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A Tutorial of Bland Altman Analysis in A Bayesian Framework
Krissina M. Alari, Steven B. Kim, and Jeffrey O. Wand

Department of Mathematics and Statistics, California State University, Monterey Bay, Seaside, California, USA

ABSTRACT
There are two schools of thought in statistical analysis, frequentist, and Bayesian. Though the two 
approaches produce similar estimations and predictions in large-sample studies, their interpreta-
tions are different. Bland Altman analysis is a statistical method that is widely used for comparing 
two methods of measurement. It was originally proposed under a frequentist framework, and it has 
not been used under a Bayesian framework despite the growing popularity of Bayesian analysis. It 
seems that the mathematical and computational complexity narrows access to Bayesian Bland 
Altman analysis. In this article, we provide a tutorial of Bayesian Bland Altman analysis. One 
approach we suggest is to address the objective of Bland Altman analysis via the posterior 
predictive distribution. We can estimate the probability of an acceptable degree of disagreement 
(fixed a priori) for the difference between two future measurements. To ease mathematical and 
computational complexity, an interface applet is provided with a guideline.

KEYWORDS 
Bland Altman analysis; 
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1. Introduction

In exercise science and medical and clinical studies, 
researchers want a reliable method of measurement. 
When a new method of measurement is developed, it 
is compared to the current method (i.e. the gold stan-
dard). To test if the two methods of measurement have 
an acceptable degree of disagreement, a statistical 
method known as Bland Altman analysis is widely 
used (Bland & Altman, 1986; Hopkins, 2000; Spineli, 
2019; Tytler & Seely, 1986). In a seminar paper, Bland 
and Altman (1986) proposed a statistical method (one 
that was later named Bland Altman analysis) in which 
researchers calculate the mean difference between two 
measurements and an interval which is referred to as the 
limits of agreement (LOAs). An overview and examples 
of reporting absolute agreement indices are provided in 
the literature (Giavarina, 2015; Looney, 2018).

There are two competing philosophies in statistics, 
frequentist and Bayesian (Bland & Altman, 1998). 
Despite the growing popularity of Bayesian analysis, 
nearly all (if not all) Bland Altman analysis has been 
implemented by a frequentist approach. A Bayesian 
approach is found in the literature but the focus was 
on repeated measurements (Schluter, 2009) which is 
more complex than the original Bland Altman analysis 
(which is cited more than 45,000 times as of April 2020). 
In this paper, we explore Bland Altman analysis in 
a Bayesian framework.

A reason why the frequentist approach may be more 
attractive than a Bayesian approach is due to its simple 
calculations. In the frequentist approach, approximate 
confidence intervals for the true mean difference and the 
true (population) LOAs have closed-form expressions. 
On the other hand, a Bayesian approach often does not 
have a closed-form expression for point and interval 
estimations. Instead, researchers must choose an appro-
priate model and follow three steps. First, they need to 
express their belief about the model parameters (e.g. the 
mean, μ, and variance, σ2, of a normal distribution) 
through a probability model (called a prior). Then they 
need to express the likelihood of observing a sample 
given the model parameters. Finally, the prior belief 
and the likelihood are combined to update their belief 
about the model parameters (called a posterior). This 
Bayesian analysis often requires multivariate calculus, 
increasing computational difficulty. Another crucial 
challenge in Bayesian analysis is the specification of 
a prior (i.e., what model is appropriate for the prior). If 
a prior is not carefully chosen, it may lead to an unrea-
sonable posterior, particularly in a small sample size.

One advantage of a Bayesian approach is the utiliza-
tion of prior knowledge (because researchers must have 
some prior information to eliminate implausible para-
meter values), and experienced and knowledgeable 
researchers can benefit from Bayesian analysis particu-
larly in a small-sample study. For instance, if timing 
gates and a stopwatch are compared to measure gait 
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speeds of a 20-meter walk (Martin et al., 2019), research-
ers probably assume that the expected difference of the 
two measurements should not exceed one second or 
even one half of a second. Another advantage is the 
intuitive and natural interpretation of a result. 
Consider, for instance, a frequentist’s 95% confidence 
interval. Once a confidence interval is calculated from 
a sample, researchers cannot make a probabilistic state-
ment (which is commonly done in an incorrect way). In 
a frequentist framework, a probability is interpreted as 
the proportion of times an event happens when the same 
experiment is repeated a large number of times (which is 
not realistic in practice). In a Bayesian framework, 
a probability can quantify the strength of one’s belief 
about an unknown parameter, and the probability can 
be updated after observing data (because a belief can 
react to new data). Therefore, a Bayesian 95% credible 
interval can be interpreted as “researchers believe that 
the true (unknown) parameter value is within the inter-
val with a probability of 0.95 after observing data” which 
is a different interpretation of a frequentist’s 95% con-
fidence interval. Though this subjective interpretation is 
intuitive, Bayesian analysis has not been used in the past 
due to computational complexity. However, computa-
tional challenges should not be an issue anymore given 
today’s advanced computing tools. In fact, Bland 
Altman analysis is a two-parameter problem, so it can 
be handled by various computational methods.

In the literature, Bayesian methods are not rare for 
complex statistical problems, but we cannot find any for 
the relatively simple Bland Altman analysis. Schluter 
(2009) wrote “Until now, there have been no published 
Bayesian methods focusing on measurement method 
comparison studies. This is perhaps surprising given 
the increased utilization of Bayesian techniques . . . ” 
The popular seminar paper of Bland and Altman 
(1986) was published 23 years before Schluter (2009), 
and since then, a Bayesian approach to Bland Altman 
analysis has not been formulated (to our best knowl-
edge). It is probably due to a lack (or absence) of expla-
nations of a Bayesian approach for researchers who use 
Bland Altman analysis. The aim of this article is to 
briefly review the frequentist approach for Bland 
Altman analysis (Section 3) and to outline the procedure 
for a Bayesian approach (Section 4) with an applied 
example (introduced in Section 2.1). In this article, we 
suggest assessing the degree of agreement between two 
methods of measurement via a posterior predictive dis-
tribution (e.g., calculation of the probability that the 
absolute difference will be within a fixed value in future 
observations) instead of a hypothesis test for the true 
(population) LOAs. Since the mathematical and compu-
tational contents can be heavy for some readers and 

practitioners, an interface R Shiny applet is developed 
(https://kalari.shinyapps.io/BBAA/) with a guideline in 
the Appendix.

There are tutorials of the Bland and Altman analysis 
in frequentist framework (Giavarina, 2015; Looney, 
2018), and the LOAs have been widely used in the 
research of physical education and exercise science 
(Christmas et al., 2017; Kastelic & Šarabon, 2019; 
Mason et al., 2020; Kastelic & Monfort-Pañego & 
Miñana-Signes, 2020; Overstreet et al., 2016). As 
researchers become more experienced, they may be 
able (and willing) to express their knowledge before 
collecting data (i.e., prior information), and the 
Bayesian framework will provide a space to express 
their prior information in the statistical analysis. The 
intended contributions of this paper are (1) to provide 
a Bayesian perspective on comparing two methods of 
measurement, (2) to provide the Bayesian approach with 
a user-friendly computational applet with a guideline, 
and (3) to show how to elicit researchers’ prior knowl-
edge in a tractable manner (which is to be combined 
with observed data in the Bayesian analysis).

2. Model assumptions

Suppose that we want to analyze the agreement of two 
measurement methods. Let Di be the difference between 
the two outcomes when the i th subject was measured by 
each method for i ¼ 1; 2; . . . ; n, where n is a fixed sample 
size. Assume D1; . . . ;Dn are independent random vari-
ables (referred to as the independence assumption). In 
addition, assume each Di follows a normal distribution 
with some true average difference μ and some true stan-
dard deviation σ (referred to as the normality assump-
tion). The normality assumption is denoted Di,Nðμ; σ2Þ, 
and it is graphically presented in Figure 1. The indepen-
dence assumption and the normality assumption are 
maintained throughout this paper, whether we use 
a frequentist approach (Section 3) or a Bayesian approach 
(Section 4).

2.1. Applied example

To illustrate both approaches we will be using the fol-
lowing example throughout the manuscript. Gait speed 
is a useful predictor of various health outcomes, and is 
something that clinicians can measure conveniently. 
(Martin et al., 2019). To measure gait speed, a patient 
is asked to walk a fixed distance (e.g., 20 meters), and the 
time is recorded in seconds. There are two methods of 
measuring gait speed (m/s), a timing gate and 
a stopwatch. A timing gate is known to be highly 
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accurate and reliable, but it is relatively expensive when 
compared to a stopwatch. If the difference between the 
measurement by a timing gate and the measurement by 
a stopwatch is small, clinicians may prefer a stopwatch. 
For the purpose of demonstration, we consider 
a hypothetical example based on the estimates by 
Martin et al. (2019).

Suppose that a difference of δ ¼ 0:1 seconds is prac-
tically negligible when a timing gate and a stopwatch are 
used to measure the time for a 20-meter walk (i.e. we are 
setting the acceptable limit to be δ ¼ 0:1). 
A hypothetical sample of size n ¼ 10 is given in Table 
1. Let xi and yi denote the measurements by the timing 
gate and by the stopwatch, respectively, and ðxi; yiÞ are 
observed from the ith subject. The difference between the 
two measurements is calculated as di ¼ yi � xi as shown 
in the table. The unknown average difference μ is esti-
mated by the sample mean �d ¼ 1

n
Pn

i¼1 di, the sum of n 
observed differences divided by n. The unknown var-
iance σ2 is estimated by the sample variance 
s2 ¼ 1

n� 1
Pn

i¼1 ðdi � �dÞ2, the sum of square distances 
between di and �d divided by n � 1. The unknown stan-
dard deviation σ is then estimated by s ¼

ffiffiffiffi
s2
p

. Given the 
data in Table 1, the resulting sample mean and sample 
standard deviation are �d ¼ 0:066 and s ¼ 0:0237.

3. Frequentist approach

3.1. Limits of agreement and frequentist 
interpretation

By the empirical rule under the normality assumption, 
a random difference Di (to be observed in the future) is 
between μ � 1:96σ and μþ 1:96σ with a probability of 

0.95, and these limits are estimated by l ¼ �d � 1:96s and 
u ¼ �d þ 1:96s, respectively. Given the data in Table 1, the 
resulting 95% limits of agreement (95% LOAs) are l ¼
0:020 and u ¼ 0:112, and the 95% LOAs would be typically 
interpreted as “a difference between two measurements will 
be between 0.020 and 0.112 seconds with a probability of 
0.95.” This interpretation appears to be widely accepted in 
literature, but it sounds strange because data collected in 
another study will result in different values of 95% LOAs. 
An accurate frequentist interpretation is more cumbersome 
because the frequentist interpretation of a probability 
requires repeating the same experiment (e.g. collecting 
a sample of size n ¼ 10) infinitely many times.

From the perspective of statistical theory, the result-
ing 95% LOAs ð0:020; 0:112Þ are not intended to capture 
a future outcome of Di with a probability of 0.95. If the 
sample size n is very large, the aforementioned interpre-
tation of 95% LOAs is approximately correct. However, 
if researchers really intend to capture a future random 
variable Dnþ1 with a probability of 0.95 (regardless of the 

sample size n), the interval �d � t0:975;n� 1 s
ffiffiffiffiffiffiffiffiffiffi

1þ 1
n

q

should 

be used, where t0:975;n� 1 ¼ 2:262 is the 97.5 th percentile 

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ

Figure 1. The normality assumption Di,Nðμ; σ2Þ.

Table 1. A hypothetical sample of size n ¼ 10.
Subject Measurement by Measurement by Difference
i timing gate (xi) stopwatch (yi) di ¼ yi � xi
1 12.01 12.05 0.04
2 11.87 11.96 0.09
3 12.41 12.46 0.05
4 11.82 11.92 0.10
5 12.25 12.32 0.07
6 11.87 11.92 0.05
7 12.19 12.27 0.08
8 12.41 12.47 0.06
9 12.30 12.39 0.09 ’
10 11.25 11.28 0.03
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of the T distribution with n � 1 degrees of freedom (e.g., 
t0:975;9 ¼ 2:262). Given the data in Table 1, the resulting 
interval would be (0.010, 0.122), and this is called the 
prediction interval (Geisser, 1993).

3.2. Hypothesis testing

Giavarina (2015) noted that “the best way to use the 
Bland Altman plot would be to define a priori the limits 
of maximum acceptable differences (limits of agreement 
expected), based on biologically and analytically relevant 
criteria, and then to obtain the statistics to see if these 
limits are exceeded, or not.” In this regard, two para-
meters of interest in the Bland and Altman analysis are 
θ1 ¼ μ � 1:96σ (lower limit) and θ2 ¼ μþ 1:96σ (upper 
limit), and approximate confidence intervals for these 
parameters can be calculated (Bland & Altman, 1986; 
Giavarina, 2015; Lu et al., 2016; Stöckl et al., 2004).

Lu et al. (2016) developed a sample size formula for 
hypothesis testing H0: θ1 < � δ or θ2 > δ versus H1: θ1 �

� δ and θ2 � δ, where δ (acceptable limit) is fixed before 
observing data. At the significance level α ¼ 0:05, the 
hypothesis test requires 95% confidence intervals for θ1 
and θ2 given by 

ðl1; u1Þ ¼ �d � 1:96 s� t0:975;n� 1

ffiffiffiffiffi
3s2

n

q

¼ ð� 0:010; 0:049Þ ;

ðl2; u2Þ ¼ �d þ 1:96 s� t0:975;n� 1

ffiffiffiffiffi
3s2

n

q

¼ ð0:083; 0:141Þ ;

respectively. Note that these intervals are to capture the 
unknown parameters θ1 ¼ μ � 1:96σ and 
θ2 ¼ μþ 1:96σ, respectively. According to Lu et al. 
(2016), the null hypothesis H0 is rejected (i.e., H1 is 
concluded) when � δ< l1 < u2 < δ. Given the data in 
Table 1, the resulting 95% confidence intervals are 
ðl1; u1Þ ¼ ð� 0:010; 0:049Þ for θ1 and ðl2; u2Þ ¼

ð0:083; 0:141Þ for θ2, so H0 is not rejected at α ¼ 0:5 
because u2 ¼ 0:141 is greater than δ ¼ 0:1. In this con-
text, we have a lack of evidence to conclude that the 
timing gate and the stopwatch are practically different.

3.3. Region of practical equivalence

The idea of fixing the practically acceptable difference δ 
can be viewed as a region of practical equivalence 
(ROPE) in Bayesian inference. All possible values of 
ðμ; σÞ can be partitioned into two regions: (i) a small 
region where the two methods of measurement are 
practically the same (i.e., close enough) and (ii) else-
where (not close enough). In the formulated hypothesis 
testing, H1 represents the small region, and H0 repre-
sents elsewhere. For example, if δ ¼ 0:1 is the maximum 
acceptable difference between the two methods of 

agreement, H1: θ1 > � 0:1 and θ2 < 0:1 can be expressed 
as μ � 1:96σ > � 0:1 and μþ 1:96σ < 0:1. These two 
inequalities are equivalent to σ < aþ bμ and σ < a � bμ 
respectively, where a ¼ 0:1

1:96 and b ¼ 1
1:96 . The two 

inequalities are represented by the shaded zone in 
Figure 2.

We can calculate a credible interval and see if it covers 
a portion of ROPE (Kruschke, 2015). Since we have 
a two-dimensional ROPE for ðμ; σÞ, we need to calculate 
a credible region (Note: the term “credible interval” is 
used for one parameter, and the term “credible region” is 
used for two or more parameters). Alternatively, we can 
calculate the posterior probability of H1 to quantify the 
updated belief that the true parameter values are within 
the fixed ROPE.

3.4. Alternative perspective of acceptable 
agreement

Note that hypothesis testing and confidence intervals 
are used to make statements about unknown para-
meters (not future outcomes). Kim and Wand (2020) 
discussed a strange case in the hypothesis testing dis-
cussed in Section 3.2. For instance, let δ ¼ 0:1, and 
assume the true parameter values are μ ¼ 0:05 and 
σ ¼ 0:03. In this case, θ2 ¼ μþ 1:96σ ¼ 0:1088 exceeds 
δ ¼ 0:1 (i.e., H0 is true), but Pð� δ<Di < δÞ ¼ 0:9522 
exceeds 0.95 (which may be an acceptable probability 
of agreement). The two statements “H1: θ1 � � δ and 
θ2 � δ” and “Pð� δ � Di � δÞ � 0:95” are not equiva-
lent (Kim & Wand, 2020). The former statement is 
regarding the two parameters θ1 ¼ μ � 1:96σ and 
θ2 ¼ μþ 1:96σ, and the latter statement is regarding 

Region of Practical Equivalence

µ

σ

−0.2 −0.1 0.0 0.1 0.2

0.
00

0.
02

0.
04

0.
06

ROPEδ = 0.1

Figure 2. The region of practical equivalence (ROPE).
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the random variable Di. The researcher’s perspective is 
crucial to determine the method of analysis. If we focus 
directly on Di and its observed future value, an alter-
native perspective of the acceptable agreement should 
be based on the probability Pð� δ � Di � δÞ. 
Researchers who are more interested in answering the 
probabilistic question “What is the probability that the 
difference between two measurements (to be observed 
in future) is within ð� δ; δÞ ¼ ð� 0:1; 0:1Þ” should use 
this alternative perspective. This question can be 
answered in a Bayesian approach (specifically at the 
end of Section 4.4).

4. Bayesian approach

In literature, the term “frequentist” has been rarely 
(or never) used for the current practice of Bland 
Altman analysis because a Bayesian approach has 
not been considered by many (and most) researchers. 
We believe that the frequentist approach gained 
popularity because of simple formulas and easy cal-
culations. A Bayesian approach involves more mathe-
matics and programming, but it is more flexible (in 
terms of addressing a research question) and easier to 
provide a probabilistic interpretation (as opposed to 
the frequentist interpretation of a probability which 
requires the hypothetical assumption of repeated 
experiments; Section 3.1).

For readers who are unfamiliar with Bayesian meth-
ods, van de Schoot et al. (2014) provided a gentle intro-
duction to Bayesian analysis. Kruschke (2015) wrote 
a book about Bayesian analysis with concrete examples 
and programming codes. Bland and Altman (1998) 
wrote a short article to compare between frequentist 
and Bayesian analysis.

Under the normality assumption (Section 2), the 
model parameters are μ and σ which are unknown and 
to be estimated after observing data. For mathematical 
convenience, the standard deviation σ is transformed to 
τ ¼ 1

σ2 which is referred to as precision. Given the pre-
cision τ, the standard deviation is σ ¼ 1ffiffi

τ
p . A greater 

precision means a smaller standard deviation (i.e. the 
two methods of measurement tend to agree more). In 
other words, τ is just an alternative way of quantifying 
uncertainty. A Bayesian inference for ðμ; τÞ requires 
three steps.

i. Model data, ðd1; . . . ; dnÞ or simply ~d. The probabil-
ity model for ~d given the model parameters ðμ; τÞ is 
denoted by f ð~djμ; τÞ, and it is referred to as the likelihood 
function or simply likelihood (Section 4.1). It quantifies 
the likelihood of observing ~d if the values of the model 
parameters ðμ; τÞ are given.

ii. Model researcher’s belief about ðμ; τÞ via 
a probability model f ðμ; τÞ prior to observing data 
ðd1; . . . ; dnÞ. The probability model f ðμ; τÞ is referred 
to as the prior distribution or the prior density function 
(Section 4.2). For example, if f ð0; 4Þ ¼ 0:2 and 
f ð0; 1Þ ¼ 0:1, the researcher is expressing that μ ¼ 0 
and τ ¼ 4 (σ ¼ 0:5) is twice more plausible than μ ¼ 0 
and τ ¼ 1 (σ ¼ 1). Since μ can be any real number and τ 
can be any positive real number, we need a mathematical 
function f ðμ; τÞ to model researcher’s belief efficiently.

iii. Update the researcher’s belief about ðμ; τÞ given 
data ~d. The updated probability model for ðμ; τÞ given ~d 
is denoted by f ðμ; τj~dÞ, and it is referred to as the poster-
ior distribution or the posterior density function (Section 
4.3). All statistical inferences are from the updated 
model f ðμ; τj~dÞ, and it is derived by combining the 
prior f ðμ; τÞ and the likelihood f ð~djμ; τÞ (Note: they 
are combined using Bayes theorem, hence the name 
Bayesian inference).

4.1. Likelihood

Under the independence assumption and the normality 
assumption given μ and τ ¼ 1

σ2 , the likelihood of obser-
ving ~d is quantified as 

f ð~djτ; μÞ ¼
Qn

i¼1

τ
2π

� �1
2 e�

τðdi � μÞ2
2 / τn

2 e�
τ
2 nvþnð�d� μÞ2½ � (1) 

where �d ¼ 1
n
Pn

i¼1 di and v ¼ 1
n
Pn

i¼1 ðdi � �dÞ2. To quan-
tify the likelihood, we do not need to know all individual 
values of ~d ¼ ðd1; . . . ; dnÞ, and it is sufficient to sum-
marize the data by the two statistics �d and v (referred to 
as sufficient statistics). Note that the sample variance in 
the frequentist approach is s2 ¼ 1

n� 1
Pn

i¼1 ðdi � �dÞ2, 
so v ¼ n� 1

n s2.

4.2. Prior

A popular prior distribution for the normal model para-
meters ðμ; τÞ is the normal-gamma distribution which is 
given by 

f ðμ; τÞ / τa0�
1
2 e� b0τe

� λ0τðμ� μ0Þ
2

2 (2) 

for � 1< μ<1 and τ > 0. The values of ða0; b0; μ0; λ0Þ

are chosen to reflect the researcher’s state of knowledge 
about ðμ; τÞ before observing data ~d. The value of μ0 
reflects the best guess of μ, and the value of λ0 reflects the 
pseudo sample size (i.e. given τ, a larger value of λ0 
makes the prior belief about μ stronger). It will be 
shown (in Equation (6) of Section 4.3) that μ0 and λ0 
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are combined with �d and n to determine a posterior 
estimate for μ, and λ0 can be interpreted as the relative 
amount of information when μ is estimated by 
a weighted average of μ0 and �d. The value of a0� 0:5

b0 

reflects the best guess of τ, and a smaller value of a0 
and a larger value of b0 make the prior belief of τ 
stronger. However, a0 and b0 also affect the strength of 
the prior belief about μ, so it is not simple to accurately 
choose the values of ða0; b0; μ0; λ0Þ by trial and error. To 
specify the prior in a tractable manner, guidance is 
provided in Section 4.5. Note that Equation (2) is often 
denoted by 

ðμ; τÞ,NGða0; b0; μ0; λ0Þ ;

the subscript “0” is used to emphasize that these are the 
parameters of the prior distribution.

In practice, Bayesian analyses are commonly per-
formed by “letting data speak out.” In other words, 
when researchers do not have useful prior information 
about ðμ; τÞ, values of ða0; b0; μ0; λ0Þ may be chosen in 
a certain way such that the prior f ðμ; τÞ has negligible 
influence on the posterior f ðμ; τj~dÞ. In this case, the 
posterior f ðμ; τj~dÞwould be dominated by the likelihood 
f ð~djτ; μÞ. For instance, if we are uninformed about 
ðμ; τÞ, we may choose a0 ¼ 0:5, b0 ¼ 0:000001, μ0 ¼ 0, 
and λ0 ¼ 0:000001, and the prior distribution (modeled 
by the normal-gamma distribution in Equation (2)) 
becomes 

f ðμ; τÞ / e� 0:000001τe
� 0:000001τðμÞ2

2 ¼
� 1 :

This prior distribution will not affect the posterior dis-
tribution. It is because the posterior inference is based 
on the product of the likelihood f ð~djτ; μÞ and the prior 
f ðμ; τÞ (Equation ((3)) in Section 4.3). To this end, if 
f ðμ; τÞ¼� 1, the posterior will be dominated by the data 
(likelihood) only. When researchers want to incorporate 
substantive prior information about the parameters 
ðμ; τÞ, appropriate values of ða0; b0; μ0; λ0Þ can be 
found by a tractable manner (see Section 4.5).

Note that the normal-gamma prior is not the only 
way of specifying a prior. There are many forms of 
f ðμ; τÞ that researchers may choose. For example, if 
researchers are finding it challenging to express their 
prior beliefs about μ and τ simultaneously, one can 
choose a prior model f ðμÞ for μ (often a normal 
model) and a prior model f ðτÞ for τ independently, 
and by the definition of independence in probability 
theory, one can let f ðμ; τÞ ¼ f ðμÞ f ðτÞ. In this case, the 
forms of f ðτÞ and f ðμÞ are flexible as long as they are 
legitimate probability models on the possible values of τ 
and μ (i.e. τ > 0 and � 1< μ<1).

4.3. Posterior

The Bayesian inference follows the spirit of the Bayes’ 
theorem 

f ðμ; τj~dÞ ¼ f ð~djμ;τÞ f ðμ;τÞ
f ð~dÞ

/ f ð~djμ; τÞ f ðμ; τÞ ; (3) 

where the likelihood f ð~djμ; τÞ is in Equation (1) and the 
prior f ðμ; τÞ is in Equation (2). The function f ð~dÞ is 
called the marginal likelihood, but it is not important 
for our purposes. Using Bayes’ theorem in Equation (3), 
the posterior distribution is given by 

f ðμ; τj~dÞ / f ð~djμ; τÞ f ðμ; τÞ
/ τn

2 e�
τ
2 nvþnð�d� μÞ2½ � τa0�

1
2 e� b0τe

� λ0τðμ� μ0Þ
2

2

/ τa1�
1
2 e� b1τe

� λ1τðμ� μ1Þ
2

2 ;

(4) 

where 

a1 ¼ a0 þ
n
2

b1 ¼ b0 þ
n
2 vþ λ0ð�d� μ0Þ

2

λ0þn

� �

μ1 ¼
λ0μ0þn�d

λ0þn
λ1 ¼ λ0 þ n :

(5) 

The subscript “0” is used to signify a parameter of the 
prior distribution (as noted above) while the subscript 
“1” signifies a parameter for the posterior distribution. 
Note that the posterior distribution presented in 
Equation (4) is in the form of the normal-gamma 
model (compare to Equation (2)), and we denote the 
posterior distribution by 

ðμ; τÞj~d,NGða1; b1; μ1; λ1Þ :

In other words, the prior knowledge expressed via the 
normal-gamma model NGða0; b0; μ0; λ0Þ is updated by 
the normal-gamma model NGða1; b1; μ1; λ1Þ by updat-
ing the old values of ða0; b0; μ0; λ0Þ with the new values 
of ða1; b1; μ1; λ1Þ after observing a sample of size n. In 
Equation (5), note that μ1 (referred to as the posterior 
mean of μ) can be expressed as 

μ1 ¼
λ0

λ0þn μ0 þ
n

λ0þn
�d : (6) 

It is a weighted average of μ0 (prior guess for μ) and �d 
(sample mean to estimate μ) weighted by λ0 and n, 
respectively. Therefore, λ0 and n can be interpreted as 
the contribution of the prior and data, respectively, to 
the posterior inference for μ. To this end, researchers 
can gauge how strong their prior belief about μ was 
relative to the sample size n.

In summary, the Bayesian inference is based on the 
seven numbers ðn; �d; v; a0; b0; μ0; λ0Þ which constitute 
ða1; b1; μ1; λ1Þ. The analytic approach to the posterior 
f ðμ; τj~dÞ requires some calculus. Without a background 
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in calculus, the posterior f ðμ; τj~dÞ still can be analyzed 
numerically using Gibbs sampling, and an example is 
given in Section 4.4. A more detailed explanation of the 
Gibbs sampling can be found in Supplemental Note 1.

4.4. Applied example

Consider the same data in Section 3.3, and suppose 
a prior is fixed at a0 ¼ 0:5, b0 ¼ 0:000001, μ0 ¼ 0, and 
λ0 ¼ 0:000001 to express very weak prior knowledge 
about ðμ; τÞ as discussed in Section 4.2. A sample 
R code for Gibbs sampling is given in Supplemental 
Note 2. The function named BA.Bayesian in the 
Supplemental Note 2 should be loaded in R, then the 
following lines can be submitted to input the data ~d ¼
ðd1; . . . ; dnÞ and to run the function.

### Input data (difference between two measurements)
data = c(0.04, 0.09, 0.05, 0.1, 0.07, 0.05, 0.08, 0.06, 

0.09, 0.03)
### Run BA.Bayesian function
BA.Bayesian(d = data, delta = 0.1, a0 = 0.5, b0 = 1e-6, 

mu0 = 0, lambda0 = 1e-6)
After running this code, R outputs the following 

posterior inference for ðμ; σ; θ1; θ2Þ and the posterior 
distributions seen in Figure 3.
$post

mean 2.5% 5% 25% 50% 75% 95% 97.5%
mu 0.066 0.051 0.054 0.061 0.066 0.071 0.078 0.081
sigma 0.023 0.015 0.016 0.019 0.022 0.026 0.033 0.037
theta1 0.021 − 0.010 − 0.003 0.014 0.023 0.030 0.038 
0.041
theta2 0.111 0.091 0.093 0.102 0.109 0.118 0.135 0.142
diff 0.066 0.016 0.026 0.051 0.066 0.081 0.105 0.115
$post.h1
[1] 0.1853
$post.pred.agree
[1] 0.9233

The posterior distributions in Figure 3 are interpreted 
as follows:

• Upper left panel: After observing the sample 
ðd1; . . . ; dnÞ of size n ¼ 10, we are 95% sure that μ is 
between 0.051 and 0.081 (vertical dashed lines), and the 
interval (0.051, 0.081) is called a 95% credible interval (CI) 
for μ. The posterior distribution of μ is centered at 0.066 

(the vertical solid line, indicating the average of the poster-
ior distribution), and 0.066 is called the posterior mean of μ.

• Upper middle panel: The posterior mean of σ is 
0.023, and a 95% CI for σ is (0.015, 0.037).

• Upper right panel: The two parameters of interest 
are θ1 ¼ μ � 1:96σ and θ2 ¼ μþ 1:96σ, and θ1 and θ2 
depend on the two model parameters μ and σ jointly. 
The scatter plot provides the joint posterior distribution 
of ðμ; σÞ, and the dotted line represents the boundary 
between the null hypothesis H0: θ1 < � 0:1 or θ2 > 0:1 
and the alternative hypothesis H1: θ1 � � 0:1 and 
θ2 � 0:1. The inner zone represents H1, and the propor-
tion of ðμ; σÞ located inside the zone of H1 is 0.183 which 
is called the posterior probability of H1. After observing 
the data, we believe H1 is true with a probability 0.183.

• Lower left panel: The posterior mean of θ1 ¼ μ �
1:96σ is 0.021, and a 95% CI for θ1 is (–0.011, 0.041).

• Lower middle panel: The posterior mean of θ2 ¼

μþ 1:96σ is 0.111 with a 95% CI (0.091, 0.142).
Note that all, but one, of the observed differences 

d1; . . . ; d10 are within 0.1 seconds (with one boundary 
case d4 ¼ 0:1), and the posterior probability of H1 is as 
low as 0.183.

There are infinitely many 95% CIs for a parameter. 
In the above results, a 95% CI is calculated by the 2.5 th 

percentile and the 97.5 th percentile of the posterior 
distribution, and it is referred to as the central CI. 
When the posterior distribution is unimodal (i.e. 
a single peak), we can find the shortest interval as 
follows (Section 25.2.2 of Kruschke, 2015). Note that 
the 1st percentile and the 96th percentile can serve as 
a 95% CI, and the 1.5 th percentile and the 96.5 th 

percentile can serve as another 95% CI. Among infi-
nitely many 95% CIs, the shortest CI is called the high-
est (posterior) density interval (HDI), and it provides 
a more precise (shorter) interval estimation when the 
posterior distribution is skewed (e.g. for σ in Figure 3). 
See Table 2 to compare the length of the central 95% CI 
and the length of 95% HDI for each parameter. The 
lengths are the same for μ because the posterior dis-
tribution of μ is symmetric, and the length of HDI is 
slightly shorter for σ, θ1, and θ2, but the difference 
seems negligible (about 0.002–0.003 seconds). When 
the posterior distribution is multimodal (i.e. multiple 
peaks), a different method of finding HDI is needed 

Table 2. The central 95% CI and the 95% HDI for μ, σ, θ1, and θ2

Parameter Central 95% CI length 95% HDI Length Lower % Upper %

μ (0.051, 0.081) 0.030 (0.051, 0.081) 0.030 2.5% 97.5%
σ (0.015, 0.037) 0.022 (0.014, 0.034) 0.020 0.7% 95.7%
θ1 (−0.010, 0.041) 0.051 (−0.005, 0.043) 0.048 3.9% 98.9%
θ2 (0.091, 0.142) 0.051 (0.089, 0.137) 0.048 0.8% 95.8%

MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE 7



according to the formal definition of an HDI (Section 
4.3.4 of Kruschke, 2015).

As mentioned in Section 3.4, the question of interest 
is the probability that the difference between the two 
measurements will be between ð� δ; δÞ ¼ ð� 0:1; 0:1Þ in 
the future. In this regard, let ~D be a random difference 
(comparing stopwatch to timing gates) to be observed in 
the future. The probability model of ~D (informed by 
observed data ~d) is referred to as the posterior predictive 
distribution, and it is shown in Figure 4 (generated by 

the R code in the Supplemental Note 2). As shown in the 
R outputs given earlier in this section, we are 95% sure 
that the difference will be between 0.016 and 0.115 (2.5% 
and 97.5% of the row named diff), and we believe that 
the difference will be within δ ¼ 0:1 seconds with 
a probability of 0.9233 (post.pred.agree) which we 
denoted as Pð� δ � ~D � δj~dÞ ¼ 0:9233.

Recalling our applied example from section 2.1, if the 
probability of 0.9233 is an acceptable level of agreement 
(which should be judged based on practical 

µ

Posterior Distribution of µ

0.02 0.04 0.06 0.08 0.10 0.12

σ

Posterior Distribution of σ

0.00 0.01 0.02 0.03 0.04 0.05 0.06

µ

σ

Posterior Distribution of (µ, σ)

0.02 0.04 0.06 0.08 0.10 0.12

0.
00

0.
02

0.
04

0.
06

θ1

Posterior Distribution of θ1 = µ − 1.96σ

−0.10 −0.06 −0.02 0.02 0.06 0.10

θ2

Posterior Distribution of θ2 = µ + 1.96σ

0.00 0.04 0.08 0.12 0.16 0.20

Figure 3. Posterior distributions of ðμ; σ; θ1; θ2Þ.

Posterior Predictive Distribution

d
~

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

Figure 4. Posterior predictive distribution of ~D.
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significance), the stopwatch should be recommended 
rather than the more expensive timing gates. 
Otherwise, the stopwatch should not be recommended 
as a replacement for the timing gates.

According to Bayesian theory, the posterior predic-
tive distribution of ~D follows a scaled and shifted 
T distribution (Murphy, 2007). It can be generated 
from Nðμ; σÞ by using posterior samples of ðμ; σÞ, and 
the posterior probability of � δ � ~D � δ can be 
approximated numerically.

4.5. Prior specification

The Bayesian (posterior) inference is a combination of 
prior knowledge and empirical evidence (data). So far, 
we have considered the vague prior a0 ¼ 0:5, 
b0 ¼ 0:000001, μ0 ¼ 0, and λ0 ¼ 0:000001, which does 
not substantially influence the posterior inference. 
However, researchers are sometimes knowledgeable (or 
have a strong opinion) about the model parameters 
ðμ; τÞ, where τ ¼ 1

σ2 (i.e., σ ¼ 1ffiffi
τ
p ). The most distinguish-

able feature of Bayesian inference (compared to frequen-
tist inference) is the influence of prior, in our context the 
choice of ða0; b0; μ0; λ0Þ. As aforementioned in Section 
4.2, it is fairly challenging to specify ða0; b0; μ0; λ0Þwhich 
properly reflects the researcher’s prior knowledge, so we 
introduce an induced prior specification in this section 
(Christensen et al., 2011).

For an induced prior specification on the parameters 
μ and σ ¼ 1ffiffi

τ
p , researchers can be asked the following 

questions: (1) What is your best guess for σ? Call it σ̂. (2) 
What is the upper bound uσ such that you (researcher) 
believe that Pðσ � uσÞ ¼ 0:95? (3) What is the lower 
bound lμ and upper bound uμ for the mean difference 
μ such that you believe that Pðlμ � μ � uμÞ ¼ 0:95?

For the purpose of demonstration, suppose 
a researcher (who has been involved in walk studies 
in the past) provided the following answers: (1) My best 
guess for the standard deviation σ (of the difference 
between two measurements) is σ̂ ¼ 0:05 (estimated by 
the sample standard deviation of the previous study). 
(2) I am 95% sure that the standard deviation σ does 
not exceed uσ ¼ 0:1, that is Pðσ < 0:1Þ ¼ 0:95 (a guess 
based on previous experiences; unlikely that σ exceeds 
0.1 seconds in a walk study). (3) I am 95% sure that the 
average difference μ is between lμ ¼ � 0:5 and uμ ¼ 0:5 
seconds, that is Pð� 0:5 � μ � 0:5Þ ¼ 0:95 (a guess 
based on experience; quite certain that jμj is within 
0.5 seconds). By the specified values, σ̂ ¼ 0:05, 
uσ ¼ 0:1, lμ ¼ � 0:5, and uμ ¼ 0:5, we can find 
ða0; b0; μ0; λ0Þ ¼ ð2:71; 0:0093; 0; 0:086Þ. A method of 

finding these values is described in the Supplemental 
Note 3 for readers who are interested in the thorough 
mathematics behind the scenes, but these calculations 
are automatically done in the interface R Shiny applet, 
so it is not required by users. Users are asked to input 
ðσ̂; uσ ; lμ; uμÞ as described in the Appendix. Otherwise, 
the uninformed (vague) prior used in Section 4.2 is 
implemented by default.

Using this informative prior and the same data, the 
posterior inference is as follows:

> BA.Bayesian(d = data, delta = 0.1, a0 = 2.71, 
b0 = 0.00093, mu0 = 0, lambda0 = 0.086)
$post

mean 2.5% 5% 25% 50% 75% 95% 97.5%
mu 0.065 0.051 0.053 0.061 0.065 0.070 0.077 0.080
sigma 0.023 0.016 0.017 0.020 0.022 0.025 0.031 0.033
theta1 0.021 − 0.006 0.000 0.014 0.022 0.029 0.037 0.039
theta2 0.110 0.092 0.094 0.102 0.109 0.116 0.130 0.135
difference 0.065 0.017 0.025 0.049 0.065 0.081 0.104 
0.113
$post.h1
[1] 0.1734
$post.pred.agree
[1] 0.9278

The above results are fairly close to the results with 
the vague prior in Section 4.4 because the amount of 
prior information λ0 ¼ 0:086 was relatively small 
(when compared to the sample size n ¼ 10). As 
shown in Equation (6) of Section 4.3, the posterior 
mean of μ is 

μ1 ¼
0 : 086

0:086þ 10
ð0Þ þ

10
0:086þ 10

ð0:066Þ

¼ 0:0085ð0Þ þ 0:9915ð0:066Þ ¼ 0:065:

In words, the sample mean �d ¼ 0:066 is weighted by 
0.9915 and the prior guess μ0 ¼ 0 is weighted by 0.0085 
in the posterior estimation for μ.

The impact of a prior specification can be substantial 
particularly when λ0 is large relative to n and a prior 
guess deviates from observed data. For the purpose of 
demonstrating this point, let us consider another prior 
given by σ̂ ¼ 0:1, uσ ¼ 0:25, lμ ¼ � 0:1, and uμ ¼ 0:1 
which results in ða0; b0; μ0; λ0Þ ¼ ð1:68; 0:027; 0; 14:38Þ
(using the R Shiny applet). This prior is fairly strong in 
a sense that λ0 ¼ 14:38 is greater than the sample size 
n ¼ 10. Furthermore, the prior guess σ̂ ¼ 0:1 with 
Pðσ < 0:25Þ ¼ 0:95 appears to be an overestimate rela-
tive to the observed sample standard deviation 
s ¼ 0:0237. Given the same data presented in the pre-
vious example, this strong prior (which conflicts with 
the observed data) results in the following posterior 
inference.

MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE 9



$post
mean 2.5% 5% 25% 50% 75% 95% 97.5%

mu 0.027 − 0.008 − 0.002 0.016 0.027 0.038 0.056 0.062
sigma 0.085 0.058 0.061 0.072 0.082 0.094 0.119 0.129
theta1 − 0.139 − 0.234 − 0.212 − 0.160 − 0.132 − 0.111 − 0.086-
− 0.079
theta2 0.193 0.133 0.140 0.165 0.187 0.214 0.267 0.287
difference 0.028 − 0.146 − 0.116 − 0.029 0.027 0.086 
0.172 0.202
$post.h1
[1] 0
$post.pred.agree
[1] 0.7311

In this case, the posterior mean for μ is calculated by 
the weighted average 

μ1 ¼
14:38

14:38þ10 ð0Þ þ
10

14:38þ10 ð0:066Þ ¼ 0:027 

which is closer to the prior guess μ0 ¼ 0 rather than the 
data �d ¼ 0:066. In addition, the posterior mean 0.085 for 
σ is substantially closer to the prior guess σ̂ ¼ 0:1 rather 
than the data s ¼ 0:0237. Since this strong prior 
expressed relatively large σ (when compared to the pre-
vious prior), Pð� 0:1 � ~D � 0:1j~dÞ ¼ 0:7311 is substan-
tially smaller than the previously resulting probability of 
0.9278.

To critique the influence of a prior, it is recom-
mended to revisit Equation (4) in Section 4.3. The pos-
terior values ða1; b1; λ1; μ1Þ are determined by prior 
ða0; b0; λ0; μ0Þ and data ðn; �d; vÞ. In particular, a large 
value of λ0 is highly influential when a prior guess μ0 and 
an estimate �d for μ are distant. In addition, the prior can 
be affected by the difference between a prior guess σ̂ and 
an estimate (s or 

ffiffiffi
v
p

) for σ. In practice, the posterior 
result from a strong prior and the posterior result from 
a vague prior (e.g. the prior first introduced in Section 
4.4) are compared to critique the prior influence.

5. Discussion

Although Bland Altman analysis is not new to the litera-
ture, there is very little on Bland Altman analysis through 
a Bayesian lens. To this end, our goal was to provide 
researchers a Bayesian framework to complete Bland 
Altman analysis. We summarize this procedure as fol-
lows: (1) specify a normal-gamma prior on ðμ; τÞ, where 
τ ¼ 1=σ, (2) conduct Gibbs sampling for a posterior 
sample of ðμ; τÞ, (3) summarize the posterior distribution 
of ðμ; τÞ and any combination of ðμ; τÞ such as μ� 1:96σ, 
and (4) summarize the posterior predictive distribution 
for future outcomes to assess the degree of agreement 
between two different methods of measurement for 

a given threshold value of δ. To help researchers navigate 
a prior specification and reduce the technical challenges, 
an applet (https://kalari.shinyapps.io/BBAA/) is provided.

While the Bayesian approach is more computation-
ally expensive, it has some benefits that the frequentist 
approach does not have. The Bayesian method allows 
researchers to incorporate their prior knowledge in their 
analysis. Researchers should have at least some knowl-
edge to rule out implausible values of ðμ; σÞ, and it is 
useful especially in a small-sample (pilot) study. In addi-
tion, the interpretation of the posterior probability 
Pð� δ � ~D � δj~dÞ is more intuitive and more reflective 
of what researchers seek (the probability of seeing an 
acceptable difference). It provides a simple probabilistic 
statement regarding the future difference between two 
measures in the Bayesian framework. In the frequentist 
framework, a resulting 95% LOAs ðl; uÞ is also 
a statement about the future difference between two 
measures, but an accurate interpretation of the resulting 
ðl; uÞ cannot be directly related to the probability of 
seeing an acceptable difference. According to the fre-
quentist interpretation of probability, it requires the 
hypothetical assumption of repeating the same experi-
ment (to calculate l and u) and repeating future observa-
tions (to see if the future difference is between l and u). 
As we repeat the same experiment, values of l and u will 
vary, so the interpretation of an observed ðl; uÞ is not 
straightforward. In addition, resulting 95% confidence 
intervals ðl1; u1Þ for θ1 ¼ μ � 1:96σ and ðl2; u2Þ for θ2 ¼

μ � 1:96σ are statements about the model parameters, 
and an accurate interpretation of ðl1; u2Þ in the frequen-
tist framework can be challenging for many practi-
tioners. The interval ðl1; u2Þ is intended to capture both 
parameters θ1 and θ2, and it does not make a direct 
statement about the probability of capturing the future 
difference between the two measures.

The choice of a prior can be impactful on the posterior 
result. It may be difficult to set a threshold to flag that 
a prior has a poor effect on the posterior analysis. If two 
priors (e.g., a prespecified prior and a vague prior) result in 
substantially different posterior results, it may signify that 
the sample size n is too small (relatively to the amount of 
prior information λ0), so they may consider continuing 
data collection. The authors strongly believe that research-
ers should not change a prespecified prior after seeing the 
posterior result. The prior must be independent of 
observed data, and changing the prior after observing 
data is double-dipping the data (inflating the amount of 
information contained in the data). If researchers are con-
cerned about the prior sensitivity, the vague prior (the 
default option in the R Shiny applet) would be a safe 
option.
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While the frequentist approach to Bland Altman 
analysis is widely used and is fairly simple to implement, 
the Bayesian Bland Altman analysis can be advantageous 
in helping researchers better understand and interpret 
their results. With today’s advanced technology, per-
forming Bayesian inference is no longer a labored task. 
The process of constructing an informative prior and 
assessing the agreement between two methods of mea-
surement via a posterior predictive distribution can be 
an alternative criterion for researchers to determine one 
measurement method over the other.
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Appendix: R Shiny Applet Guideline
In order to aid researchers with the computational com-

plexity of Bayesian Bland Altman analysis, an R Shiny 
applet is developed. A user inputs (1) a value of δ, the 
acceptable degree of disagreement between the two meth-
ods of measurement, (2) ~d ¼ ðd1; . . . ; dnÞ, the data of n 
differences, (3) a choice of prior described below, (4) 
a statistic for checking the normality assumption by the 
posterior predictive p-value, and (5) the size of a posterior 
sample (default: 10,000). To check the normality assump-
tion, the posterior predictive p-value is used (Gelman et al., 
2013). An extremely small or large p-value indicates devia-
tion from the normality assumption. The app provides two 
options for a statistic: the proportion of � δ< di < δ and 
skewness. Since the proportion is more meaningful from 

the practical perspective, it is set as default. A researcher 
has the following six options for choosing a prior.

• Vague prior (set as default): a0 ¼ 0:5, b0 ¼ 0:000001, 
μ0 ¼ 0, and λ0 ¼ 0:000001 as described in Section 4.2 and 
applied in Section 4.4.

• Normal-gamma prior with a0, b0, μ0, and λ0: A user 
chooses values of a0, b0, μ0, and λ0 to reflect one’s prior 
knowledge.

• Normal-gamma prior with σ̂, uσ , lμ, and uμ: A user chooses 
values of σ̂, uσ , lμ, and uμ by answering the three questions in 
Section 4.5. The user does not need to find the values of a0, b0, 
μ0, and λ0. The applet does for the user.

• Independent normal and gamma priors with a0, b0, μ0, 
and λ0: This prior assumes μ,Nðμ0; 1=λ0Þ and 
τ,Gammaða0; b0Þ independently. A user chooses values of 
a0, b0, μ0, and λ0 to reflect one’s prior knowledge.

• Independent normal and gamma priors with σ̂, uσ , lμ, and 
uμ: A user chooses values of σ̂, uσ , lμ, and uμ by answering the 
three questions in Section 4.5. The user does not need to find 
the values of a0, b0, μ0, and λ0. The applet does for the user 
under the independent assumption μ,Nðμ0; 1=λ0Þ and 
τ,Gammaða0; b0Þ.

• Independent uniform (flat) priors with lσ , uσ , lμ, and uμ. 
A user assumes that all possible values of ðμ; σÞ are equally 
plausible for lμ < μ< uμ and lσ < σ < uσ . In other words, the 
user specifies arbitrarily wide boundaries for μ and σ.

After receiving the user’s inputs, the applet produces 
posterior results, graphics seen in Figure 3 and Figure 4, 
and interpretations of some key posterior results. The 
figures for the posterior distributions can be saved by 
right clicking on the image and choosing “save image as.”
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