Optimal Distance for Normal Gait Speed Testing

Rosalba Saavedra
California State University, Monterey Bay

Brian Bischoff
California State University, Monterey Bay

Elijah Weiss
California State University, Monterey Bay

Steven Kim
California State University, Monterey Bay

Eric Martin
California State University, Monterey Bay

Follow this and additional works at: https://digitalcommons.csumb.edu/uroc_csusrc

Recommended Citation
Saavedra, Rosalba; Bischoff, Brian; Weiss, Elijah; Kim, Steven; and Martin, Eric, "Optimal Distance for Normal Gait Speed Testing" (2019). *CSU Student Research Competition Delegate Entries*. 14.
https://digitalcommons.csumb.edu/uroc_csusrc/14

This Presentation is brought to you for free and open access by the Undergraduate Research Opportunities Center (UROC) at Digital Commons @ CSUMB. It has been accepted for inclusion in CSU Student Research Competition Delegate Entries by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact digitalcommons@csumb.edu.
Optimal Distance for Normal Gait Speed Testing

California State University Student Research Competition
Hosted by CSU-Fullerton
April 26th, 2019

Rosalba Saavedra1, Brian Bischoff1, Elijah Weiss2,
Steven Kim, PhD2 Eric Martin, PhD1

1Department of Kinesiology; 2Department of Mathematics and Statistics

California State University, Monterey Bay
Walking tests are simple, easy tests to examine: 5-9

- Functional independence
- Future health deterioration
- Screen for chronic lifestyle diseases such as hypertension
- Aid in clinical decision making such as:
 - Whether the patient will be homebound
 - Likelihood of hospitalization
 - Location of release after hospital visits
Walking Speed
{meter per second (m/s)}

<table>
<thead>
<tr>
<th>Speed Range</th>
<th>ADL Impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 0.2</td>
<td>Dependent in ADL’s and IADL’s</td>
</tr>
<tr>
<td>0.2 - 0.4</td>
<td>More likely to be Hospitalized</td>
</tr>
<tr>
<td>0.4 - 0.6</td>
<td>Need Intervention to Reduce Falls Risk</td>
</tr>
<tr>
<td>0.6 - 0.8</td>
<td>D/C to SNF</td>
</tr>
<tr>
<td>0.8 - 1.0</td>
<td>D/C to Home more likely</td>
</tr>
<tr>
<td>1.0 - 1.2</td>
<td>Less likely to have Adverse Event</td>
</tr>
<tr>
<td>1.2 - 1.4</td>
<td>Independent in ADL’s</td>
</tr>
</tbody>
</table>

0 mph | 0.4 mph | 0.9 mph | 1.3 mph | 1.8 mph | 2.2 mph | 2.7 mph | 3.1 mph
10 meter walk time | 50 sec | 25 sec | 16.7 sec | 12.5 sec | 10 sec | 8.3 sec | 7.1 sec
10 foot walk time | 15.2 sec | 7.6 sec | 5 sec | 3.8 sec | 3 sec | 2.5 sec | 2.2 sec

ADL: activities of daily living; IADL: instrumental ADLs; D/C: discharged; WS: walking speed; mph: miles per hour; sec: seconds
● After a lit review, Middleton et al. (2015) recommended:
 ○ 20m walk test; only measure middle 10m
 ○ Start and end = accelerate and decelerate
 ○ Potent walking speed test as long as there is room for acceleration and deceleration.

● Alves and colleagues (2017):
 ● Distances others used:
 ■ 2.44-4.6m (8 studies)
 ■ 6-6.15m (5 studies)
 ■ 20m (1 study)
Different protocols generate a gap in knowledge of and a questioning in the test’s accuracy.
Our previous research

- Tested a smartphone:
 - 6th Vital Sign App
 - Reliable
 - Not Valid
- Brower Timing Gates
 - Reliable
 - Valid

Current research question:
What is the most effective distance for a gait speed test?
To determine the optimal distance segment for calculating gait speed, which can be used to standardize walking tests in clinical settings.
Methods

- Sets of Brower Timing Gates (Brower Timing Systems, Draper, USA) were placed at the starting line and at the 5, 10, and 20m marks.

- Subjects:
 1. Started with their toes on the -30 cm line.
 2. Began the test at their volition.
 3. Walked at their normal pace.

- Compared 0-5m, 5-10m, and 10-20m using a linear mixed-effect model.

- Statistics done using R version 3.5.0 with lme4 and lmerTest packages.
36 students completed the assessment (24 female, 11 male, 1 declined to answer; mean age = 21.5 ± 2.6 years, height = 168.8 ± 10.4 cm, mass = 77.2 ± 19.3 kg).

Average gait speed for each test segment:

<table>
<thead>
<tr>
<th></th>
<th>0-5m</th>
<th>5-10m</th>
<th>10-20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>1.361 m/s</td>
<td>1.449 m/s</td>
<td>1.467 m/s</td>
</tr>
</tbody>
</table>

P-values for comparisons of gait speeds between the different segments:

<table>
<thead>
<tr>
<th></th>
<th>0-5m</th>
<th>5-10m</th>
<th>10-20m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td></td>
<td>P < 0.0001</td>
<td>P < 0.0001</td>
</tr>
<tr>
<td>5-10m</td>
<td>--</td>
<td></td>
<td>0.18</td>
</tr>
</tbody>
</table>
Discussion

- **Meaning of Results:**
 - a. Acceleration (0-5m)
 - b. Already stabilized at 5-10m

- **Application for gait speed testing:**
 - c. 10-20m not necessary
 - d. Need room for acceleration and deceleration.

- **Comparing to Literature:**
 - e. Short tests (especially 4m) while common\(^5\), have no real world meaning. \(^{14, 15}\)
Testing patients in clinical settings using walk speed tests under 5 meters is not advised because a patient will still be accelerating to their actual walking speed.

The most efficient distance for measuring gait speed would be between 5-10 meters during a 15m walk test.
Future Work

Continue to refine methods.

We will record from 5-10m but have them walk 15m

Comparing normal vs fast speed as predictor.

Observe difference in health disparities between Latino Americans and European Americans in college age students.
Bibliography

Acknowledgments

- Undergraduate Research Opportunities Center
- U.S. Department of Education Hispanic Serving Institution Grant #P031C160221
- ANDALE scholarship
- Colleagues
Questions?