopy + current + substrate + TP 6 227.3 1.25 0.08
Canopy + substrate+ TP 5 227.5 1.38 0.08
Canopy + DOY + substrate 5 228.1 2.02 0.06
Canopy + DOY 4 228.6 251 0.04
Canopy + conduct + substrate + TP 6 228.9 2.81 0.04
Canopy + substrate 4 230.2 4.08 0.02
Canopy + current + substrate 5 230.2 4.15 0.02
Canopy + TN 4 231.1 5.02 0.01
Canopy 3 231.8 5.73 0.01
Canopy + current 4 231.9 5.80 0.01
Canopy + conduct 4 232.5 6.38 0.01
DOY + TN + TP 5 249.5 23.41 <0.01
TP 3 251.7 25.62 <0.01
TN + TP 4 253.6 27.50 <0.01
Substrate + TP 4 253.6 27.55 <0.01
Conduct + TP 4 253.7 27.57 <0.01
Current + TP 4 253.8 27.67 <0.01
DOY 3 255.5 29.43 <0.01
Current + TN + TP 5 255.7 29.57 <0.01
Current + substrate + TN + TP 6 257.5 31.38 <0.01
pH 3 258.3 32.23 <0.01
Null 2 260.1 34.05 <0.01
TN 3 261.3 35.22 <0.01
Substrate 3 261.9 35.83 <0.01
Current 3 262.1 36.06 <0.01
Conduct 3 262.2 36.08 <0.01
Conduct + current 4 264.2 38.10 <0.01

Abbreviations: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; k, no. of parameters;

Ai, delta AIC; w ;, Akaike weights
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Table A.3. Complete model suite used in logistic regression analysis to evaluate factors

influencing probability of Ulva spp. presence in Central Coast streams. Models are

ranked by AIC, results.

Model k AIC, A; w;
Canopy + conduct 4 137.4 0.00 0.40
Canopy + conduct + current + TP 6 138.8 1.37 0.20
Canopy + conduct + substrate + TP 6 139.0 1.55 0.18
Canopy + TN + TP 5 140.2 2.73 0.10
Canopy + TN 4 142.2 4.76 0.04
Canopy + current + TN + TP 6 142.3 4.84 0.04
Canopy + DOY 4 143.4 5.95 0.02
Canopy + DOY + substrate 5 145.3 7.89 0.01
Canopy 3 147.7 10.24 <0.01
Canopy + TP 4 148.8 11.37 <0.01
Canopy + substrate 4 148.9 11.49 <0.01
Canopy + substrate+ TP 5 149.1 11.69 <0.01
Canopy + current 4 149.7 12.26 <0.01
Canopy + current + TP 5 150.8 13.38 <0.01
Canopy + current + substrate 5 150.9 13.49 <0.01
Canopy + current + substrate + TP 6 151.0 13.61 <0.01
Conduct + TP 4 153.9 16.45 <0.01
Conduct + current 4 156.4 18.97 <0.01
Conduct 3 157.5 20.09 <0.01
TN+ TP 4 160.5 23.08 <0.01
DOY + TN + TP 5 161.0 23.55 <0.01
Current + substrate + TN + TP 6 161.3 23.83 <0.01
Current + TN + TP 5 161.3 2391 <0.01
TN 3 166.0 28.60 < 0.01
pH 3 166.7 29.29 <0.01
Substrate + TP 4 167.4 30.00 <0.01
DOY 3 170.7 33.29 <0.01
Substrate 3 171.2 33.76 <0.01
TP 3 172.9 35.46 <0.01
Null 2 173.9 36.42 <0.01
Current + TP 4 1741 36.71 <0.01
Current 3 174.6 37.19 <0.01

Abbreviations: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; &, no. of parameters;

Al delta AIC; w;, Akaike weights
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Table A.4. Complete model suite used in logistic regression analysis to evaluate factors
influencing probability of Vaucheria spp. presence in Central Coast streams. Models are

ranked by AIC; results.

Model k AIC, A; w;
Conduct 3 214.1 0.00 0.13
Null 2 2143 0.11 0.12
Conduct + TP 4 215.6 1.43 0.06
TP 3 215.8 1.62 0.06
pH 3 2159 1.73 0.05
DOY 3 2159 1.79 0.05
Conduct + current 4 216.0 1.88 0.05
Substrate 3 216.1 1.99 0.05
Canopy + conduct 4 216.2 2.01 0.05
Current 3 216.2 2.09 0.05
Canopy 3 216.3 2.15 0.04
TN 3 216.3 2.15 0.04
Substrate + TP 4 217.5 332 0.02
Current + TP 4 217.8 3.66 0.02
TN + TP 4 217.8 3.68 0.02
Canopy + TP 4 217.8 3.68 0.02
Canopy + DOY 4 218.0 3.85 0.02
Canopy + substrate 4 218.2 4.06 0.02
Canopy + current 4 218.3 4.15 0.02
Canopy + TN 4 2184 4.21 0.02
Canopy + conduct + current + TP 6 2194 5.29 0.01
Canopy + substrate+ TP 5 219.5 5.37 0.01
DOY + TN + TP 5 2195 5.39 0.01
Canopy + conduct + substrate + TP 6 219.5 5.40 0.01
Canopy + DOY + substrate 5 219.8 5.69 0.01
Current + TN + TP 5 219.9 5.73 0.01
Canopy + current + TP 5 219.9 5.74 0.01
Canopy + TN + TP 5 219.9 5.76 0.01
Canopy + current + substrate 5 220.2 6.08 0.01
Canopy + current + substrate + TP 6 221.6 7.46 <0.01
Current + substrate + TN + TP 6 221.6 7.49 <0.01
Canopy + current + TN + TP 6 2220 7.83 <0.01

Abbreviations: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; &, no. of parameters;

Ai, delta AIC; w;, Akaike weights



Table A.5. Complete model suite used in linear regression analysis to evaluate factors
influencing Cladophora spp. abundance given presence in Central Coast streams.
Models are ranked by AIC, results.

Model k AIC, A, w;

Canopy + substrate 4 585.3 0.00 0.16
Canopy 3 585.7 0.40 0.13
Canopy + DOY + substrate 5 586.0 0.66 0.11
Canopy + conduct 4 586.0 0.75 0.11
Canopy + DOY 4 586.0 0.75 0.11
Canopy + TN 4 586.4 1.09 0.09
Canopy + substrate + TP 5 586.7 1.45 0.08
Canopy + TP 4 587.5 2.19 0.05
Canopy + current 4 587.8 2.53 0.04
Canopy + current + TP 5 588.0 2.69 0.04
Canopy + current + substrate + TP 6 588.9 3.66 0.02
Canopy + current + TP 5 589.6 435 0.02
Conduct 3 590.6 5.29 0.01
DOY 3 591.5 6.19 0.01
Null 2 591.9 6.61 0.01
N 3 592.5 7.20 <0.01
Conduct + TP 4 592.6 7.29 <0.01
Canopy + current + TN + TP + 8 593.3 7.97 < 0.01

canopy*TN + canopy*TP

Substrate 3 593.3 7.99 <0.01
Current 3 593.4 8.09 <0.01
TP 3 593.9 8.63 <0.01
TN + TP 4 594.4 9.14 <0.01
Current + TP 4 595.5 10.16 <0.01
Current + TN + TP 5 595.8 10.55 <0.01
Current + substrate + TN + TP 6 597.3 12.06 < 0.01

Abbreviation: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; k, no. of parameters;
Ai, delta AIC; w;, Akaike weights
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influencing Spirogyra spp. abundance given presence in Central Coast streams. Models

are ranked by AIC, results.

Model k AIC, A; w;

TN + TP 4 331.6 0.00 0.18
Current + TN + TP 5 332.7 1.07 0.10
TN 3 332.7 1.14 0.10
TP 3 3329 1.31 0.09
DOY 3 3333 1.74 0.07
Canopy + current + TP 5 3336 2.05 0.06
Conduct + TP 4 334.1 2.54 0.05
Current + TP 4 3343 2.66 0.05
Canopy + TP 4 3347 3.14 0.04
Current + substrate + TN + TP 6 3348 3.17 0.04
Canopy + TN 4 334.9 3.29 0.03
Canopy + DOY 4 3353 3.72 0.03
Conduct 3 335.6 3.97 0.02
Current 3 335.6 3.99 0.02
Substrate 3 336.1 4.51 0.02
Canopy 3 336.2 4.55 0.02
Canopy + current + TP 5 336.3 4.73 0.02
Canopy + substrate + TP 5 337.0 543 0.01
Canopy + DOY + substrate 5 337.2 5.61 0.01
Canopy + conduct 4 337.5 5.95 0.01
Canopy + current 4 337.7 6.15 0.01
Canopy + substrate 4 338.2 6.63 0.01
Canopy + current + substrate + TP 6 338.7 7.13 0.01
Canopy + current + TN + TP + 8 339.2 7.65 <0.01

canopy*TN + canopy*TP
Null 2 2110.5 1778.92 0.00

Abbreviations: canopy, canopy cover; conduct, specific conductance; current, current velocity; DOY,

day of year; substrate, hard substrate; TN, total nitrogen; TP, total phosphorus; &, no. of parameters;

Ai, delta AIC; w;, Akaike weights
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#Two-part Conditional Modeling and Model Comparison
library(Design)

library(verification)

# Part 1: Logistic regression on presence-absence for Cladophora
#Import data into R
clad.spir.pres<-read.csv(file.choose())

attach(clad.spir.pres)

#Conduct Spearman's rho correlation test on matrix of predictor variables

cor(clad.spir.pres, method="spearman", use="complete.obs")

# Fred’s function for AICtable

function(aic,n){

K<-aic$df

AlICc<-aic§AIC+2*K*(K+1)/(n-K-1)
delAIC<-AICc-min(AICc)

AICw<-exp(-0.5*del AIC)/sum(exp(-0.5*del AIC))
#AIC table ready to publish
data.frame(aic,AICc,delAIC,AICw)

}

#HH#H#AGENERIC FUNCTIONS FOR MODEL COMPARISON DATA OUPUT####

# Marc developed generic functions to condense the code I used for each algal taxa. These
#functions are only for part of the analysis.

#Function to check fit of logistic regression models using LeCessie-VanHouwelingen goodness
# of fit test

global <- function(dependent){

#global logistic regression model

pres.global<-lrm(dependent~TP+canopy+substrate+conduct+TN+current+doy-+pH,
data=clad.spir.pres,x=TRUE,y=TRUE)

resid(pres.global,type="gof™)

}



global(clad.pres)

# Model Comparison Function for logistic regression models

# Outputs AIC table and individual summary results of coefficients and standard errors
model comp <- function(dependent) {
# Fit models
p.constant<-glm(dependent~1,family=binomial(link=logit),data=clad.spir.pres) #constant model
pl<-glm(dependent~canopy,family=binomial(link=logit),data=clad.spir.pres)
p2<-glm(dependent~substrate,family=binomial(link=logit),data=clad.spir.pres)
p3<-glm(dependent~TP,family=binomial(link=logit),data=clad.spir.pres)
p4<-glm(dependent~TN,family=binomial(link=logit),data=clad.spir.pres)
p5<-glm(dependent~current,family=binomial(link=logit),data=clad.spir.pres)
p6<-glm(dependent~doy,family=binomial(link=logit),data=clad.spir.pres)
p7<-glm(dependent~conduct,family=binomial(link=logit),data=clad.spir.pres)
p8<-glm(dependent~pH, family=binomial(link=logit),data=clad.spir.pres)
p10<-glm(dependent~canopy+TN,family=binomial(link=logit),data=clad.spir.pres)
pl1<-glm(dependent~canopy+TP,family=binomial(link=logit),data=clad.spir.pres)
p12<-glm(dependent~canopy-+substrate,family=binomial(link=logit),data=clad.spir.pres)
p13<-glm(dependent~canopy+current,family=binomial(link=logit),data=clad.spir.pres)
pl4<-glm(dependent~canopy+doy,family=binomial(link=logit),data=clad.spir.pres)
pl5<-gim(dependent~canopy+conduct,family=binomial(link=logit),data=clad.spir.pres)
pl6<-glm(dependent~TP+substrate, family=binomial(link=logit),data=clad.spir.pres)
pl7<-glm(dependent~TP+conduct,family=binomial(link=logit),data=clad.spir.pres)
p18<-glm(dependent~TP+current,family=binomial(link=logit),data=clad.spir.pres)
p19<-glm(dependent~TP+TN,family=binomial(link=logit),data=clad.spir.pres)
p20<-glm(dependent~current+conduct,family=binomial(link=logit),data=clad.spir.pres)

p21<-glm(dependent~canopy+substrate+current,family=binomial(link=logit),
data=clad.spir.pres)
p22<-glm(dependent~canopy+TP+TN,family=binomial(link=logit),data=clad.spir.pres)
p23<-glm(dependent~canopy+TP+current,family=binomial(link=logit),data=clad.spir.pres)
p24<-glm(dependent~canopy+TP+substrate, family=binomial(link=logit),data=clad.spir.pres)



p25<-gim(dependent~canopytsubstrate+doy, family=binomial(link=logit),data=clad.spir.pres)
p26<-glm(dependent~TP+TN+current,family=binomial(link=logit),data=clad.spir.pres)
p27<-glm(dependent~TP+TN-+doy,family=binomial(link=logit),data=clad.spir.pres)
p28<-gim(dependent~TP+TN+current+substrate,family=binomial(link=logit),
data=clad.spir.pres)
p29<-glm(dependent~canopy+TP+current+substrate, family=binomial(link=logit),
data=clad.spir.pres)
p37<-glm(dependent~TP+canopy+substrate+conduct,family=binomial(link=logit),
data=clad.spir.pres)
p39<-glm(dependent~TP+canopy+current+conduct,family=binomial(link=logit),
data=clad.spir.pres)
p41<-gim(dependent~TN+canopy+TP-+current,family=binomial(link=logit),data=clad.spir.pres)

#build AIC table using 199 as n, because there are 199 entries in the vector (199 samples)
print(AICtable(AIC(p.constant,pl,p2,p3,p4,p5,p6,p7,p8,p10,
pll,p12,p13,p14,p15,p16,p17,p18,p19,p20,
p21,p22,p23,p24,p25,p26,p27,p28,p29,p37,p39,p41),199))

# For multi-model inference, generate coefficient estimates and standard errors
print("Model Constant"); print(summary(p.constant)$call);
print(summary(p.constant)$coef 1,1:2])
print("p1");print(summary(p1)$call); print(summary(p1)$coef[1:2,1:2])
print("p2");print(summary(p2)$call); print(summary(p2)$coef[1:2,1:2])
print("p3");print(summary(p3)$call); print(summary(p3)$coef[1:2,1:2])
print("p4");print(summary(p4)$call); print(summary(p4)$coef[1:2,1:2])
print("p5");print(summary(p5)$call); print(summary(p5)$coef[1:2,1:2])
print("p6");print(summary(p6)$call); print(summary(p6)$coef[1:2,1:2])
print("p7");print(summary(p7)$call); print(summary(p7)$coef[1:2,1:2])
print("p8");print(summary(p8)$call); print(summary(p8)$coef[1:2,1:2])
print("p10"); print(summary(p10)$call); print(summary(p10)$coef[1:2,1:2])
print("p11");print(summary(p11)S$call); print(summary(p11)$coef]1:2,1:2])
print("p12"); print(summary(p12)$call); print(summary(p12)$coef]1:2,1:2])



print("p13");print(summary(p13)$call); print(summary(p13)$coef[1:2,1:2])
print("p14");print(summary(p14)$call); print(summary(p14)$coef[1:2,1:2])
print("p15");print(summary(p15)$call); print(summary(p15)$coef[1:2,1:2])
print("p16");print(summary(p16)$call); print(summary(pl6)$coef[1:2,1:2])
print("p17");print(summary(p17)$call); print(summary(p17)$coef[1:2,1:2])
print("p18");print(summary(p18)$call); print(summary(p18)$coef[1:2,1:2])
print("p19"); print(summary(p19)$call); print(summary(p19)$coef[ 1:2,1:2])
print("p20");print(summary(p20)$call); print(summary(p20)$coef[1:2,1:2])
print("p21");print(summary(p2 1)$call); print(summary(p21)$coef[1:2,1:2])
print("p22");print(summary(p22)$call); print(summary(p22)$coef[1:2,1:2])
print("p23");print(summary(p23)$call); print(summary(p23)$coef[1:2,1:2])
print("p24");print(summary(p24)$call); print(summary(p24)$coef[ 1:2,1:2])
print("p25");print(summary(p25)$call); print(summary(p25)$coef[1:2,1:2])
print("p26");print(summary(p26)$call); print(summary(p26)$coef[1:2,1:2])
print("p27");print(summary(p27)$call); print(summary(p27)$coef[1:2,1:2])
print("p28"); print(summary(p28)$call); print(summary(p28)$coef[ 1:2,1:2])
print("p29"); print(summary(p29)$call); print(summary(p29)$coef[1:2,1:2])
print("p37"); print(summary(p37)$call); print(summary(p37)$coef[1:2,1:2])
print("p39"); print(summary(p39)$call); print(summary(p39)$coef],1:2])
print("p41"); print(summary(p41)$call); print(summary(p41)$coef],1])

}

model_comp(clad.pres)

AR ERHHEND OF GENERIC FUNCTIONSH#HHHtHHAHHHIHAHBHHIH

#The following is the code I used for Cladophora sp. (clad). It was repeated for every taxon. To
save space I omitted duplicate code for the other taxa from the appendices.

#Check logistic regression global model fit using Le Cessie-van Houwelingen goodness-of-fit
#test

clad.pres.global<-lrm(clad.pres~TP+canopy-+substrate+conduct+TN+current-+doy+pH,
data=clad.spir.pres,x=TRUE,y=TRUE)
resid(clad.pres.global,type="gof")



# Fit logistic regression models using glm (32 models)
clad.p.constant<-glm(clad.pres~1,family=binomial(link=logit),data=clad.spir.pres)
clad.p1<-glm(clad.pres~canopy,family=binomial(link=logit),data=clad.spir.pres)
clad.p2<-glm(clad.pres~substrate,family=binomial (link=logit),data=clad.spir.pres)
clad.p3<-glm(clad.pres~TP,family=binomial(link=logit),data=clad.spir.pres)
clad.p4<-glm(clad.pres~TN,family=binomial(link=logit),data=clad.spir.pres)
clad.p5<-glm(clad.pres~current,family=binomial(link=logit),data=clad.spir.pres)
clad.p6<-glm(clad.pres~doy,family=binomial(link=logit),data=clad.spir.pres)
clad.p7<-glm(clad.pres~conduct,family=binomial(link=logit),data=clad.spir.pres)
clad.p8<-glm(clad.pres~pH,family=binomial(link=logit),data=clad.spir.pres)
clad.p10<-glm(clad.pres~canopy+TN,family=binomial(link=logit),data=clad.spir.pres)
clad.p11<-glm(clad.pres~canopy+TP,family=binomial(link=logit),data=clad.spir.pres)
clad.p12<-glm(clad.pres~canopy-+substrate,family=binomial(link=logit),data=clad.spir.pres)
clad.p13<-glm(clad.pres~canopy+current,family=binomial(link=logit),data=clad.spir.pres)
clad.p14<-glm(clad.pres~canopy+doy,family=binomial(link=logit),data=clad.spir.pres)
clad.p15<-glm(clad.pres~canopy+conduct,family=binomial(link=logit),data=clad.spir.pres)
clad.p16<-glm(clad.pres~TP+substrate,family=binomial(link=logit),data=clad.spir.pres)
clad.p17<-glm(clad.pres~TP+conduct,family=binomial(link=logit),data=clad.spir.pres)
clad.p18<-glm(clad.pres~TP+current,family=binomial(link=logit),data=clad.spir.pres)
clad.p19<-glm(clad.pres~TP+TN,family=binomial (link=logit),data=clad.spir.pres)
clad.p20<-glm(clad.pres~current+conduct, family=binomial(link=logit),data=clad.spir.pres)
clad.p21<-glm(clad.pres~canopy+substrate+current,family=binomial(link=logit),
data=clad.spir.pres)
clad.p22<-glm(clad.pres~canopy+TP+TN,family=binomial(link=logit),data=clad.spir.pres)
clad.p23<-glm(clad.pres~canopy+TP+current,family=binomial(link=logit),data=clad.spir.pres)
clad.p24<-glm(clad.pres~canopy+TP+substrate,family=binomial(link=logit),data=clad.spir.pres)
clad.p25<-glm(clad.pres~canopy-+substrate+doy,family=binomial(link=logit),
data=clad.spir.pres)
clad.p26<-glm(clad.pres~TP+TN+current,family=binomial(link=logit),data=clad.spir.pres)
clad.p27<-glm(clad.pres~TP+TN+doy,family=binomial(link=logit),data=clad.spir.pres)
clad.p28<-glm(clad.pres~TP+TN+current+substrate, family=binomial(link=logit),
data=clad.spir.pres)



clad.p29<-glm(clad.pres~canopy+TP+current+substrate, family=binomial(link=logit),
data=clad.spir.pres)

clad.p37<-glm(clad.pres~TP+canopy+substrate+conduct,family=binomial(link=logit),
data=clad.spir.pres) .

clad.p39<-glm(clad.pres~TP-+canopy+current+conduct,family=binomial(link=logit),
data=clad.spir.pres)

clad.p41<-glm(clad.pres~TN-+canopy+TP-+current,family=binomial(link=logit),
data=clad.spir.pres)

#Model comparison using AIC

AlCtable(AIC(clad.p.constant,clad.p1,clad.p2,clad.p3,clad.p4,clad.p5,clad.p6,clad.p7,clad.p8,
clad.p10,clad.pl1,clad.pl2,clad.pl3,clad.pl4,clad.pl5,clad.pl6,clad.pl7,clad.pl8,
clad.p19,clad.p20,clad.p21,clad.p22,clad.p23,clad.p24,clad.p25,clad.p26,clad.p27,
clad.p28,clad.p29,clad.p37,clad.p39,clad.p41),199)

# Recalculate AIC table for 90% confidence set on models
AlCtable(AIC(clad.p12,clad.p21,clad.p24,clad.p25,clad.p29,clad.p37),199)

# Generate coefficient estimates for multi-model inference (computed in Excel) using 90%
#confidence set

summary(clad.p12)
summary(clad.p21)
summary(clad.p24)
summary(clad.p25)
summary(clad.p29)
summary(clad.p37)

# Standardize variables in order to compare them
std<-function(x) {

(x-mean(x))/sd(x)

}

#Standardize the predictors



canopys<-std(canopy)
TPs<-std(TP)
currents<-std(current)
substrates<-std(substrate)
doys<-std(doy)
TNs<-std(TN)
conducts<-std(conduct)
pHs<-std(pH)

# Run 90% confidence set models with standardized variables
clad.p12s<-glm(clad.pres~canopys+tsubstrates,family=binomial(link=logit),data=clad.spir.pres)
clad.p21s<-glm(clad.pres~canopys+substrates+currents,family=binomial(link=logit),
data=clad.spir.pres)
clad.p24s<-glm(clad.pres~canopys+TPs+substrates,family=binomial(link=logit),
data=clad.spir.pres)
clad.p25s<-glm(clad.pres~canopys+substrates+doys,family=binomial(link=logit),
data=clad.spir.pres)
clad.p29s<-glm(clad.pres~canopys+TPs+currents+substrates,family=binomial(link=logit),
data=clad.spir.pres)
clad.p37s<-glm(clad.pres~TPs+canopys+substrates+conducts,family=binomial(link=logit),
data=clad.spir.pres)

#Generate standardized coefficients
summary(clad.p12s)
summary(clad.p21s)
summary(clad.p24s)
summary(clad.p25s)
summary(clad.p29s)
summary(clad.p37s)

# Calculate ROC and AUC for model-averaged logistic model
clad.p.predict<-1/(1+exp(-(0.422104277311041+(-0.017205506657328)*canopy+



(-0.000986857940783)*TP+(0.000047650482698)*conduct+(0.026471044226824)*
substrate-+(0.0115082554485)*current+(-0.00081811866024)*doy)))

roc.area(clad.pres,clad.p.predict)

# Logistic regression figure

# Plot single predictor holding everything else at mean

windows(7,3.75)

par(mfrow=c(1,2)) #sets graphics window c(rows,columns)

substratex<-seq(0,100,.1)

clad.substrate<-1/(1+exp(-(0.422104277311041+(0.026471044226824)*substratex+
(-0.017205506657328)*mean(canopy)+(-0.000986857940783)*mean(TP )+
(0.000047650482698)*mean(conduct)+(0.0115082554485)*mean(current)+
(-0.00081811866024)*mean(doy))))

canopyx<-seq(0,100,.1)

clad.canopy<-1/(1+exp(-(0.422104277311041+(-0.017205506657328)*canopyx+
(-0.000986857940783)*mean(TP)+(0.000047650482698)*mean(conduct)+
(0.026471044226824)*mean(substrate)+(0.0115082554485)*mean(current)+
(-0.00081811866024)*mean(doy))))

par(mar=c(4.5,4.1,1,0))
plot(substratex,clad.substrate,type="1",ylim=c(0,1.0),axes=FALSE,cex.lab=.9,
xlab="Substrate (% hard)",
ylab=expression(paste("Probability of"," ",italic("Cladophora")," spp. ","presence")))
points(substrate,clad.pres,pch=
axis(1,at=c(0,20,40,60,80,100),lab=c("0","20","40","60","80","100"),cex.axis=.8)
axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),
cex.axis=.8)
box()

ll]"

,cex=.9)

pat(mar=c(4.5,2.8,1,1))
plot(canopyx,clad.canopy,type="1",ylim=c(0,1.0),axes=F ALSE cex.lab=.9,



xlab="Canopy (% cover)",
ylab="")
points(canopy,clad.pres,pch=
axis(1,at=c(0,20,40,60,80,100),lab=c("0","20","40","60","80","100"),cex.axis=.8)
axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),
cex.axis=.8)

box()

,cex=.9)

B R R R
# Part 2: Linear regression on abundance given presence of Cladophora

#Import data

clad.abundance<-read.csv(file.choose())

attach(clad.abundance)

#Log transformation of response variable

clad.abunl<-log(clad.abun)

#Check fit of global log-normal regression model using r-squared value

clad.a.global<-lm(clad.abunl~TP+canopy+TP*canopy+substrate+conduct+TN+TN*canopy+
current+doy,data=clad.abundance)

summary(clad.a.global)

# Fit log-normal models using glm (25 models)
clad.a.constant<-glm(clad.abunl~1,family=gaussian,data=clad.abundance)
clad.al<-glm(clad.abunl~canopy,family=gaussian,data=clad.abundance)
clad.a2<-glm(clad.abunl~substrate,family=gaussian,data=clad.abundance)
clad.a3<-glm(clad.abunl~TP,family=gaussian,data=clad.abundance)
clad.a4<-glm(clad.abunl~TN,family=gaussian,data=clad.abundance)
clad.a5<-glm(clad.abunl~current,family=gaussian,data=clad.abundance)
clad.a6<-glm(clad.abunl~doy,family=gaussian,data=clad.abundance)
clad.a7<-glm(clad.abunl~conduct,family=gaussian,data=clad.abundance)
clad.al0<-glm(clad.abunl~canopy+TN,family=gaussian,data=clad.abundance)

clad.al 1<-glm(clad.abunl~canopy+TP,family=gaussian,data=clad.abundance)



clad.al2<-glm(clad.abunl~canopy+substrate,family=gaussian,data=clad.abundance)
clad.al3<-glm(clad.abunl~canopy+current,family=gaussian,data=clad.abundance)
clad.al4<-glm(clad.abunl~canopy+doy,family=gaussian,data=clad.abundance)
clad.al5<-glm(clad.abunl~canopy+conduct,family=gaussian,data=clad.abundance)

clad.al 6<-glm(clad.abunl~TP+conduct,family=gaussian,data=clad.abundance)
clad.al7<-glm(clad.abunl~TP+current,family=gaussian,data=clad.abundance)
clad.al8<-glm(clad.abunl~TP+TN,family=gaussian,data=clad.abundance)
clad.a21<-glm(clad.abunl~canopy+TP+TN,family=gaussian,data=clad.abundance)
clad.a22<-glm(clad.abunl~canopy+TP+current,family=gaussian,data=clad.abundance)
clad.a23<-glm(clad.abunl~canopy+TP+substrate, family=gaussian,data=clad.abundance)
clad.a24<-glm(clad.abunl~canopy+substrate+doy,family=gaussian,data=clad.abundance)
clad.a25<-glm(clad.abunl~TP+TN+current,family=gaussian,data=clad.abundance)
clad.a27<-glm(clad.abunl~TP+TN+current+substrate,family=gaussian,data=clad.abundance)
clad.a28<-glm(clad.abunl~canopy+TP+current+substrate,family=gaussian,data=clad.abundance)
clad.a40<-glm(clad.abunl~TN+canopy+TN*canopy+TP+TP*canopy+current,

family=gaussian,data=clad.abundance)

#Model comparison using AIC

AlCtable(AIC(clad.a.constant,clad.al,clad.a2,clad.a3,clad.a4,clad.a5,clad.a6,clad.a7,clad.al0,
clad.all,clad.al2,clad.al3,clad.al4,clad.al5,clad.al6,clad.al7,clad.al 8,clad.a21,
clad.a22,clad.a23,clad.a24,clad.a25,clad.a27,clad.a28,clad.a40),128)

# Recalculate AIC table for 90% confidence set on models
AlCtable(AIC(clad.al,clad.al0,clad.all,clad.al2,clad.al3,clad.al4,clad.al5, clad.a21,
clad.a23,clad.a24),128)

# Generate coefficient estimates for multi-model inference (computed in Excel) using 90%
#confidence set

summary(clad.al)

summary(clad.a10)
summary(clad.all)
summary(clad.al2)



summary(clad.al 3)
summary(clad.al4)
summary(clad.al5)
summary(clad.a21)
summary(clad.a23)
summary(clad.a24)

# Run 90% confidence set models with standardized variables
clad.als<-glm(clad.abunl~canopys,family=gaussian,data=clad.abundance)
clad.al0s<-glm(clad.abunl~canopys+TNs,family=gaussian,data=clad.abundance)
clad.al1ls<-glm(clad.abunl~canopys+TPs,family=gaussian,data=clad.abundance)
clad.al2s<-glm(clad.pres~canopys+substrates,family=gaussian,data=clad.abundance)
clad.al3s<-glm(clad.pres~canopys+currents,family=gaussian,data=clad.abundance)
clad.al4s<-glm(clad.pres~canopys+doys,family=gaussian,data=clad.abundance)
clad.al5s<-glm(clad.pres~canopys+conducts,family=gaussian,data=clad.abundance)
clad.a21s<-glm(clad.abunl~canopys+TPs+TNs,family=gaussian,data=clad.abundance)
clad.a23s<-glm(clad.abunl~canopys+TPs+substrates,family=gaussian,data=clad.abundance)

clad.a24s<-glm(clad.abunl~canopys+substratest+doys,family=gaussian,data=clad.abundance)

#Generate standardized coefficients
summary(clad.als)
summary(clad.al0s)
summary(clad.alls)
summary(clad.a12s)
summary(clad.al3s)
summary(clad.al4s)
summary(clad.al5s)
summary(clad.a21s)
summary(clad.a23s)
summary(clad.a24s)

# Log-normal regression figure



# Plot single predictor holding everything else at mean

windows(4.75,4.5)

par(mar=c(4.5,4,2.1,2.1),oma=c(0,1,0,0))

canopyx<-seq(0,100,.1)

clad.canopy<-exp(12.3638467778668+(-0.019217412857278)*canopyx+
(0.00023714638007)*mean(TP)+(-0.01456629536505)*mean(TN)+
(0.0054649069384 1)*mean(substrate)+(-0.000041822682345)*
mean(current)+(-0.00149531719361)*mean(doy)+(0.000051201279694)*
mean(conduct))

plot(canopyx,clad.canopy,type="1",ylim=c(0,300000),axes=FALSE,cex.lab=.9,xlab="Canopy
(% cover)",

ylab=expression(paste(italic("Cladophora")," abundance given presence x 10"*{5},"
H’mu’llm"/\{3}’" mm"/\{_z}’")")))

axis(1,at=c(0,20,40,60,80,100),lab=c("0","20","40","60","80","100"),cex.axis=.8)

axis(2,las=1,at=c(0,50000,100000,150000,200000,250000,300000),lab=expression("0","0.5","1.
0","1.5","2.0","2.5","3.0"),cex.axis=.8)

box()

R R R R R R R R
# Two-part conditional model prediction of Cladophora abundance
clad.pres.abun<-read.csv(file.choose())

attach(clad.pres.abun)

str(clad.pres.abun)

#Model-averaged presence-absence model

clad.p.predict<-1/(1+exp(-(0.422104277311041+(-0.017205506657328)*canopy+
(-0.000986857940783)* TP+(0.000047650482698)*conduct+(0.026471044226824)*
substrate+(0.0115082554485)*current+(-0.00081811866024)*doy)))

#Model-averaged abundance given presence model

clad.a.predict<-exp(12.3638467778668+(-0.019217412857278)*canopy+
(0.00023714638007)*TP+(-0.01456629536505)*TN+(0.00546490693841)*substrate+
(-0.000041822682345)*current+(-0.00149531719361)*doy+
(0.000051201279694)*conduct)



#Combined model
clad.predict<-clad.p.predict*clad.a.predict

# Mean absolute error of combined model

mae<-mean(abs(clad.predict-clad.abun))

# One-to-one plot of predicted vs. observed
windows(4.25,4.75)

plot(clad.abun+.01, clad.predict+.01,
ylim=c(.01,100000000),xlim=c(.01,100000000),log="xy" ,axes=F ALSE,pch=20,cex.lab=
.8,xlab=expression(paste("Observed abundance of",” ",italic("Cladophora”),"
","(",mu,ﬂmﬂ/\{3},ﬂ mm"/\ {_2}’!l)ll))’

ylab=expression(paste("Predicted abundance of"," ",italic("Cladophora™)," ","(",mu,"m"*{3},"
mm"/\ {_2} ,H)")))

axis(1,at=c(.01,10,10000,10000000),lab=expression("0","10","1x10"A"4" " 1x10""7"),cex.axis=.
75)

axis(2,las=1,at=c(.01,10,10000,10000000),lab=expression("0","10","1x10"""4" " 1x10"*"7"),cex.
axis=.75)

x<-seq(.01,100000000,500)

y<-seq(.01,100000000,500)

lines(x,y)

box()

R R R R R R R R R
# SPIROGYRA

# see Cladophora for logistic and linear model comparison code

# Calculate ROC and AUC for model-averaged model

spir.p.predict<-1/(1+exp(-(1.56949500465139+(-0.02741796228227)*canopy+
(-0.002744303208259)*TP+(-0.01706527496334)* TN+(0.002315035574074)*
substrate-+(-0.01226763273631)*current+(-0.00086352140142)*doy+
(-0.000062119914244)*conduct)))

roc.area(spir.pres,spir.p.predict)



# Logistic regression figure

# Plot single predictors holding everything else at mean

windows(7,3.75)

par(mfrow=c(1,2))

canopyx<-seq(0,100,.1)

spir.canopy<-1/(1+exp(-(1.56949500465139+(-0.02741796228227)*canopyx+
(-0.002744303208259)*mean(TP)+(-0.01706527496334)*mean(TN)+
(0.002315035574074)*mean(substrate)+(-0.0122676327363 1 )*mean(current)+
(-0.00086352140142)*mean(doy)+(-0.000062119914244)*mean(conduct))))

par(mar=c(4.5,4.1,1,0))

plot(canopyx,spir.canopy,type="1",ylim=c(0,1.0),axes=FALSE,cex.lab=.9,xlab="Canopy (%
cover)",

ylab=expression(paste("Probability of"," ",italic("Spirogyra")," spp. ","presence"))) #italicize
name only

points(canopy,spir.pres,pch=
axis(1,at=c(0,20,40,60,80,100),lab=c("0","20","40","60","80","100"),cex.axis=.8)

axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),cex.ax
is=.8) #make axis label horizontally oriented

box()

,cex=.9)

TPx<-seq(0,1000,1)

spir. TP<-1/(1+exp(-(1.56949500465139+(-0.02741796228227)*mean(canopy)+
(-0.002744303208259)*TPx+(-0.01706527496334)*mean(TN)+(0.002315035574074)*
mean(substrate)+(-0.01226763273631)*mean(current)+
(-0.00086352140142)*mean(doy)+(-0.000062119914244)*mean(conduct))))

par(mar=c(4.5,2.8,1,1))

plot(TPx,spir. TP, type="1",ylim=c(0,1.0),axes=F ALSE,cex.lab=.9, xlab=expression(paste("Total
phosphoms (",mu, "g"’ll 1"/\ {_1 } ,")")),

ylab="l|)
points(TP,spir.pres,pch="|",cex=.9)

axis(1,at=c(0,100,200,300,400,500,600),lab=c("0","100","200","300","400","500","600"),cex.ax
1s=.8)

axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),cex.ax
is=.8) #make axis label horizontally oriented



box()

axis(1,at=c(0,200,400,600,800,1000),lab=c("0","200","400","600","800","1000"),cex.axis=.8)

axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),cex.ax
1s=.8) #make axis label horizontally oriented

box()
e B R
#ULVA

# see Cladophora for logistic model comparison code

# Calculate ROC and AUC for model averaged model

ulva.p.predict<-1/(1+exp(-(-0.853482823188888+(-0.02948766276049)* canopy+
(0.00093030442531)*conduct+(-0.00172361467391)*TP+(0.01976228314314)* TN+
(-0.00039184840596)*substrate+(0.00168990249961 )*current)))

roc.area(ulva.pres,ulva.p.predict)

# Logistic regression figure

# Plot single predictors holding everything else at mean

windows(7,3.75)

par(mfrow=c(1,2))

canopyx<-seq(0,100,.1)

ulva.canopy<-1/(1+exp(-(-0.853482823188888+
(-0.02948766276049)*canopyx+(0.0009303044253 1)*mean(conduct)+
(-0.00172361467391)*mean(TP)+(0.01976228314314)*mean(TN)+
(-0.00039184840596)*mean(substrate)+(0.0016899024996 1 ) *mean(current))))

par(mar=c(4.5,4.1,1,0))

plot(canopyx,ulva.canopy,type="1",ylim=c(0,1.0),axes=FALSE,cex.lab=.9,xlab="Canopy (%
cover)",

ylab=expression(paste("Probability of"," " italic("Ulva")," spp. ","presence"))) #italicize name
points(canopy,ulva.pres,pch="
axis(1,at=c(0,20,40,60,80,100),lab=c(""0","20","40","60","80","100"),cex.axis=.8)

axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),cex.ax
is=.8)

,cex=.9)



box()

conductx<-seq(0,6000,.1)

ulva.conduct<-1/(1+exp(-(-0.853482823188888+(0.00093030442531)*conductx+
(-0.02948766276049)*mean(canopy)+(-0.00172361467391)*mean(TP)+
(0.01976228314314)*mean(TN)+(-0.00039184840596)*mean(substrate)+
(0.00168990249961)*mean(current))))

par(mar=c(4.5,2.8,1,1))

plot(conductx,ulva.conduct,type="1",ylim=c(0,1.0),axes=FALSE,cex.lab=.9,
xlab=expression(paste("Specific conductance (mS"," cm"*{-1},")")),

ylab=llll)
points(conduct,ulva.pres,pch="|",cex=.9)

axis(1,at=¢(0,1000,2000,3000,4000,5000,6000),lab=c("0","1.0","2.0","3.0","4.0","5.0","6.0"),ce
X.axis=.8)

axis(2,las=1,at=c(0,0.2,0.4,0.6,0.8,1.0),lab=expression("0.0","0.2","0.4","0.6","0.8","1.0"),cex.ax
is=.8) #make axis label horizontally oriented

box()

i
# VAUCHERIA

# see Cladophora for logistic model comparison code

R R T R R R R TR R
# Wilcox nonparametric test for Dissolved Oxygen analysis
clad.spir.pres<-read.csv(file.choose())

attach(clad.spir.pres)

wilcox.test(do~clad.pres,data=clad.spir.pres)

wilcox.test(do~spir.pres,data=clad.spir.pres)

vauc.ulva.pres<-read.csv(file.choose())
attach(vauc.ulva.pres)
wilcox.test(do~ulva.pres,data=vauc.ulva.pres)

wilcox.test(do~vauc.pres,data=vauc.ulva.pres)



# Boxplot of Cladophora and Ulva presence and DO

windows(7,5)

par(mfrow=c(1,2))

par(mar=c(4.5,4.1,1,0))

boxplot(do~clad.pres,data=clad.pres.do,names=c("Absence","Presence"),axes=F,cex.axis=.75,
cex.lab=.8 xlab=expression(paste(italic("Cladophora"))),ylab="Dissolved oxygen
(% saturation)")

axis(1,at=c(1,2),lab=c(" Absence","Presence"),cex.axis=.75,cex.lab=.8)

axis(2,las=1,at=c(0,25,50,75,100,125,150,175),lab=c("0","25","50","75","100","125","150","175
"),cex.axis=.75)

box()
par(mar=c(4.5,2.8,1,1))

boxplot(do~ulva.pres,data=ulva.pres.do,names=c(" Absence","Presence"),axes=F cex.axis=.75,ce
x.lab=.8 xlab=expression(paste(italic("Ulva"))))

axis(1,at=c(1,2),lab=c(" Absence","Presence"),cex.axis=.75,cex.lab=.8)

axis(2,las=1,at=c(0,25,50,75,100,125,150,175),lab=¢("0","25","50","75","100","125","150","175
"),cex.axis=.75)

box()

#Correlation test on DO and canopy cover

clad.spir.pres<-read.csv(file.choose())

attach(clad.spir.pres)
cor.test(do,canopy,method="spearman",use="complete.obs",data=clad.spir.pres)
L
# Figure

# histograms showing distribution of nutrient concentrations

windows(5.5,7)

par(mfrow=c(2,1))

par(mar=c(4.5,4.1,1,.5))

hist(TN,nclass=40,xlab=expression(paste("Total nitrogen (mg"," 1" {-
1},")"),xlim=c(0,40),main=c(""),col="grey",ylim=c(0,200),axes=FALSE,cex.lab=.9)

axis(1,at=c(0,10,20,30,40),lab=c("0","10","20","30","40"),cex.axis=.8)



axis(2,las=1,at=c(0,50,100,150,200),lab=expression("0","50","100","150","200"),cex.axis=.8)
#make axis label horizontally oriented

box()
par(mar=c(4.5,4.1,0,.5))

hist(TP,nclass=40,xlab=expression(paste("Total phosphorus (",mu,"g"," 1"*{-
1},")"),xlim=c(0,3000),main=c(""),col="grey",ylim=c(0,80),axes=FALSE,cex.lab=.9)

axis(1,at=c(0,500,1000,1500,2000,2500,3000),lab=c("0","500","1000","1500","2000","2500","3
000"),cex.axis=.8)

axis(2,las=1,at=c(0,25,50,75),lab=expression("0","25","50","75"),cex.axis=.8) #make axis label
horizontally oriented

box()
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