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Introduction  
Increasing urbanization results in conversion of wildlife habitat to developed land, fragmenting the 

natural areas that remain (Saunders et al. 1991). Mammalian carnivores may be particularly 

sensitive to landscape changes caused by human disturbance due to their large spatial and dietary 

needs (Crooks 2002). A reduction in habitat due to human alteration may bring apex predators in 

increasing contact with smaller mesopredators, and as interactions increase, apex predators may 

reduce or exclude mesopredators from habitat patches through antagonistic actions, predation, and 

interference competition (Temple et al. 2010, Moll et al .2018). For example, Temple et al. (2010) 

found gray foxes avoided a natural forest preserve in Georgia with high coyote density, while 

studies in California found low gray fox occupancy along habitat edges (Kowalski et al. 2015) where 

coyote occupancy was often high (Ordeñana et al. 2010). Mesopredators may thus seek highly 

urbanized sites that are unsuitable for large carnivores –the “human shield” effect—to avoid 

antagonistic interactions (Berger 2007, Moll et al. 2018, Parsons et al. 2019, Gámez and Harris 

2021). Habitat fragmentation can also create patches that are too small, isolated, or unproductive to 

support apex predators (Moll et al. 2018). This may result in mesopredator release, in which 

mesopredator abundance increases in the absence of top-down control from apex predators (Soulé 

et al. 1988, Ritchie and Johnson 2009). Urban areas are also the source of a mesopredator often 

introduced by humans into the ecosystem: the domestic cat, another species that thrives in patches 

lacking apex predators (Kays et al. 2015).  

 

An increase in mesopredator occupancy may place additional predation pressure on prey species, 

including many avian species (Crooks and Soulé 1999, Ritchie and Johnson 2009). Bird abundance 

may decrease in areas with high rates of natural mesopredators such as foxes (Soulé et al. 1992) as 

well as in areas of human-introduced mesopredators such as domestic cats (Crooks and Soulé 

1999). Whereas domestic cats and natural mesopredators exhibit similar responses to apex 

predators (Cove et al. 2012, Kays et al. 2015), domestic cats may not face the same human 

persecution or population restraints as natural mesopredators (Kays and Dewan 2004). Domestic 

cats may thus pose the greatest threat to prey animals such as songbirds in patches without apex 

predators, and it is estimated that domestic cats kill as many as 4 billion birds in the U.S. each year 

(Loss et al. 2013). For many avian species, threats due to predation pressure may be compounded 

by human-driven changes in landscape (Evans et al. 2017). For example, the intensity of human 
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land use may negatively impact bird movement through an urban matrix (Kennedy et al. 2010), and 

in agricultural habitat, birds responded negatively to monoculture, with decreased avian richness at 

sites with low habitat heterogeneity (Lee and Martin 2017). Indeed, habitat heterogeneity at 

microhabitat levels (30x30m) has more predictive power for avian richness at broad spatial scales 

than other landscape and topographic metrics (Farwell et al. 2020). 

 

In the Salinas Valley of central coastal California, high mesopredator occupancy could have 

especially damaging effects on local fauna. The Salinas Valley is one of the most productive 

agricultural centers in the world and an area of relatively little urban development compared to 

much of the California coast (Monterey County Farm Bureau n.d.). Agriculture separates the urban 

center of Salinas from the large expanses of native shrublands and woodlands in the upland areas 

surrounding the valley, as well as the protected coastal habitats of Elkhorn Slough. It is not known if 

the agricultural mosaic of the Salinas Valley presents suitable connectivity for larger apex predators 

such as coyotes. If these large carnivores are absent or scarce in the Salinas Valley, mesopredator 

release could potentially occur in local habitat patches, some of which may have historically offered 

refuge for the many bird species present in the region. Avian richness is typically high in central 

coastal California due to the high habitat heterogeneity and the abundant food provided by coastal 

upwelling, both for resident species and migrants that travel along the Pacific flyway (Roberson 

2002). If mesopredator release is occurring in the Salinas Valley, local avian species could be 

imperiled by increased predation rates.  

 

While many of the individual components of this study have been previously researched, they are 

rarely encompassed in the same study. The relative scarcity of landscape-level ecology research in 

central coastal California and the prominence of agriculture along the Salinas Valley urbanization 

gradient present opportunities to address additional knowledge gaps on how mammalian 

carnivores use the agricultural matrix in the Salinas Valley, or how different agricultural practices 

(i.e., ranches vs row crops) in the region could impact mammal and bird occupancy.  Both 

mammalian carnivores and songbirds are typically studied in urban and/or natural habitats; 

studies on either group are infrequent in agricultural habitat, and even rarer still on a gradient 

prominently featuring agriculture, urbanization, and natural habitat. 
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For this study, I evaluated carnivore occupancy and the impact it may have on local avifauna along 

an urbanization gradient originating in the city of Salinas, in central coastal California. Through a 

partnership with the Urban Wildlife Information Network (UWIN; 

https://urbanwildlifeinfo.org/resources), an international network of urban wildlife researchers 

created at the Lincoln Park Zoo’s Urban Wildlife Institute, I collected mammal occupancy data for 

the city of Salinas. I used a camera study to assess the occupancies of coyotes, which are the study 

area’s primary apex predator, and three mesopredators known to predate birds (bobcats, gray 

foxes, and domestic cats) along an urbanization gradient originating in central Salinas.  I tested for 

possible mesopredator release using an occupancy modeling framework with coyote activity as a 

covariate (Mackenzie et al. 2002). I also conducted avian point counts along the urbanization 

gradient and evaluated the influence of mesopredators on passerine richness with Random Forest 

regression analysis (Breiman 2001). As recent studies with a multispecies occupancy modeling 

approach have demonstrated the importance of interspecific interactions when determining habitat 

use (Moll et al. 2018, Parsons et al. 2019), I predicted that interspecific dynamics would play a 

greater role in predicting mesopredator occupancy than environmental attributes. I also predicted 

that mesopredator occupancy rates would display an inverse relationship with coyote occupancy 

rates in all habitat types. While I expected that microhabitat-level heterogeneity would be the 

primary driver of passerine richness, similar to results found by Farwell et al. (2020), I predicted 

that passerine richness would be lower in patches with higher mesopredator occupancy, most 

noticeably in patches with higher occupancy rates of domestic cats. 

 

Methods 
Study sites 
I established three urban-to-wildland transects in the Salinas Valley along which I collected data on 

mammal occupancy and passerine richness and composition. All transects originated from Big Sur 

Land Trust’s Carr Lake site in central Salinas and extended approximately 15-20 km. I placed 11-13 

primary sampling units (hereafter primary sites) along each transect for a total of 35 primary sites 

(Figure 1). Per UWIN protocols, no primary sites were placed within 1 km of another primary site 

to maintain site independence.  Additionally, I established a secondary sampling unit (hereafter 

secondary site) 300-500 m from each primary site (Figure 2). I randomized the compass quadrant 

(e.g., northwest of primary site) in which I placed the secondary site for each primary site. I 

https://urbanwildlifeinfo.org/resources
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collected data on passerine composition and richness at all 70 sites (35 primary sites and 35 

secondary sites), but mammal data was collected only at the 35 primary sites. 

 

 

 

Figure 1. Locations for the 35 primary sites where I collected both mammal and bird data along an 
urbanization gradient in central coastal California. Sites were placed along transects that originated from the 

Big Sur Land Trust’s (BSLT) Carr Lake property in central Salinas, California. 
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Figure 2. An example of primary and secondary site orientation. I randomized the quadrant (e.g., northwest of 
primary site) in which each secondary site was placed. All secondary sites are 300-500 m from the primary 

site.  

 

 

I identified potential study sites through use of available land cover data from the National 

Agriculture Imagery Program (NAIP; USDA 2019) and the National Land Cover Dataset (NLCD; 

Dewitz 2021) in ArcGIS Pro 10.8 in addition to reconnaissance of the study area. I selected a range 

of sites that reflect the dominant land cover in the study area—urban areas, agriculture, and natural 
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habitat—with additional emphasis on including variations in land use regime (e.g., agricultural land 

cover included sites in both row crops and ranchland). Final site selection also depended on 

feasibility of access and safety considerations. I did not consider the likelihood of species 

occurrence when selecting sites. 

 

Data collection 
I used camera surveys to collect data on presence-absence of mammals. At each primary site, I 

placed one camera (Bushnell Trophy Cam HD) ~0.5 m high on a tree or pole, with a predator survey 

scent disk (USDA Pocatello Supply) placed within 5 m of the camera in a ziptied mesh pouch. Per 

UWIN protocols, camera locations within each site were pseudorandomized when possible—I 

randomly placed a point at each location in ArcGIS before deployment and then placed the camera 

in the closest suitable location to that point during deployment. All final locations were subject to 

landowner review, and in some instances, landowners requested camera placement in a specific 

location. I also attempted to place cameras in locations with limited visibility to the public to reduce 

potential vandalism or theft. I visited each site approximately twice per month to change batteries, 

replace memory cards, and ensure the camera station remained operational. I also replaced 

predator scent disks once per two months or if a scent disk was damaged or missing. I collected 

data from April 2021 through October 2021 and delineated the duration into 31 7-day sampling 

periods.  

 

Mammal photos were initially sorted into coarse groupings (i.e., animals, people, vehicles, or 

empty) with MegaDetector software (Beery et al. 2019). Animal photos were then sorted to species 

level in TimeLapse Image Analyzer (Greenberg et al. 2019). Any photos that could not be 

confidently identified to species level were excluded from analysis.  

 

I used point counts to collect data on bird species richness and composition. Surveys with a 

duration of 8-10 minutes efficiently maximize species detections in chaparral and forest habitats, 

particularly during the non-breeding season (Dettmers et al. 1999, Shiu and Lee 2003, Crooks et al. 

2004); thus, each point count I conducted was 10 minutes in length, following a 1-minute “settling 

down” period after arriving to the site. I chose a 100-m radius similar to other point count studies 

conducted in chaparral (Crooks et al. 2004). I recorded all passerine species seen or heard during 

the 10-minute survey, as a well as the number of individuals detected. I also recorded data on other 
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species with a demonstrated risk of cat attacks (i.e., woodpeckers, hummingbirds, and 

doves/pigeons) based on a local dataset from the Monterey County Society for the Prevention of 

Cruelty to Animals (SPCA) (unpublished data; https://www.spcamc.org/). If I detected an 

individual but could not identify it within the 10-minute survey, I attempted to locate the bird in the 

field or record the individual’s vocalizations for later identification. Only individuals for which I 

confirmed species identification were included in the final dataset. I omitted any individuals that 

flew over the site without using the habitat in any way (“fly-overs”).  

 

I recorded the weather conditions, temperature, and wind speed at the beginning of each point 

count, as these can affect bird activity and observer detection ability. I did not conduct point counts 

in rain or heavy wind, and all point counts were conducted within five hours of sunrise when bird 

activity is highest (Verner and Ritter 1986). I conducted one point count per month at each of the 

70 sites for a total of 7 point counts per site over the duration of the study.  

 

Occupancy Modeling 
I examined potential factors influencing habitat usage of target carnivore species with single-season 

occupancy models. A site was considered occupied by a species if the species was detected on 

camera at least once during each 7-day sampling period. If a species was not detected during a 

sampling period, the site was considered unoccupied by that species for that sampling period even 

if it had been detected in a previous sampling period. I created a detection matrix for each species 

over the 31-week study period, with a “1” indicating detection of the species in a given sampling 

period, a “0” indicating a lack of detection, and a “–“ indicating that the camera was not active 

during a given sampling period. Since it is unlikely that a species will always be detected during 

sampling periods even when occupying a site, I included covariates to model imperfect detection.  

Mean NDVI (Normalized Difference Vegetation Index) was used as a proxy for undergrowth, as 

dense vegetation may trigger cameras more frequently and conceal wildlife. I quantified the size of 

potential movement corridors along each camera placement with a site type covariate categorized 

as none (0), game trail (1), established trail (2), or road (3). Vehicle and human detection rates 

were calculated from the number of detections of motorized vehicles and pedestrians, respectively, 

divided by the number of days each camera was active in the field.  

 

https://www.spcamc.org/
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I selected a separate suite of covariates representing habitat conditions and interspecific 

interactions to model the occupancy of each species. Distance to wildland indicates each site’s 

position along the urbanization gradient, with “wildland” defined as patches of natural habitat 

greater than 1 km2 in size. To represent the three dominant land covers in the study area, I included 

the percentage of natural habitat, agriculture, and urban land cover within a 500-m radius circle 

(0.79 km2) surrounding each camera trap. I chose this size to capture the macrohabitat surrounding 

each camera site while remaining within the mean home range size of all four target species 

(Sawyer and Fendley 1990, Chamberlain and Leopold 2000, Gehrt et al. 2009, Temple et al. 2010, 

Horn et al. 2011, Deuel et al. 2017). This size also allowed me to avoid predictor overlap with 

adjacent sites. All land cover percentages were derived using 2019 NLCD data. To address potential 

variations in habitat and anthropogenic intensity among different agricultural practices, I also 

considered the dominant agricultural land use regime at each site, defined as either none, 

ranchland, or row crops. As the presence of mountain lions—the largest carnivore that occurs in 

the study area—could impact the activity of smaller carnivores, I used 1/0 indicators to represent 

whether a mountain lion was detected at least once at a given study site over the duration of the 

study period. Additionally, I calculated the daily rate of coyote detections at each camera site and 

used this as a covariate in the models for the three mesopredator species (bobcat, gray fox, and 

domestic cat). All spatial analysis for calculating covariates was conducted in ArcGIS Pro 10.8. 
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wildland in several top models, this trend was weaker than it was for felids (β=-0.76) and 

confidence intervals overlapped zero (CI: -1.66 ─ 0.14), indicating less substantial support.  
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Table 3. Summary of top models (∆AICc < 2.00) for each target species, where ψ represents occupancy covariates 
and p represents detection covariates. Models were evaluated with Akaike’s Information Criterion corrected for 
small sample sizes (AICc). ∆AICc is the difference between a given model and the top model, w is the weight (out 
of 1.00) of each individual model, and K is the number of parameters in each model.  

Species Top Model(s) AICc ∆AICc w K 

Coyote 

ψ (Mountain Lion), p (NDVI+Human) 895.96 0.00 0.25 5 

ψ (Mountain Lion+ Distance to Wildland), p (NDVI+Human) 896.00 0.04 0.24 6 

ψ (Percent Ag), p (NDVI+Human) 896.67 0.91 0.16 5 

ψ (Percent Ag + Distance to Wildland), p (NDVI+Human) 897.11 1.16 0.14 6 

Gray Fox 

ψ (Mountain Lion), p (Human+Vehicle+Site Type) 352.94 0.00 0.38 6 

ψ (Coyote+ Percent Urban), p (Human+Vehicle+Site Type) 354.57 1.62 0.17 7 

ψ (Coyote + Mountain Lion), p (Human+Vehicle+Site Type) 354.58 1.64 0.17 7 

Bobcat ψ (Distance to Wildland), p (Human+Vehicle+Site Type) 542.80 0.00 0.58 6 

Domestic Cat 
ψ (Percent Ag+ Distance to Wildland), p (Human+Vehicle+NDVI) 391.68 0.00 0.47 7 

ψ (Distance to Wildland), p (Human+Vehicle+NDVI) 392.84 1.16 0.27 6 
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Figure 3. Likelihood of coyote occupancy at sites where mountain lions were and were not detected. Arrows 
represent 95% confidence intervals.  
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Figure 4. Relationship of occupancy probabilities for gray fox with increasing daily coyote detections. Open 
circles represent the occupancy probability at each site. Closed circles represent detection (1) or non-detection 
(0) of gray foxes. 
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Figure 5. Occupancy probabilities for bobcats (A) and domestic cats (B) with increasing distance from wildland 
patches. Open circles represent the occupancy probability at each site. Closed circles represent detection (1) or 

non-detection (0) of gray foxes.  

Regression analysis on passerine richness 
Almost half the variance (47.93%) in passerine richness among sites was explained by the final 

randomForest model.  Natural landscape and topographic covariates are the most important 

predictors of passerine richness in the study area—six of the seven predictors with greater than 

10% explanatory power fell into this category (Figure 5). Distance to wildland (19.54%) and 

percent natural habitat (19.01%) showed the most explanatory power in the model, with passerine 

richness decreasing with distance from natural areas and with lower percentages of natural habitat. 

Passerine richness also declined sharply at sites with higher rates of domestic cat activity, which 

was the only top predictor (11.07% explanatory power) not categorized as topography or natural 

landscape (Table 1). Domestic cats were the only carnivore with substantial influence on passerine 

richness in the model. While anthropogenic predictors typically showed only moderate explanatory 

power, there was still a discernible trend of high passerine richness at sites with 20-50% 

agricultural or urban land cover. Survey conditions were notably weak predictors, with only two 

covariates (cloud cover and time after sunrise) in the final model and both with less than 5% 

explanatory power. 

A) B) 
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Figure 6. Ranked list of predictor importance on passerine richness, where open circles represent the explanatory 
power (out of 100%) of each predictor. 

Discussion 
This study investigated the influences of interspecific interactions and land-use patterns along an 

urbanization gradient on carnivore occupancy and passerine richness, with particular emphasis on 

testing for possible mesopredator release. Few other studies have simultaneously examined the 

relationships of mesopredators with their potential predators, competitors, and prey, particularly 

along a gradient that prominently features urban, agricultural, and natural habitats. Gradient-

related metrics were important predictors in nearly all models, demonstrating the influence of the 

human footprint on carnivore and passerine habitat selection and the complex relationship 

between wildlife and agriculture. While I did not observe widespread mesopredator release 

occurring in the study area, results from this study do highlight the significance carnivores may 

have on community dynamics.  
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Due to limited capture rates, I was not able to fully test my hypothesis that interspecific interactions 

would typically outrank habitat variables when determining carnivore occupancy. My hypothesis 

that coyotes would negatively impact the occupancy of all three mesopredator species was only 

partially supported, as coyote presence had a negligible impact on bobcat and domestic cat 

occupancy. Gray foxes, however, displayed a strong negative association with coyote presence, 

possibly due to predation and competition pressure. Coyotes are a potential source of antagonistic 

interactions for gray foxes (Temple et al. 2010, Moll et al. 2018), and coyotes in the western United 

States have been documented to kill gray foxes at high enough rates to potentially alter fox habitat 

selection (Fedriani et al. 2000). Interestingly, coyote populations that have expanded into the 

eastern United States do not always display similar trends—Parsons et al. (2019) found a positive 

relationship between coyote and gray fox occupancy along urbanization gradients on the East 

Coast, perhaps because of limited habitat space due to more widespread fragmentation.  While fox 

detections were positively skewed by two sites, potentially causing higher rates of error in the fox-

specific occupancy model, there was little observed spatial overlap between gray foxes and coyotes. 

The two species also displayed inverse trends with mountain lions—foxes were positively 

associated with mountain lion presence, while coyotes were negatively associated. This may speak 

more to the exclusion of coyotes from certain sites by mountain lions than the impact of coyotes on 

gray foxes, as a study in the nearby Santa Cruz mountains found that gray fox occupancy was 

negatively associated with coyote occupancy specifically in areas where mountain lions were 

present (Wang et al. 2015). Indeed, mountain lion presence was the top predictor of occupancy for 

both coyotes and gray foxes in my study, presenting compelling evidence that community dynamics 

can be greatly influenced by the presence of large carnivores.  

 

I did not find evidence supporting the human-shield effect, in which species at risk of predation or 

competition from large carnivores seek out smaller, less productive patches near humans that large 

carnivores typically avoid (Berger 2007, Moll et al. 2018). While gray foxes and coyotes rarely 

overlapped at study sites, foxes were never detected at urban sites, and they displayed more 

sensitivity to urbanization than the other three carnivore species. It is notable that foxes are 

considered the more urban-adapted species in the eastern United States (Parsons et al. 2019), 

whereas coyotes have shown greater urban adaptation in the west (Fedriani et al. 2001, Gehrt et al. 

2011). Coyotes were the only target carnivore detected in all three landscape classes, and the only 

species other than domestic cat detected in urban areas, so perhaps the ubiquitousness of coyotes 
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in the Salinas Valley helps deter smaller carnivores from urban areas where they may already face 

human persecution. Although it may be plausible that coyotes, considered an apex predator in this 

study, are more likely to frequent urban areas to avoid mountain lions in some of the large upland 

reserves, there was no discernible difference in how coyotes responded to urbanization in models 

with and without mountain lions. 

 

My hypothesis on the impact of carnivore activity on passerine richness in the Salinas Valley also 

received mixed support. I predicted that passerine richness would negatively correlate with higher 

rates of mesopredator activity, but there was no clear trend between bobcat activity and passerine 

richness. Bobcats are known to predate birds, albeit much less frequently than bobcats predate 

other mammals (Tewes et al. 2002), and some bobcats in California have exhibited diets that 

consist almost entirely of lagomorphs and small mammals (Fedriani et al. 2000), so perhaps the 

large populations of species like ground squirrels in the study area helps insulate birds from bobcat 

predation. Gray foxes in California have displayed more diverse diets than bobcats (Fedriani et al. 

2000) and I documented a predation event from a gray fox on a spotted towhee at one of my study 

sites, but gray fox activity had no explanatory power for passerine richness and was excluded from 

the final model. While coyote activity displayed moderate explanatory power, trends between 

coyote activity rates and passerine richness were unclear, in contrast to previous research in 

California that found higher avian richness at sites with coyote presence (Crooks and Soulé 1999). 

As expected, domestic cat activity had a substantial negative impact on passerine richness, showing 

more explanatory power than all other anthropogenic and carnivore-related metrics. The adverse 

impact that cats have on avian populations has been well documented (Loss et al. 2013), although 

other studies have found evidence for a predation paradox in urban areas where both domestic cats 

and avifauna thrive in high numbers (Shochat 2004, Sims et al. 2009, Fischer et al. 2012, Seress and 

Liker 2015). Indeed, passerine richness positively correlated with moderate amounts of 

urbanization in this study. While the model was possibly influenced by two sites with exceptionally 

high cat detection rates, and thus should be interpreted with caution, models omitting the outlier 

sites still displayed a strong negative trend between cat activity and passerine richness, although 

with marginally less predictive power. Sims et al. (2009) noted that the true impact of domestic cats 

on bird populations may not be realized without studies in areas of both high and low cat density, 
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potentially lending further credence to my observations. A more targeted study on cats and their 

avifauna prey species in a variety of habitats could provide additional clarity. 

 

Contrary to my prediction, habitat heterogeneity metrics were not strong predictors of passerine 

richness. While Farwell et al. (2020) found microhabitat-level habitat heterogeneity as an effective 

predictor of avian richness, that study took place at a much larger spatial scale (the coterminous 

U.S.) and found that habitat heterogeneity textures had only weak correlations with grassland 

specialists and negative correlations with shrubland specialists. Given the relatively high 

abundance of shrubland and grassland cover in the study area, perhaps it is not surprising that 

habitat heterogeneity had only marginal predictive power. Natural habitat and topographic factors 

were the leading predictors of passerine richness in the model, similar to results found from similar 

studies on passerines (Kosicki 2017, Kosicki 2020).  

 

While many of the trends I observed for both carnivores and passerines were expected (e.g., 

passerine richness increased with increasing tree canopy), microhabitat metrics had less predictive 

power than the location of each site along the urbanization gradient. Distance to wildland was the 

top predictor for passerines, bobcats, and domestic cats, and the second-best predictor for coyotes, 

potentially indicating insufficient connectivity between the large habitat patches at the end of each 

gradient.  Even though the abundance of agriculture in the Salinas Valley could possibly provide 

more accessible dispersal routes than an area with greater urban landcover, I did not observe 

evidence of this for most species. Bobcats and domestic cats were rarely detected farther than 1 km 

from natural habitat patches and urban areas, respectively, and passerine richness also began 

declining at patches farther than 1 km from large wildland patches. All mammal species were 

detected at agricultural sites, but only coyotes were detected frequently at both ranch and row crop 

sites. Mesopredator occurrence was typically limited to only one agricultural land use regime: gray 

foxes and bobcats were primarily observed at the partially unmanaged ranches closer to natural 

habitat on the gradient, while domestic cats favored the row crop parcels closer to the urban center. 

I observed a similar discrepancy in agricultural habitat use by passerines—among all land cover 

types, I found the highest number of passerine species at ranches and the lowest number in row 

crops. Despite the seeming importance of agricultural regimes, agricultural metrics were not strong 

predictors for either carnivores or passerines. There is likely more complexity to wildlife’s habitat 

use of agriculture in the Salinas Valley than captured in this study.  
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Results from this study should be interpreted with caution. It was difficult to gain access to 

potential urban and agricultural sites during the COVID-19 pandemic, skewing sites toward natural 

habitat and often creating uneven gaps between sites on transects. The pandemic also delayed the 

start of the project, thus shortening its duration. Social distancing protocols prevented participation 

of field assistants, which also prevented me from checking cameras as frequently as planned. 

Despite these setbacks, many of the trends observed here are consistent with previous studies, 

particularly those from nearby locations such as the Santa Cruz mountains (Wang et al. 2015). 

Those studies generally lack the emphasis on agriculture that I included in this study, however. 

Given the high agricultural productivity in central California and the rising demand for agricultural 

products globally, additional studies that specifically address the complexities with which wildlife 

use agricultural cover will be essential to understanding and maintaining wildlife populations in an 

increasingly fragmented biosphere. 
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