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Abstract. Physical activity is a powerful lifestyle factor capable of improving cognitive function, modifying the risk for
dementia associated with neurodegeneration and possibly slowing neurodegenerative disease progression in both men and
women. However, men and women show differences in the biological responses to physical activity and in the vulnerabilities to
the onset, progression and outcome of neurodegenerative diseases, prompting the question of whether sex-specific regulatory
mechanisms might differentially modulate the benefits of exercise on the brain. Mechanistic studies aimed to better understand
how physical activity improves brain health and function suggest that the brain responds to physical exercise by overall
reducing neuroinflammation and increasing neuroplasticity. Here, we review the emerging literature considering sex-specific
differences in the immune system response to exercise as a potential mechanism by which physical activity affects the brain.
Although the literature addressing sex differences in this light is limited, the initial findings suggest a potential influence
of biological sex in the brain benefits of exercise, and lay out a scientific foundation to support very much needed studies
investigating the potential effects of sex-differences on exercise neurobiology. Considering biological sex and sex-differences
in the neurobiological hallmarks of exercise will help to enhance our understanding of the mechanisms by which physical
activity benefits the brain and also improve the development of treatments and interventions for diseases of the central nervous
system.

INTRODUCTION

Biological differences between men and women
are normally attributed to genetic, developmental,
social and hormonal differences across the lifespan
(Fig. 1). Although there exists a considerable over-
lap between both sexes as well as large distributions
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chology, California State University, Monterey Bay, CA, USA.
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within each sex for each of these variables, differ-
ences at each of them can lead to unique regulatory
mechanisms with significant and sex-specific impacts
on overall health, including brain health and function.
For example, human males show a 10–12 % larger
volume of certain brain regions [1] and genetic sex
differences in gene content and dosage [2] are known
to lead to differences in immune regulation and
brain function [3–5]. Indeed, sex-specific differences
extend beyond brain structure and gene expression,
as men and women reveal differing vulnerabilities to
the onset and outcome of neurodegenerative diseases
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Fig. 1. Depicts contributing factors associated with differences between men and women: normally attributed to genetic, developmental,
social, environmental, physiological, behavioral and hormonal differences across the lifespan.

that vary with the type of neurodegenerative dis-
order [6]. For example, women are at higher risk
of Alzheimer’s disease (AD) and multiple sclerosis
(MS), while men are at higher risk of Parkinson’s dis-
ease (PD) and amyotrophic lateral sclerosis (ALS)
[6, 7]. In contrast, men, when they do get AD, appear
to die earlier than women with the same diagnosis
[8–10], independent of any co-morbidities. Similarly,
men with MS are more likely to evolve to a pro-
gressive disease stage, are more prone to cognitive
decline and more likely to develop atrophy of sub-
cortical grey matter structures [11–13] compared to
women with MS. Likewise, males with PD show
significantly greater executive and processing speed
impairments [14] despite females showing greater
disease pathology [15]. Males also appear to be at a
higher risk of getting vascular dementia than females
at a younger age, but with aging this relationship
reverses and women over the age of 85 have been
shown to have a higher occurrence [16]. Despite
these differences, there are also some similarities
on disease presentation across sexes: both men and

women with ALS show similar prognosis and sur-
vival rate [17]. This suggests both sex-specific as
well as shared disease-associated pathological mech-
anisms underlying neurodegenerative diseases across
sexes. In accordance with these findings, brain tran-
scriptome profiles of women and men show the
existence of male biased genes involved in neuro-
logical and psychiatric disorders like schizophrenia,
bipolar disorder, Alzheimer’s disease and autism
[18].

Neuroinflammation, which is a central pathologi-
cal feature of all of these neurodegenerative diseases
[19], has been linked to both age- and disease-
associated cognitive impairment and is a good
place to begin to look for mechanisms underlying
sex differences in the development and progres-
sion of neurodegenerative disease. Indeed, systemic
inflammation has been linked to neuroinflammation
and identified as a risk factor for neurodegen-
erative disease [20, 21]. Interestingly, this effect
might also be sex dependent. Male mice show a
greater gene and protein hippocampal expression of
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neuroinflammatory markers such as interleukin 1�
(IL-1�), interleukin-1� (IL-1�), interleukin-4 (IL-
4), interleukin-6 (IL-6), tumor necrosis factor �
(TNF�), C-C Motif Chemokine Ligand 2 (CCL2),
and C-X-C Motif Chemokine Ligand 10 (CXCL10)
than female mice when peripherally stimulated with
polyinosinic:polycytidylic acid (poly I:C), a syn-
thetic viral mimic [22]. Additionally, only male mice
showed increased hippocampal increases of inter-
feron � (IFN�) and interferon � (IFN�) in response to
poly I:C, suggesting that there are specific sex differ-
ences in the peripherally-induced anti-viral response
in the hippocampus [22].

Given our recent understanding that peripheral
inflammation is likely to interfere with immunologi-
cal processes of the brain and further promote disease
progression, sex differences in mechanisms under-
lying both central and systemic inflammation need
to be considered in the context of neurodegenerative
disease.

Exercise is a behavioral intervention with potent
benefits on both neuroinflammation and peripheral
inflammation, and is currently recognized as a power-
ful lifestyle factor to promote and preserve cognitive
function. In general, physical exercise is consid-
ered a significant modifier for the risk for dementia
associated with neurodegenerative disease and vas-
cular dementia [23, 24], and may possibly also slow
disease progression in both men and women. Mecha-
nistic studies aimed to better understand how physical
activity affects the brain and its function have associ-
ated the positive effects of exercise with increased
neurotrophic factors, neuroplasticity (i.e. Increase
in neurogenesis and synaptic connections), vascular
support and reduced neuroinflammation within the
hippocampus. However, despite the evidence sup-
porting the benefits of exercise training to improve
cognitive and brain health in both men and women,
our understanding of how females respond to physical
activity is severely underpowered [25], with a major-
ity of studies being done in men and male animal
models. To begin to develop a better understanding
of the differences between females and males, here
we focus on the literature examining the sex-specific
differences of the immune system response to exer-
cise with potential differing effects on the brain. This
review adds to the small but growing body of litera-
ture examining the effects of sex-specific differences
in neuroplasticity, neurotrophic factors and physio-
logical effects of exercise as possible mediators of
sex differences in exercise efficacy on cognition (for
reviews see: [26–28])

ARE THERE SEX-SPECIFIC
DIFFERENCES IN THE COGNITIVE
BENEFITS OF EXERCISE?

Physical activity is a powerful preventative inter-
vention capable of modifying the risk for dementia
in women and men [23]. For example, regular exer-
cise has been found to reduce the risk of developing
AD by 45% [29], while individuals with seden-
tary lifestyles are 53% more likely to develop AD
than those who engaged in more active lives [30].
Another study found a lower incidence of all-cause
dementia and vascular dementia in high performance
skiers, with no association of higher physical activ-
ity with AD [24]. It is worth noting, however, that
previous meta-analyses on the effects of physical
exercise on cognitive function have found large het-
erogeneity between studies [31–35], possibly due to
challenges associated with differential study setups,
sampling approaches, mixed dementia etiologies
(such as AD vs. pure vascular dementia vs. others)
causation and ideal follow-up time [36], comorbidi-
ties [37], and potentially also due to inter-individual
differences, such as the biological sex of the trial
participants [38].

However, some available studies suggest that
potential sex-differences associated with exercise and
physical activity do exist. For example, in populations
with mild-cognitive impairment (MCI), the effect size
for women undergoing an aerobic exercise interven-
tion on executive function was increased by two-fold
in comparison to men [39].

Meta-analysis and retrospective studies suggest
sex-differences in the cognitive benefits of
exercise

To date, there are significantly fewer reports exam-
ining the neurocognitive benefits of exercise on
women compared to men, and these often come from
retrospective cohort studies, making determination
of causality difficult, and increasing the potential
for unmeasured confounding variables. Indeed, the
results of one meta-analysis [40] of 15 prospective
cohort studies following up 33,816 individuals with-
out dementia for 1–12 years reported that physical
activity had a significant protective effect against
cognitive decline. Among those, only three studies
conducted analyses separately for men and women
with all suggesting that the effect of physical activity
is most protective against cognitive decline in women.
A separate retrospective meta-analysis of randomized
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control trials found that, in particular, females aged
more than 55 years showed greater cognitive ben-
efits from aerobic training paradigms compared to
age matched male participants [41]. Interestingly,
an additional meta-analysis also showed that a sim-
ilar sex-bias may also exist in exercise responses
during healthy aging in rodents. Forced aerobic train-
ing enhanced hippocampus-dependent learning and
memory to a greater extent in female rodents, whereas
voluntary aerobic training enhanced hippocampal
non-spatial memory only in males [42].

Conversely, a separate and more recent system-
atic review and meta-analysis concluded that exercise
was less effective in female compared with male indi-
viduals, and the dose–response relationship differed
between sexes [38]. These seemingly contradictory
results highlight the need for dedicated studies using
sex as a variable during analysis.

Sex-differences in brain volume changes
associated with exercise and physical activity

Human studies show that multimodal training (e.g.,
combined aerobic and resistance training) may pro-
vide a female advantage for the improvements in
executive functions [41], often associated with main-
tenance of volume of specific brain regions. For
example, higher levels of daily walking activity
were significantly associated with larger hippocam-
pal volumes among older women but not among
age-matched men [43]. Further analysis revealed that
this sex-bias benefit was particularly significant in
the subiculum, a part of the dorsal hippocampus, and
a key affected region in AD patients. In contrast,
recent evidence suggests that atrophy of the posterior
subiculum is also a feature of non-demented, aged
individuals with AD pathology and mild memory
disfunction [44]. A separate study recently showed
that maintaining physical activity levels over 10 years
was significantly associated with greater volume of
the left dorsolateral prefrontal cortex, another brain
region involved in executive function, in females only
[45]. Interestingly, in this cohort, walking activity
was indeed associated with a larger left hippocampus
in older males and a smaller hippocampus in older
females, while the maintenance of physical activity
over time predicted better global cognitive function
for both sexes [45]. Although this discrepancy in
physical activity levels and hippocampal volumes
may appear contradictory, these differences may be
attributed to the measurements of walking behaviors
(i.e. Estimations or self-reports) and/or the duration

of direct measurements. Indeed, many of the seem-
ingly contradictory findings in exercise medicine are
currently believed to be attributed to differences in
activity measurements and reports [46]. Furthermore,
more insight into the mechanistic and causal effects
of physical activity as a modulator of brain volume
is necessary. This is why the Molecular Transduc-
ers of Physical Activity Consortium (MoTrPAC) has
recently begun mapping the dynamic responses to
exercise in both human participants and rat mod-
els under standardized exercise training interventions
[46]. Importantly, despite the lack of understanding
of the effects of exercise and physical activity on
brain architecture, accumulating evidence from inter-
ventional and epidemiological studies suggest that
engagement in targeted exercise training as well as
longitudinal maintenance of physical activity, is asso-
ciated with better performance in different domains
of cognition in females compared to males [26].

Altogether, the literature in humans support the
hypothesis that there exist sex-specific benefits of
exercise for brain function, thus making it tempting
to speculate that the neurobiological and physiologi-
cal mechanisms underlying the effects of exercise on
the brain and its function can be sex-specific. Even
more so, these findings imply that the neurocogni-
tive benefits of exercise and physical activity may be
particularly relevant for aging women, especially in
light of some epidemiological studies suggesting that
older women are more sedentary and engage in less
physical activity than age-matched men [47, 48].

HOW CAN SEX-DIFFERENCES AFFECT
THE BRAIN AND ITS FUNCTION?

Sex-specific differences in the immune response
to physical exercise

Many of the cognitive benefits induced by phys-
ical exercise on learning and memory have been
linked to the anti-inflammatory effects of exercise
[49, 50]. Studies in humans and animal mod-
els have shown that physical activity and exercise
transiently increase the production and release of cir-
culating factors, collectively named exerkines [51]
and reduce the expression of toll-like receptors
(TLRs) which are involved in the recognition of
and response to microbial infections and their stim-
ulation induces the production of cytokines and
chemokines. Some exercise-induced factors, includ-
ing the production and release of anti-inflammatory
cytokines from skeletal muscle [49, 52] down reg-
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ulate pro-inflammatory immune responses and have
been linked to improved cognitive function and brain
health. Analysis of human peripheral blood following
exercise has also revealed a reduction in the circulat-
ing numbers of pro-inflammatory monocytes [53] and
an increase in the circulatory numbers of regulatory
T cells [54]. In rodents, a similar increase in the cir-
culating numbers of regulatory T cells has also been
reported after exercise [55].

Interestingly, among mammals and during non-
exercise conditions, females and males already show
differences in their immune system composition and
function [56, 57], with females generally show-
ing a larger and faster innate and adaptive immune
responses to pathogens or injury [56]. Consistent
with this finding, female mice have greater den-
sity of TLRs than age-matched male mice, and this
observation has been shown to be estrogen-dependent
[58]. Thus, it is possible that the anti-inflammatory
effects of exercise, including its effects on immune
cell number and function, are different in females
and males. To date, only a few published studies
have begun exploring this possibility by looking
at differences in immune regulatory factors and
immune function between females and males in
response to physical activity, which we summarize
below.

Sex differences in exerkines as exercise-induced
immune regulatory factors and the brain

A growing body of literature supports the exis-
tence of crosstalk between the brain and many
distant organs and systems in our body. In particu-
lar, the brain crosstalks with the immune system, the
hormonal system, gut, fat, muscle, heart, pancreas
and bone, among others. Multisystemic activation
of these systems during physical activity induces
the release of factors referred to as “exerkines”
[59] that are necessary for the homeostatic adapta-
tion to exercise [59–61] and ultimately can regulate
brain function and health. Indeed, recent litera-
ture in animal models has shown that cognition,
neural plasticity, and brain inflammation can be
improved by peripheral circulatory factors increased
with exercise, such as irisin [62], cathepsin B [63],
insulin-like growth factor-1 (IGF-1) [64], vascular
endothelial growth factor (VEGF) [65] and lactate
[66, 67], clusterin (CLU) [68], glycerophosphoryl
diester phosphodiesterase-like protein (GPDL1) [69]
and platelet factor 4 (PF4) [70].

In recent years, skeletal muscle has arisen as one of
the largest secretory organs, releasing cytokines and
other peptides (named myokines, a type of exerkine
[50, 71]) into the circulatory system, where they
can reach distant organs and tissues [72] including
the brain [68, 69]. One of the most studied muscle-
originating exerkine is IL-6 [73–75] which increases
up to 100 fold in circulation during physical activ-
ity [76, 77]. Interleukin-6 is a particularly interesting
exercise-responsive myokine, as it is one of the few
that can efficiently cross the blood brain barrier [77,
78] and may thus directly target the CNS. Brain
IL-6 has been shown to affect target cells via mem-
brane bound IL-6R or trans-signaling [79] and affect
astrocytic and neuronal differentiation of neural stem
cells, with conflicting results in mice and in vitro
studies [80–82]. Interestingly, sex differences have
been reported in both the temporal pattern and mag-
nitude of this response after a single bout of total
body resistance exercise, with women participants
taking 4 times longer to reach their IL-6 highest
peak [83]. Another study in half-marathon runners
with pre- and post-exercise measurements showed
that transcripts of IL-6, (as well as other well-known
inflammatory cytokine markers such as TNFAIP3
Interacting Protein 3 (TNIP-3), interleukin-8 (IL-
8), CXCL10, C-X-C Motif Chemokine Ligand 10
(CXCL3), cluster of differentiation 69 (CD69) were
differentially regulated between sexes in response
to exercise in unstimulated whole blood cul-
tures. Samples from female participants showed
stronger increases in TNIP-3, IL-8, CXCL3, CD69,
whereas male samples showed stronger differ-
ences for IL-6 and CXCL10 [84]. Another human
study showed that self-reported physical activ-
ity is associated with a decrease in inflammatory
chemokines (i.e. Macrophage derived chemokine
(MDC), macrophage inflammatory protein-beta
(MIP-1b), macrophage inflammatory protein - 4
(MCP-4), eotaxin-3, and improvement of brain struc-
ture and function (visual memory and processing
speed) in late middle age men but not in women with
comparable physical activity levels [85]. Although
these results are confounded by the well-known
sex-bias of self-reporting, it highlights the need for
additional studies under controlled physical activity
conditions (or chronic ‘exercisers’) to monitor any
effects of long-term physical activity on brain func-
tion.

Irisin is another recently-discovered exerkine, also
secreted from skeletal muscle and adipose tissue dur-
ing exercise. Irisin also appears to cross the blood



70 C.J. Cortes and Z. De Miguel / Precision Exercise Medicine

brain barrier, and initiates a neuroprotective genetic
program in the hippocampus that culminates with
increased expression of brain derived neurotrophic
factor (BDNF) [62, 86]. Irisin has been shown to
increase more in females than in males immediately
after the start of the exercise [87], and this is medi-
ated by tissue, sex hormones, obesity and age [88,
89]. In response to acute aerobic exercise, irisin levels
increased significantly more in women than men [87],
suggesting that these sex differences remain even
under different exercise behavioral interventions. It
is currently unknown whether these differences rep-
resent true sex-differences or are instead associated
with other variables such as baseline exercise levels,
genetic heterogeneity or others.

The list of immune regulating factors induced
by skeletal muscle or other organs and tissues in
response to exercise is extensive, including but
not limited to interleukins IL-8, IL-10 and IL-15,
tumor necrosis factor alpha (TNF-�), IL-1 receptor
antagonist (IL-1ra), oncostatin M (OSM), osteocal-
cin, fibroblast growth factor-21 (FGF21), chemokine
CXC motif ligand-1 (CXCL-1) and C-C motif
chemokine ligand 2 (CCL-2), and meteorin-like
(Metrnl), secreted protein acidic and cysteine rich
(SPARC), myostatin (MSTN), and decorin (DCN),
macrophage inflammatory protein � and � (MIP-
1� and MIP-1�), apelin and clusterin [60, 68, 72,
90–93]. Several of these factors also have been shown
to differ between sexes. For example, activation of
peripheral blood mononuclear cells (PBMCs) from
human males results in greater IL-10 and TNF pro-
duction than PBMCs from females [94–96]. These
differential responses in circulatory cytokines and
chemokines in men and women, prompt us to suggest
that the function and temporal responses of exer-
cise induced immunomodulatory factors might be
different between women and men. As mentioned
before, when examined in pre-clinical animal mod-
els, most studies focus on male animals. Indeed,
whether there exists a sex-specific proteomic pro-
file in females and males in response to exercise
reminds understudied. For example, one study ana-
lyzed the salivary proteome of men and women
during rest and in response to an acute exercise. They
found that 16 (out 87 significantly regulated pro-
teins) were significantly regulated by sex. The most
significantly regulated proteins were pregnancy zone
protein alpha-2-macroglobulin like (PZP) and the iso-
form 2 PZP. PZP acts as an immune regulator and it is
very similar to alpha-2-macroglobulin (A2M), a pro-
tease inhibitor can act as an inhibitor of inflammatory

cytokines, and is a negative regulator of the comple-
ment pathway. Interestingly, A2M has been linked
to Alzheimer Disease [97], suggesting a potential
connection between this factor and brain function. A
recent study analyzing the plasma proteome of female
and male mice with access to a running wheel also
found an overall and similar downregulation of the
complement pathway in both sexes [68].

The introduction of studies using single-cell and
other omics technologies (i.e. RNA-sequencing or
mass cytometry) to study the effects of physical activ-
ity on gene and protein expression as an untargeted
approach, are likely to increase the understanding
of the effect of exercise on various organs, tissues
and cells from the peripheral system, as well as their
function in signaling the brain [98]. These techniques
hold great potential to reveal further sex-differences
in the response to exercise. For example, in a study
by Rubenstein et al., 2020 [99] using the gene sig-
natures obtained by single-cell RNA-sequencing on
human skeletal muscle, they described a lower pro-
portion of lymphocyte (e.g. NK cells, T cells, and B
cells) gene sets, in the young female group than in any
other group (old female, young male, and old male).
A recent study from the Genotype-Tissue Expression
(GTEx) consortium showed mRNA expression dif-
ferences between the sexes across all tissues, with
skeletal muscle showing the second largest num-
ber of differential gene expression after the brain
[100]. Additionally, a meta-analysis study looking
at the effect of sex on autosomal DNA methylation
in human skeletal muscle found 8,420 differentially
methylated genes, 94% of which were hypomethy-
lated in males. Gene set enrichment analysis revealed
that differentially methylated genes were involved in
muscle metabolism and its function [101]. These tran-
scriptomic differences could play an important role
in modulating sex-differences in the exercise-induced
secretome from muscle, and other tissues, with poten-
tial immune and brain regulatory functions.

Sex differences in regulation of the immune
response through TLR expression

One of the main mechanisms by which phys-
ical activity is known to reduce inflammation,
is by downregulating the expression of Toll-like
receptors (TLRs) in innate immune myeloid cells.
Toll-like receptors are pattern recognition receptors
(PPRs) that regulate immune responses by recog-
nizing invading pathogens as well as endogenous
damage/danger signals [102–104]. TLRs are trans-
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membrane receptors, with a variable number of
leucine-rich repeats in the extracellular domain that
mediates the recognition of pathogen- or endoge-
nous damage-associated molecular patterns (PAMPs
or DAMPs) and a cytoplasmatic Toll/interleukin-
1 receptor (TIR) signaling domain, required for
transmission of a signal to downstream pathway
components. The TIR domain mediates interactions
between TLRs and adaptor proteins involved in
regulating TLR signaling. Depending on the par-
ticular TLR, receptor engagement can culminate in
the induction of nuclear factor-kappa B (NF-κB),
mitogen-activated protein kinases (MAPK), and/or
interferon-regulatory factor (IRF) signaling path-
ways, which regulate the expression of a wide array
of genes involved in inflammatory responses, such
as the expression of pro-inflammatory cytokines,
chemokines, and type I and type III interferons
[105] and the control the induction of antigen-
presenting (MHC class II) and costimulatory
molecules (CD80/86) [106, 107].

In humans, physical activity has been shown to
induce a downregulation of TLR1, TLR2 and TLR4
in circulating monocytes and macrophages [52, 108,
109], which is associated with decreased inflamma-
tory cytokine production [110]. Interestingly during
non-exercise conditions, a sex bias in TLR activation
has been observed in cells and tissues of the periphery
and the brain across species. For example, primary B
lymphocytes, monocytes, and plasmacytoid dendritic
cells in women generally show greater expression of
toll-like receptor 7 (TLR7) [111, 112], and a greater
TLR7 and TLR8 upregulation of immune-related
transcriptional factors (e.g., TLR, greater production
of interferon-� (IFN�)) following an immune chal-
lenge [113, 114]. This sex bias appears specific to
these components of the TLR signaling pathway, as
there appear to be no significant gender differences in
TLR4, TLR3 and TLR9 pathways activity in response
to their ligands [113, 115]. In accordance with human
data, B lymphocytes from female mice show higher
expression of Tlr7 in response to immunization with
an inactivated H1N1 vaccine, and had greater anti-
body responses and protection against an H1N1
challenge than males [116]. Additionally, female
mice and rats show a greater mRNA expression of
TLR2, TLR3, and TLR4 in peritoneal leukocytes
compared with male mice and rats, as well as higher
TLR2 and TLR4 expression in macrophages. Ovar-
ian removal, a surgical procedure that quickly ablates
cycling estrogen production, significantly reduces
leukocyte mRNA expression of TLRs and protein

expression of TLR2 and TLR4 on female resident
macrophages [117, 118]. These data suggest that sex
could be an important factor modulating the effects
of physical activity on TLRs expression and activa-
tion, although this hypothesis remains untested to this
date.

In the brain, the expression of TLRs has been
demonstrated in all major glial cell types, includ-
ing microglia, and neural stem cells [119–123].
TLRs play an important role in brain health, neu-
roplasticity and cognitive function [124–127]. Our
knowledge of human responses in TLR signaling
in the brain is limited, but studies using animal
models show that exercise can inhibit microglial
activation by regulating TLR signaling pathways,
particularly in the context of neurological disease.
Studies in the field of Parkinson’s disease have shown
that soluble �-synuclein indirectly leads to oxida-
tive stress when binding to surface receptors TLR2,
TLR4, and CD11b in microglia, resulting in activa-
tion of neuroinflammation [128–130]. Interestingly,
long-term treadmill running suppressed �-synuclein
/ TLR2 mediated neuroinflammation and the asso-
ciated microglia and NADPH oxidase activation
[131]. In another study, long-term treadmill running
was found to decrease hippocampal neuroinflamma-
tion induced by high-fat-diet, including the degree
of microglial activation, levels of proinflammatory
cytokines (TNF-� and IL-1�) and cyclooxygenase-
2, as well as the expression levels of TLR4 and
its downstream proteins [132]. In both of these
studies, the authors attributed the exercise-induced
anti-microglial activation to downregulation of TLR
signaling pathways. However, the actual causal rela-
tionship between TLRs and microglial activation, as
well as the role of sex and exercise in this process
remains unconfirmed.

TLR2, TLR4, and TLR8 are also expressed in
neural stem cells and play a role in adult hippocam-
pal neurogenesis and learning and memory [120,
133, 134]. Interestingly, the role of TLR4 on adult
hippocampal neurogenesis is sex dependent, where
female mice deficient of TLR4 showed increased
hippocampal neurogenesis [135]. In agreement with
this finding, pharmacological inhibition of TLR4 via
TLR4 antagonist (TAK-242) enhances memory in
young female mice only [133]. However, contra-
dictory evidence shows enhanced spatial memory
in young male TLR4 KO mice only and that this
sex bias reverses in aged mice [136, 137], suggest-
ing that the role of TLR4 is highly complex and
responsive to both sex and age-associated effects.
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It has been hypothesized that sexually dimorphic
response to TLR4 inhibition may relate to sex hor-
mones. Previous work has shown that estrogens have
immunomodulatory effects on TLR4 signaling. For
instance, estrogens modulate surface expression of
TLR4 on macrophages and microglia [58, 138]. Fur-
ther, recent work by Bonet et al., 2021 [139] showed
that estrogens mediated the sex-dependent response
to a TLR4 antagonist in a pain model. Specifically,
males and females showed the same response to a
TLR4 antagonist if females were ovariectomized,
however differential effects were seen between the
sexes if females were gonad-intact or if 17�-estradiol
replacement was given [139].

Thus, accumulating evidence favors a sex-
differential expression and activation pathways of
TLRs in cells from the periphery and the cen-
tral nervous system. Yet, very few studies have
directly examined whether physical activity alters
TLRs expression and function differently in the brain
and periphery of female and male brains. Given the
powerful anti-inflammatory effects of exercise, addi-
tional research into the underlying responses of TLRs
to exercise may uncover important new targets to
modulate inflammatory responses during brain aging
and neurodegenerative diseases.

DISCUSSION

Physical activity is an effective strategy to improve
brain health and its function in men and women and
in male and female animal models. The U.S. National
Institutes of Health (NIH) implemented their Sex as
a Biological Variable policy in 2016, with the ulti-
mate goal to improve the value and applicability of
biomedical science. Sex- and gender-aware investiga-
tions are critical for the advancement of personalized
medicine [140], continue to become a key question
in all aspects of biological research, and will be
particularly relevant in the development of exercise-
associated therapeutics.

To date, the field of exercise physiology and
exercise medicine has remained male centric. For
example, a recent meta-analysis of 50 separate stud-
ies performing transcriptomic changes of human
skeletal muscle adaptations to exercise and inactiv-
ity (Metamex, the most extensive dataset to date)
[141], reveals only eight studies with transcriptional
profiles from women volunteers. Of these, four pro-
filed healthy controls and four focused on women
volunteers with metabolic syndrome. To date, there

is no information available on women with diagnosis
of MCI, dementia, or frank neurodegenerative dis-
ease that participate in these clinical trials. Given
the complexity of age-associated immune, metabolic,
hormonal and disease-associated changes that affect
skeletal muscle physiology and potentially contribute
to the onset of age-associated neurodegenerative dis-
eases, this dearth of information on women/female
subjects is a critical need for the field.

It is important to note that sex differences are
almost always just populational, statistical phenom-
ena – on the average we can see sex differences, but
there is a tremendous overlap in the two distribu-
tions, so that one could never, for example, determine
someone’s sex by just knowing one of these mea-
sures. Thus, identifying whether any particular sex
difference extends the average overlap between dis-
tributions is worth investigating. These fundamental
unknowns can only be advanced by actively includ-
ing women and female animal models in research.
This review summarizes various individual findings
that suggest that the immune response to exercise
might be potentiated in females, but additional stud-
ies are needed to create an integrated picture of the
intersectional nature of this phenomenon.

In this regard, the on-going Molecular Transduc-
ers of Physical Activity Consortium was established
to generate a molecular map of exercise using pre-
clinical and clinical studies to examine the systemic
effects of endurance and resistance exercise across
a range of ages and fitness levels [46]. Although
still on-going, the Consortium aims to recruit and
enroll sex and age-balanced participants, and they
propose to investigate sex differences using multi-
omic approaches across multiple tissues in both the
acute exercise response and the training response
[46]. Generation of this sex, age (and potentially
race/ethnicity) driven molecular exercise signatures
will yield fascinating insights into the variability of
responses to exercise, and potentially help clarify
some of the seemingly contradictory reports to date.
Integration of responses across tissues in the same
individual will also reveal currently unknown nodes
of signaling activated by exercise. Cross-species
comparisons between the clinical (humans) and pre-
clinical (rats) arms will also facilitate the construction
of a predictive model of the effects of exercise on
central parameters of human health and disease.

Future work in this space should aim to iden-
tify how circulatory factors released during exercise
affect the brain in females and males, including cog-
nitive and brain health, increases in neurotrophins,
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changes in synaptic connections in a number of
brain regions, vascular support, and the number
of new neurons in the hippocampus (Fig. 1). This
cross-discipline approach, integrating neuroscience,
exercise physiology and geroscience represents a
unique opportunity to both uncover new biologi-
cal paradigms to explain sex-differences in cognitive
aging and age-associated neurodegenerative dis-
eases, and to develop novel therapeutic targets against
this ever-increasing disease burden in our aging pop-
ulations.
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Möller M. The X chromosome and sex-specific effects
in infectious disease susceptibility. Human Genomics.
2019;13(1):2.

[58] Rettew JA, Huet YM, Marriott I. Estrogens augment
cell surface TLR4 expression on murine macrophages
and regulate sepsis susceptibility in vivo. Endocrinology.
2009;150(8):3877-84.

[59] Safdar A, Saleem A, Tarnopolsky MA. The poten-
tial of endurance exercise-derived exosomes to treat
metabolic diseases. Nature Reviews Endocrinology.
2016;12(9):504-17.

[60] Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exer-
cise is the real polypill. Physiology (Bethesda, Md).
2013;28(5):330-58.

[61] Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Inte-
grative biology of exercise. Cell. 2014;159(4):738-49.

[62] Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond
SF, et al. Exercise hormone irisin is a critical regulator of
cognitive function. Nature Metabolism. 2021;3(8):1058-
70.

[63] Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni
G, et al. Running-Induced Systemic Cathepsin B Secretion
Is Associated with Memory Function. Cell Metabolism.
2016;24(2):332-40.

[64] Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-
like growth factor I mediates exercise-induced increases
in the number of new neurons in the adult hippocampus.
The Journal of Neuroscience : The Official Journal of the
Society for Neuroscience. 2001;21(5):1628-34.

[65] Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Sim-
mons N, et al. VEGF is necessary for exercise-induced
adult hippocampal neurogenesis. The European Journal
of Neuroscience. 2003;18(10):2803-12.

[66] El Hayek L, Khalifeh M, Zibara V, Abi Assaad R,
Emmanuel N, Karnib N, et al. Lactate Mediates the
Effects of Exercise on Learning and Memory through
SIRT1-Dependent Activation of Hippocampal Brain-
Derived Neurotrophic Factor (BDNF). The Journal of
Neuroscience : The Official Journal of the Society for
Neuroscience. 2019;39(13):2369-82.

[67] Ferreira JC, Rolim NP, Bartholomeu JB, Gobatto CA,
Kokubun E, Brum PC. Maximal lactate steady state
in running mice: effect of exercise training. Clin-
ical and Experimental Pharmacology & Physiology.
2007;34(8):760-5.

[68] De Miguel Z, Khoury N, Betley MJ, Lehallier B,
Willoughby D, Olsson N, et al. Exercise plasma boosts
memory and dampens brain inflammation via clusterin.
Nature. 2021;600(7889):494-9.

[69] Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-
Diaz CI, Schroer AB, et al. Blood factors transfer
beneficial effects of exercise on neurogenesis and cog-
nition to the aged brain. Science (New York, NY).
2020;369(6500):167-73.

[70] Leiter O, Seidemann S, Overall RW, Ramasz B, Rund N,
Schallenberg S, et al. Exercise-Induced Activated Platelets
Increase Adult Hippocampal Precursor Proliferation and
Promote Neuronal Differentiation. Stem Cell Reports.
2019;12(4):667-79.

[71] Mathur N, Pedersen BK. Exercise as a mean to control low-
grade systemic inflammation. Mediators of Inflammation.
2008;2008:109502.

[72] Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine
Organ: The Role of Myokines in Exercise Adaptations.
Cold Spring Harbor Perspectives in Medicine. 2017;7(11).

[73] Pedersen BK, Akerström TC, Nielsen AR, Fischer CP.
Role of myokines in exercise and metabolism. Jour-
nal of Applied Physiology (Bethesda, Md : 1985).
2007;103(3):1093-8.

[74] Steensberg A, Febbraio MA, Osada T, Schjerling P, van
Hall G, Saltin B, et al. Interleukin-6 production in contract-
ing human skeletal muscle is influenced by pre-exercise
muscle glycogen content. J Physiol. 2001;537(Pt 2):
633-9.

[75] Steensberg A, Keller C, Starkie RL, Osada T, Febbraio
MA, Pedersen BK. IL-6 and TNF-alpha expression in, and
release from, contracting human skeletal muscle. Am J
Physiol Endocrinol Metab. 2002;283(6):E1272-8.

[76] Fischer CP. Interleukin-6 in acute exercise and training:
what is the biological relevance? Exercise Immunology
Review. 2006;12:6-33.

[77] Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P,
Plomgaard P, et al. Searching for the exercise factor: is IL-6
a candidate? J Muscle Res Cell Motil. 2003;24(2-3):113-9.

[78] Rothaug M, Becker-Pauly C, Rose-John S. The role of
interleukin-6 signaling in nervous tissue. Biochimica et
Biophysica Acta. 2016;1863(6 Pt A):1218-27.

[79] Rose-John S, Heinrich PC. Soluble receptors for cytokines
and growth factors: generation and biological function.
Biochemical Journal. 1994;300(2):281-90.

[80] Monje ML, Toda H, Palmer TD. Inflammatory blockade
restores adult hippocampal neurogenesis. Science (New
York, NY). 2003;302(5651):1760-5.

[81] Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara
T, Sugimoto H. Microglia-derived interleukin-6 and
leukaemia inhibitory factor promote astrocytic differentia-
tion of neural stem/progenitor cells. The European Journal
of Neuroscience. 2007;25(3):649-58.

[82] Oh J, McCloskey MA, Blong CC, Bendickson L,
Nilsen-Hamilton M, Sakaguchi DS. Astrocyte-derived
interleukin-6 promotes specific neuronal differentiation
of neural progenitor cells from adult hippocam-
pus. Journal of Neuroscience Research. 2010;88(13):
2798-809.

[83] Benini R, Nunes PRP, Orsatti CL, Portari GV, Orsatti
FL. Influence of sex on cytokines, heat shock protein and
oxidative stress markers in response to an acute total body
resistance exercise protocol. Journal of Exercise Science
and Fitness. 2015;13(1):1-7.

[84] Abbasi A, de Paula Vieira R, Bischof F, Walter M, Movas-
saghi M, Berchtold NC, et al. Sex-specific variation in
signaling pathways and gene expression patterns in human
leukocytes in response to endotoxin and exercise. Journal
of Neuroinflammation. 2016;13(1):289.

[85] Casaletto KB, Lindbergh C, Memel M, Staffaroni A, Elahi
F, Weiner-Light S, et al. Sexual dimorphism of physical
activity on cognitive aging: Role of immune functioning.
Brain, Behavior, and Immunity. 2020;88:699-710.

[86] Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo
JC, et al. A PGC1-alpha-dependent myokine that drives
brown-fat-like development of white fat and thermogene-
sis. Nature. 2012;481(7382):463-8.
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