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1. Introduction
Surface Biology and Geology (SBG) is a forthcoming NASA mission recommended by the 2017–2027 National 
Academies' Decadal Survey (NASEM, 2018), as one of the high priority Designated Observables, to acquire 
hyperspectral measurements in the visible to shortwave infrared (VSWIR, 380–2,500 nm) range and multispectral 
measurements in the thermal infrared (TIR, 4–12 μm) range with a sub-monthly revisit cadence over the entire 
globe (Cawse-Nicholson et al., 2021; Schimel & Poulter, 2022; Thompson et al., 2021). The development of 
SBG continues the legacy from EO-1/Hyperion (Folkman et al., 2001), the NASA HyspIRI pathfinder study (Lee 
et al., 2015), the airborne AVIRIS/AVIRIS-NG instrument (Hamlin et al., 2011), and the latest EMIT mission (R. 
O. Green et al., 2020), joined by steadily growing international hyperspectral missions like the HISUI (Matsunaga 
et al., 2017), DESIS (Krutz et al., 2019), PRISMA (Loizzo et al., 2018), EnMAP (Guanter et al., 2015), and the 
future CHIME (Rast et al., 2021). Observations of SBG are expected to help significantly improve our under-
standing of global ecology, hydrology, weather, climate, as well as solid earth (NASEM, 2018).

One of the scientific goals—and grand challenges—of SBG is to retrieve vegetation functional traits at the global 
scale. Such plant functional traits, including pigment and nutrient concentrations, leaf/canopy structure and 

Abstract This study introduces the Ames Global Hyperspectral Synthetic Data set (AGHSD), in particular 
the surface bidirectional reflectance distribution function (BRDF) product, to support the NASA Surface 
Biology and Geology (SBG) mission development. The data set is generated based on the corresponding 
multispectral BRDF products from NASA's MODIS satellite sensor. Based on theories of radiative transfer 
in vegetation canopies, we derive a simple but robust relationship that indicates that the hyperspectral surface 
BRDF can be accurately approximated as a weighted sum of the soil surface reflectance, the leaf single albedo, 
and the canopy scattering coefficient, where the weights or coefficients are spectrally invariant and thus readily 
estimated from the multispectral MODIS products. We validate the algorithm with simulations by a Monte 
Carlo Ray Tracing model and find the results highly consistent with the theoretic derivation. Using reflectance 
spectra of soil and vegetation derived from existing spectral libraries, we apply the algorithm to generate the 
AGHSD BRDF product at 1 km and 8-day resolutions for the year of 2019. The data set is biogeochemically 
and biogeophysically coherent and consistent, and serves the goal to support the SBG community in developing 
sciences and applications for the future global imaging spectroscopy mission.

Plain Language Summary This paper develops a emulated (or synthetic) global hyperspectral 
data set, based on existing multispectral satellite products, to support the NASA Surface Biology and Geology 
(SBG) mission development. The challenge of the task is to find a simple yet robust algorithm to interpolate 
multispectral observations to (unobserved) hyperspectral bands. Based on theoretic analyses and numerical 
model simulations, we develop an accurate and efficient algorithm that accomplishes this task by combining 
information from the optical properties of the surface elements and the structural properties of the landscape 
and vegetation canopies. The former are obtained from existing spectral libraries and the latter can be 
estimated from the multispectral satellite products. We apply the algorithm to generate a scientifically coherent 
and consistent global hyperspectral data set, which are publicly available to serve the needs of the science 
community of SBG and other global hyperspectral remote sensing satellite missions.
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morphology, and metabolic characteristics (Serbin & Townsend, 2020), are drivers and indicators of vegetation 
physiological functions, community assembly, and species diversities (Cavender-Bares et  al.,  2020; Kunstler 
et al., 2016). However, spectral reflectance observed by remote sensors is not only shaped by the biogeochemical 
properties of leaves but also influenced by the biogeophysical properties (e.g., leaf distribution and plant struc-
ture) of the canopy as well as the background environment (e.g., soil and surface topography). The transportation 
of light in vegetation canopies can modulate the directional distribution of photons, introduce surface reflec-
tance anisotropy, and obscure the leaf spectral characteristics. Vegetation retrieval algorithms, especially those 
intended for global scales, thus must account for the effects of radiative transfer in the imaging spectroscopy data, 
which requires us to gain a deeper understanding of light transmissions at the land surface.

The anisotropy of surface reflectance is described by the bidirectional reflectance distribution function (BRDF) 
or BRDF. BRDF is a fundamental optical property of the surface, which intrinsically modulates the spatial and 
angular distributions of the radiation signals reflected by the surface. The distrubutions of the signals are further 
transformed and complicated by the radiative transfer processes through the atmosphere. Therefore, measure-
ments of the reflected solar radiation by satellite or airborne instruments are influenced by the surface BRDF 
effects to various degrees. Depending on the requirement of the applications, the BRDF effects on the meas-
urements may be undesirable and need to be “corrected.” More challengingly, because accurate knowledge of 
surface BRDF is difficult to obtain, atmospheric correction algorithms such as ATREM (Gao et al., 1993) and 
ISOFIT (Thompson et al., 2018) often make simplifications that the surface scatters incident radiation equally in 
all directions. Such an idealized surface is called “Lambertian.” The Lambertian assumption inevitably introduce 
uncertainties in the retrieved surface reflectance and other downstream products. To meet the requirement of the 
SBG scientific objectives, we must quantitatively evaluate the BRDF effects and the associated uncertainties on 
the hyperspectral measurements and derived science products.

The Modeling Working Group (ModWG) of SBG Research and Applications team was established to inform 
the SBG mission development and support the science and applications traceability with wall-to-wall model 
simulations (Schimel & Poulter, 2022). A key task of ModWG is to generate a global synthetic hyperspectral data 
set spanning from surface reflectance to top-of-atmosphere (TOA) radiances for the development and testing of 
community science algorithms and applications. The simulation of synthetic data is essentially a forward mode-
ling process in which we examine how plant functional traits translate into spectral signals transferring from the 
surface through the atmosphere to the remote sensor. Therefore, the synthetic data are not necessarily “true” (i.e., 
reflecting the ground truth), but should be “reasonable” (i.e., reflecting the model truth).

Although the task of synthetic data generation can be accomplished with process-based vegetation and radi-
ative transfer models (Chernetskiy et al., 2018; Poulter et al., 2023), the computational costs associated with 
such global model simulations at landscape resolutions are very expensive. In this study, therefore, we seek a 
physics-based but computationally efficient approach to address the task. The result of this study is the Ames 
Global Hyperspectral Synthetic Data set (AGHSD) set or AGHSD. We first develop a biogeophyscially and 
biogeochemically coherent algorithm to generate global hyperspectral surface BRDF product based on the corre-
sponding multispectral MODIS products. We then propagate the signals to TOA reflectance with the help of 
atmospheric radiative transfer models. This paper introduces the land surface BRDF product of AGHSD, focus-
ing on its algorithm development and validation. We will introduce the corresponding TOA product in an accom-
panying paper. The development of synthetic data sets over ocean and inland water surfaces is led by another team 
at NASA Ames Research Center, who will also report their progress in separate papers.

To give a brief background, BRDF is typically defined as the ratio between the light flux (𝐴𝐴 𝐴𝐴𝜆𝜆 ) reflected from 
the surface in the view direction (described by the solid angle 𝐴𝐴 Ω ) to the parallel light beam (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆0 ) incident on the 
surface in the illumination direction (𝐴𝐴 Ω0 ) Martonchik et al., 2000 that is,

𝜌𝜌𝜆𝜆(Ω0,Ω) =
𝐿𝐿𝜆𝜆(Ω)

𝐸𝐸𝜆𝜆,0(Ω0)
 (1)

where 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆0 is irradiance (𝐴𝐴 w ⋅m
−2 ), 𝐴𝐴 𝐴𝐴𝜆𝜆 is radiance (𝐴𝐴 w ⋅m

−2
⋅ sr

−1 ), and the subscript “𝐴𝐴 𝐴𝐴 ” indicates that these vari-
ables are wavelength dependent. The BRDF 𝐴𝐴 𝐴𝐴𝜆𝜆 is generally anisotropic and varies with the illumination-view 
geometry. Theoretical BRDF models can be very complex and thus are rarely used in practical studies. Instead, 
remote sensing applications commonly use kernel-based semiempirical BRDF models. For instance, the MODIS 
BRDF products adopts the Ross-thick Li-sparse (RTLS) model (Lucht et al., 2000; Schaaf et al., 2002; Wanner 
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et al., 1997), which represents surface BDRF (𝐴𝐴 𝐴𝐴𝜆𝜆 ) as the sum of Lambertian (isotropic), volume scattering, and 
geometric optical components

𝜌𝜌𝜆𝜆(Ω0,Ω) = 𝑘𝑘
𝐿𝐿

𝜆𝜆
+ 𝑘𝑘

𝑉𝑉

𝜆𝜆
𝑓𝑓𝑉𝑉 (Ω0,Ω) + 𝑘𝑘

𝐺𝐺

𝜆𝜆
𝑓𝑓𝐺𝐺(Ω0,Ω). (2)

where 𝐴𝐴 𝐴𝐴𝑉𝑉  and 𝐴𝐴 𝐴𝐴𝐺𝐺 are the kernel functions for volume scattering and geometric optical components (the Lamber-
tian kernel is normalized to be 1), and 𝐴𝐴 𝑲𝑲𝜆𝜆 =

[

𝑘𝑘
𝐿𝐿

𝜆𝜆
, 𝑘𝑘

𝑉𝑉

𝜆𝜆
, 𝑘𝑘

𝐺𝐺

𝜆𝜆

]𝑇𝑇  are the coefficients or weights for the corresponding 
components. Note that the kernel functions are purely determined by the illumination-view geometry and thus 
spectrally invariant. Fitting the surface BRDF with the RTLS model is thus to determine the coefficient vector            

𝐴𝐴 𝑲𝑲𝜆𝜆 .

Existing multispectral BRDF products from satellite sensors like MODIS and VIIRS provide global estimates 
of 𝐴𝐴 𝑲𝑲𝜆𝜆 at several spectral bands in the VSWIR range. To derive synthetic hyperspectral surface BRDF is essen-
tially to identify an interpolation scheme that estimate 𝐴𝐴 𝑲𝑲𝜆𝜆 at the hyperspectral bands from the corresponding 
multi-band products. There is rich literature about the interpolation/reconstruction of hyperspectral reflectance 
from the corresponding multispectral data with statistical or machine learning methods (Guanter et al., 2009; 
Liu et al., 2009; Rivera et al., 2015; Sun et al., 2014; Verrelst et al., 2019). These methods generally compare 
the multispectral 𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 (the superscript “M” denotes the multispectral cases) to a library of hyperspectral 𝐴𝐴 𝑲𝑲

𝐻𝐻

𝜆𝜆
 (the 

superscript “H” denotes the hyperspectral cases) at the corresponding spectral bands and choose the best matches 
(𝐴𝐴 𝑲𝑲

𝐻𝐻

𝜆𝜆
 ) as the solution to the problem.

The hyperspectral library of 𝐴𝐴 𝑲𝑲
𝐻𝐻

𝜆𝜆
 can be constructed from existing libraries of reflectance (𝐴𝐴 𝐴𝐴

𝐻𝐻

𝜆𝜆
 ) such as the USGS 

Spectral Library (Kokaly et al., 2017) and the Aster/ECOSTRESS Spectral Library (Baldridge et al., 2009). For 
instance, the original derivation of the RTLS kernels can be used to relate the 𝐴𝐴 𝑲𝑲𝜆𝜆 parameters to the reflectance 
spectra of multiple landscape elements (horizontal soil surface, the scattering facets, and the sunlit crown), the 
vegetation leaf area index, the area proportion of vegetation coverage, and a couple of other variables (Lucht 
et al., 2000). A previous study by Q. Yang et al. (2020) selected a subset of ∼900 reflectance spectra from the 
Aster Spectral Library (Baldridge et al., 2009) and created a library of ∼40,000 BRDF spectra. These spectra 
can be conveniently and accurately represented by the leading ∼20 principal components (PCs), which allows Q. 
Yang et al. (2020) derive an efficient formula to calculate hyperspectral spectra from the MODIS BRDF param-
eters 𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 at seven bands.

However, the algorithm of Q. Yang et al. (2020) is purely empirical and there are important scientific questions 
that are left unanswered. The spectra samples from the Aster (or USGS) library reflect optical properties of small 
elements (e.g., leaves) measured under laboratory settings, while satellite BRDF data represent the “convoluted” 
signals contributed by all elements over landscape scales. There are strong interests in gaining deeper under-
standing of how the two quantities are physically coupled in the scaling processes. On one hand, we would like 
to understand how the landscape patterns and structures regulate the leaf-level spectra into the satellite measured 
BRDF characteristics. On the other hand, this knowledge will also be very useful for us to evaluate (and improve) 
inverse algorithms that de-convolute satellite BRDF signals to retrieve optical properties of vegetation leaves, soil 
surfaces, and other elements of the landscape.

Therefore, this study introduces a physics-based algorithm that generates synthetic satellite BRDF from land-
scape element optical properties and structural characteristics. The algorithm is rigorously derived with the theo-
ries of radiative transfer in vegetation canopy. It has a simple linear form as reported in Q. Yang et al. (2020), 
but different from the previous study, the coefficients of the formula have physical explanations. We validate 
the algorithm with simulation results from Monte Carlo Ray Tracing model experiments. The algorithm is then 
applied to generate global hyperspectral synthetic BRDF data set for 2019 based on MODIS products. We will 
also analyze the results and discuss possible ways of improvement.

2. Data and Methods
2.1. MODIS BRDF Data Sets

The global multi-band BRDF data set used in this study is the MODIS MCD19A3 product generated by the NASA 
Multi-Angle Implementation Atmospheric Correction (MAIAC) algorithm (Lyapustin et al., 2018). The product 
provides estimates of the RTLS BRDF parameters (𝐴𝐴 𝑲𝑲𝜆𝜆 ) at an 8-day frequency and a 1 km spatial resolution for 
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the first eight MODIS bands, including the seven land bands (Band 1 to Band 7) and the first ocean color band 
(Band 8). For this study we only use the 𝐴𝐴 𝑲𝑲𝜆𝜆 parameters of the seven land bands. Figure 1 shows an example image 
of global land surface between 60°N and 60°S calculated with the MCD19A3 BRDF parameters collected on 4 
July (Julian Day 185), 2019. The reflectance at each pixel is normalized to the same illumination-view geometry, 
where the solar zenith, the view zenith, and the relative azimuth angles are 20°, 45°, and 90°, respectively.

2.2. Monte Carlo Radiative Transfer Model

1.  We use the radiative transfer model Forest Light Environmental Simulator (FLiES) (Kobayashi & 
Iwabuchi,  2008) to simulate the transportation of photons in 3-D vegetation canopies over heterogeneous 
landscapes. FLiES uses a Monte Carlo Ray Tracing approach to simulate the scatterings and absorption of 
photons between leaves, trunks, and soil surfaces. The current FLiES code considers a rectangular forest stand 
with trees, shrubs, and grasses distributed in both horizontal and vertical dimensions. Trees are represented 
by geometric objects in four different shapes (cones, cylinders, spheroids, and semi-spheroids). The shape 
and the size of the crowns as well as the horizontal location and the height of the trees are specified for each 
individual trees. The optical properties of plants are specified by “groups,” where trees in the same group have 
the same spectral reflectance and/or transmittance for leaves and barks. FLiES supports up to four different 
tree groups in a forest stand and uses an addition group to describe the properties of the forest floor vegetation 
(e.g., grasses). The specification of a tree group also includes canopy structural information such as the leaf 
area density and branch area index. The performance and robustness of FLiES for simulating bidirectional 
reflectance factors have been demonstrated in previous studies (Widlowski Jean-Luc et al., 2015).

We have conducted model sensitivity experiments with various combinations of spectral optical properties of 
leaves, barks, and soil surfaces, landscape/forest structures, as well as model parameters (see Appendix A for 
details). Figure 2a shows an example of the forest stand we generated for FLiES. The horizontal locations of the 
trees are generated by the Poisson's distribution. For simplicity, in this example we specify only one group of 
trees with spheroidal crowns, where the ratios between the radius (in the horizontal dimensions) and the height 
(in the vertical dimension) of the tree crown are about ∼0.5. The crowns largely fall into three size classes (3, 10, 
and 20 m) and the tree heights are approximately proportional to the crown sizes. The leaf area density of the tree 
canopies is set to 1 and the overall area ratio of tree crowns to the total spatial domain is ∼0.7.

Figure 2b shows the optical properties, including leaf reflectance and transmittance, bark reflectance, and soil 
reflectance, of the forest stand. The spectra of the optical properties range from 400 to 2,400 nm at a 10-nm 
resolution (e.g., 201 spectral bands). The leaf reflectance and the leaf transmittance are usually very similar to 
each other, and their sum is called as leaf single albedo (𝐴𝐴 𝐴𝐴𝑙𝑙 ). The leaf optical properties are simulated with the 
PROSPECT model (Jacquemoud & Baret, 1990) with typical leaf chemistry parameters. The soil reflectance is 
a representative example from the Brightness-Shape-Moisture model (P. Yang et al., 2020). The bark reflectance 
is from the Aster/ECOSTRESS Spectral Library (Baldridge et al., 2009; Meerdink et al., 2019). Figure 2b also 
shows the Spectral Response Function of the first eight MODIS bands. We use SRFs to sample and integrate 
the simulated hyperspectral data into the corresponding MODIS bands so that they can be used in the regression 
analysis.

Figure 1. An example true-color image of global land surface (60°N–60°S) generated with MODIS MCD19A3 bidirectional 
reflectance distribution function parameters collected on 4 July 2019. For each pixel, the solar zenith, the view zenith, and the 
relative azimuth angles are 20°, 45°, and 90°, respectively.
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2.3. AGHSD Algorithm Development

Our hypothesis in developing the AGHSD algorithm is that the RTLS parameterization of hyperspectral surface 
BRDF can be accurately approximated as a weighted sum of the soil surface reflectance (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ), the leaf single 
albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ), and the canopy scattering coefficient (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ).

The spectra of soil surface reflectance and leaf single albedo are well understood and illustrated in Figure 2b. 
The concept of canopy scattering coefficient is relatively new and needs some explanation. Simply speaking, 
the canopy scattering coefficient is an up-scaled version of leaf single albedo: it measures the probability that a 
photon intercepted by a vegetation canopy will be scattered by the canopy (Knyazikhin et al., 2013; Smolander 
& Stenberg, 2005; W. Wang et al., 2018). This variable is related to both the leaf single albedo and the structural 
characteristics of the canopy. When a photon enters the canopy and collides with a leaf element, it will be scat-
tered with a probability of 𝐴𝐴 𝐴𝐴𝑙𝑙 (leaf single albedo). The scattered photon will either recollides with another leaf 
element or escapes the canopy through a gap. The process iterates until the photon finally escapes or is absorbed 
the canopy. We define the probability that the scattered photon recollides with another leaf element as the recol-
lision probability. If the recollision probability has a stable value 𝐴𝐴 𝐴𝐴 (see below for explanation), the canopy scat-
tering coefficient can then be expressed as a geometric series

𝜔𝜔𝜆𝜆𝜆𝜆𝜆 = 𝜔𝜔𝜆𝜆𝜆𝜆𝜆(1 − 𝑝𝑝)
[

1 + 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝 + (𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝)
2
+ (𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝)

3
+⋯

]

=
𝜔𝜔𝜆𝜆𝜆𝜆𝜆(1 − 𝑝𝑝)

1 − 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝
 (3)

where 𝐴𝐴 1 − 𝑝𝑝 represents the escape probability.

It is easy to see that the scattered photons in the vegetation canopy must be spatially distributed in a certain way 
so that the statistical mean of their recollision probabilities takes the stable value 𝐴𝐴 𝐴𝐴 . Fortunately, the theory of 
radiative transfer indicates that the spatial distribution of the scattered photons will converge to this characteristic 
form (which is intrinsic to the given canopy) as the order of scattering increases (Huang et al., 2007). Simulations 
with 3D Monte Carlo Radiative Transfer models indicate the scattering process converges rapidly and the recolli-
sion probability becomes stable at the second (and higher order) scattering (Lewis & Disney, 2007), which is also 
verified by the FLiES experiments in this study (see the Appendix A). Therefore, we can decompose the bidirec-
tional reflectance of vegetation canopy into two components. The first scattering component includes photons 
scattered by leaves only once, which is thus associated with the leaf single albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ). The multiple scattering 
component includes photons scattered twice or more times by leaf elements before they escape the canopy, which 
is described by the canopy scattering coefficient (or more rigorously, the product of canopy scattering coefficient 
and the single albedo, 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ⋅ 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ).

Figure 2. (a) A forest stand example generated using the ellipsoidal tree models. The boundary of the site is set to be periodic so that the spatial pattern of the trees is 
supposed to repeat in horizontal dimensions. (b) The optical properties of the forest elements shown in panel (a). Note that all the trees in this example are in the same 
group and we have neglected the grass on the forest floor. The gray shades in panel (b) shows the Spectral Response Function of the first eight MODIS bands, which are 
used to sample and integrate the hyperspectral data into the corresponding MODIS bands.
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Not all scattered photons are reflected by vegetation canopies. Some of them are directly reflected by the soil 
surface and therefore modulated by the soil reflectance 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 . The total surface BRDF thus must include the soil 
surface reflectance as the third component, in addition to the two vegetation components. Therefore, we represent 
the surface BRDF as

𝜌𝜌𝜆𝜆(Ω0,Ω) = 𝜔𝜔𝜆𝜆,𝜆𝜆 ⋅ 𝐹𝐹𝜆𝜆(Ω0,Ω) + 𝜔𝜔𝜆𝜆,𝜆𝜆 ⋅ 𝐹𝐹𝜆𝜆(Ω0,Ω) +

𝜔𝜔
2

𝜆𝜆,𝜆𝜆
(1 − 𝑝𝑝)

1 − 𝜔𝜔𝜆𝜆,𝜆𝜆𝑝𝑝
⋅ 𝐹𝐹𝑐𝑐(Ω0,Ω) (4)

Note that here we neglect the multiple scatterings between the atmosphere and the soil surface as well as those 
between the canopy and the soil surface.

The 𝐴𝐴 𝐴𝐴𝑠𝑠(Ω0,Ω) , 𝐴𝐴 𝐴𝐴𝑙𝑙(Ω0,Ω) , and 𝐴𝐴 𝐴𝐴𝑐𝑐(Ω0,Ω) terms in Equation 4 denote the bidirectional scattering factors for the 
corresponding components. These factors are determined by the structural characteristics of the land surface 
elements. Like the kernel functions of the RTLS model, they are functions of the illumination-view geometry but 
not the wavelength. By expanding these factors with the RTLS kernel functions, we transform Equation 4 into

𝜌𝜌𝜆𝜆(Ω0,Ω) =

[

1 𝑓𝑓𝑉𝑉 𝑓𝑓𝐺𝐺

]

⋅

(

𝜔𝜔𝜆𝜆,𝜆𝜆𝑲𝑲𝜆𝜆 + 𝜔𝜔𝜆𝜆,𝜆𝜆𝑲𝑲 𝜆𝜆 +

𝜔𝜔
2

𝜆𝜆,𝜆𝜆
(1 − 𝑝𝑝)

1 − 𝜔𝜔𝜆𝜆,𝜆𝜆𝑝𝑝
𝑲𝑲 𝑐𝑐

)

 (5)

where 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 are the vectors of expansion coefficients. Comparing Equation 5 with Equation 2 we immedi-
ately see that

𝑲𝑲𝜆𝜆 = 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑲𝑲𝜆𝜆 + 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑲𝑲 𝜆𝜆 +

𝜔𝜔
2

𝜆𝜆𝜆𝜆𝜆
(1 − 𝑝𝑝)

1 − 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝
𝑲𝑲 𝑐𝑐 (6)

or explicitly

𝑘𝑘
𝑖𝑖

𝜆𝜆
= 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑘𝑘

𝑖𝑖

𝜆𝜆 + 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑘𝑘
𝑖𝑖

𝜆𝜆
+

𝜔𝜔
2

𝜆𝜆𝜆𝜆𝜆
(1 − 𝑝𝑝)

1 − 𝜔𝜔𝜆𝜆𝜆𝜆𝜆𝑝𝑝
𝑘𝑘
𝑖𝑖

𝑐𝑐
 (7)

where the superscript “i” represents one of the Lambertian (L), the volumetric (V), and the geometric (G) 
components.

Equation 6 or Equation 7 is a mathematical expression of our hypothesis stated at the beginning of this section. 
Note that the 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑠𝑠 , 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑙𝑙
 , 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑐𝑐 coefficients and the photon recollision probability 𝐴𝐴 𝐴𝐴 are all spectrally independent. They 
can be estimated from existing multi-band satellite BRDF products (𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 ) if we have prior knowledge of soil 

reflectance (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) and leaf single albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ), which may be obtained from ground-based measurements. To do 
this we first use the Spectral Response Functions of the satellite instruments to resample the spectra of the soil 
reflectance (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) and the leaf single albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) into the same broad bands as the satellite sensors (Figure 2). We 
then conduct regression analysis, using the satellite products of 𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 as the independent variables and the resam-

pled 𝐴𝐴 𝐴𝐴
𝑀𝑀

𝜆𝜆𝜆𝜆𝜆
 and 𝐴𝐴 𝐴𝐴

𝑀𝑀

𝜆𝜆𝜆𝜆𝜆
 as the dependent variables, to estimate the coefficients 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲𝐿𝐿 , and 𝐴𝐴 𝑲𝑲 𝑐𝑐 following Equation 6. 

Last, once the coefficients are determined, we use Equation 6 to predict 𝐴𝐴 𝑲𝑲
𝐻𝐻

𝜆𝜆
 at any other (hyperspectral) bands 

with the optical properties 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 .

In applications when site-specific measurements of 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 are not available, they must be approximated with 
spectra libraries or model simulations. The task is to search for a pair of 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 that minimize the differ-
ences between the multi-spectral satellite measurements (𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 ) and the predictions (𝐴𝐴 𝑲𝑲

𝐻𝐻

𝜆𝜆
 ) of Equation 6 under 

certain constraints. To speed up the search, we follow the method described in Q. Yang et al. (2020) and P. Yang 
et al. (2020) to map a multi-spectral vector 𝐴𝐴 𝑲𝑲

𝑖𝑖

𝑀𝑀×1
 into the corresponding space of hyperspectral vectors 𝐴𝐴 𝑲𝑲

𝑖𝑖

𝐻𝐻×1
 with 

the linear transform

𝑲𝑲
𝑖𝑖

𝐻𝐻×1
= 𝑨𝑨

𝒊𝒊

𝐻𝐻×𝑀𝑀
⋅𝑲𝑲

𝑖𝑖

𝑀𝑀×1
 (8)

where “i” represents either the Lambertian (L), the volumetric (V), or the geometric (G) components. 𝐴𝐴 𝑨𝑨
𝒊𝒊

𝐻𝐻×𝑀𝑀
 is a 

𝐴𝐴 𝐴𝐴 ×𝑀𝑀 matrix estimated from the training data set generated with sample spectra of 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 from the Aster/
ECOSTRESS Library as well as varying combinations of 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲𝐿𝐿 , and 𝐴𝐴 𝑲𝑲 𝑐𝑐 . The details of the estimation of 𝐴𝐴 𝑨𝑨

𝒊𝒊

𝐻𝐻×𝑀𝑀
 

are described in Q. Yang et al. (2020) and P. Yang et al. (2020). Note that the hyperspectral vector 𝐴𝐴 𝑲𝑲
𝑖𝑖

𝐻𝐻×1
 estimated 
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with Equation 8 are not necessarily “accurate” because the mapping is not bijective and multiple hyperspec-
tral vectors 𝐴𝐴 𝑲𝑲

𝑖𝑖

𝐻𝐻×1
 may correspond to the same multispectral vector 𝐴𝐴 𝑲𝑲

𝑖𝑖

𝑀𝑀×1
 . The accuracy of the linear transform 

(𝐴𝐴 𝑨𝑨
𝒊𝒊

𝐻𝐻×𝑀𝑀
 ) also depends on the representativeness of the training pairs. These intrinsic uncertainties associated 

with the estimated hyperspectral BRDF parameters, which cannot be quantified at this stage, emphasize that 
the synthetic data do not necessarily reflect the reality and are not intended to be used in place of observational 
datasets.

3. Results
We use FLiES to simulate surface or Top-of-Canopy (TOC) BRDF at 17 view zenith angles (0°–80° at a 5° step) 
and 19 azimuth angles (0°–180° at a 10° step) at various sun zenith angles (SZA). Figure 3 show an example of 
the simulated results for SZA = 30° with the forest stand shown in Figure 2. For simplicity, we assume that the 
soil surface is Lambertian in the simulations. The simulated TOC BRDF is clearly anisotropic. The 3D plots of 
the BRDF generally show a “bell” shape at absorptive bands (Figure 3a, 540 nm), where the single albedo (𝐴𝐴 𝐴𝐴𝑠𝑠 ) is 
relatively low and thus the contribution from multiple scattering is small. In contrast, they show a “bowl” shape 
at more reflective bands (Figure 3b, 850 nm), where the single albedo is relatively high and the contribution 
from multiple scattering is more significant. The bi-directional reflectance of the 850 nm band (0.3–0.4 sr −1) is 
apparently higher than the 540 nm band (0.05–0.1 sr −1), reflecting the difference in their single albedos. Figure 3 
also illustrates the “hot-spot” phenomenon, where BRDF sharply rises when the view angle coincides with the 
illuminate direction.

We can decompose the simulations shown in Figure 3 into a sequence of components by their orders of scattering. 
Figure 4 shows the results of the first scattering (k = 1) and the multiple scattering components (k 𝐴𝐴 ≥  2). Further 
decomposition of the multiple scattering component and the evaluation of their convergence can be found in the 
Appendix A. The first scattering components of both the 540 and the 850 nm bands show very similar “bell” 
shapes with the signature “hot-spot.” The difference in the magnitudes between the two bands largely reflect their 
different single albedos (Figure 4). In comparison, the multiple scattering components of the two bands show 
similar “bowl” shapes. Note that the contrast between the magnitude of the 540 nm band (∼0.01) and the 850 nm 
band (∼0.2) is much bigger than the differences of their single albedos. The increased magnitude differences 
between the two bands reflect the effects of multiple scattering in the vegetation canopy: according to Equation 4, 

Figure 3. Surface bidirectional reflectance distribution function (BRDF) by simulated with Forest Light Environmental Simulator as a function of view zenith and 
(relative) azimuth angles. The solar zenith and azimuth angles used in the simulations are 30° and 0°, respectively. Panels (a, b) show the 3D BRDF surface for the 
Green (540 nm) and the NIR (850 nm) bands. The hot-spot spectra at the 30° VZA is apparent.
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the ratio of the multiple scattering reflectance components between two bands are direct proportional to the 
square of the corresponding ratio between the single albedos. For dense vegetation, where the photon recollision 
probability (p) approaches 1, the difference is further enlarged by the inverse ratio between the single absorption 
coefficient (1 − 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ; Equation 4).

The results shown in Figure 4 provide visual confirmation to our algorithm derivation outlined in the Method-
ology section. The nearly identical shapes of the first and the multiple scattering BRDF components between 
the 540 and the 850 nm bands are determined by the corresponding bidirectional scattering factors (𝐴𝐴 𝐴𝐴𝑙𝑙(Ω0,Ω) 
and 𝐴𝐴 𝐴𝐴𝑐𝑐(Ω0,Ω) in Equation 4), which only depend on the illumination-view geometry. Yet the magnitudes of the 
first and the multiple scattering BRDF components are modulated by the leaf single albedo and the canopy scat-
tering coefficients, which depend on the wavelength of the bands. The agreement between the theoretical deri-
vation (Equation 4) and the MCRT model simulation results (Figure 4) provides strong support to the AGHSD 
algorithm.

Next, we examine how well the RTLS model can represent the FLiES simulated BRDFs by regressing the latter 
on the corresponding values (evaluated under the same geometry) of the kernel functions to determine the 
model parameters 𝐴𝐴 𝑲𝑲𝜆𝜆 . The results are shown in (Figure 5). In general, the RTLS model well capture (r 2 > 0.8) 
the smooth variations of the original BRDF, as the directional reflectance generated by the RTLS model 

Figure 4. Decomposition of the bidirectional reflectance distribution function of Figure 3 into the first scattering (k = 1) and the multiple scattering (k 𝐴𝐴 ≥  2) 
components.
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closely resemble those simulated by FLiES (Figure 5). The comparison also indicates that the RTLS model 
has difficulties in approximating the sharp variations of the BRDFs induced by the hot-spot effects, which is 
a known challenge in BRDF modeling (Jiao et al., 2016). In this study, we neglect the BRDF discrepancies 
induced by the hot-spot effects and assume that the representation of surface BRDF by the RTLS model is 
accurate.

Shown in Figure 5, the spectra of the regressed RTLS parameters (𝐴𝐴 𝐴𝐴
𝐿𝐿

𝜆𝜆
, 𝐴𝐴

𝑉𝑉

𝜆𝜆
, 𝐴𝐴

𝐺𝐺

𝜆𝜆
 ) reflect features from the optical 

properties of the forest stand (Figure 2). Both 𝐴𝐴 𝐴𝐴
𝐿𝐿

𝜆𝜆
 (the Lambertian or isotropic component) and 𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
 (the volumetric 

scattering component) show clear signatures of the vegetation single albedo, including the absorption by chloro-
phyll in the blue and the red bands, the sharp rise in the 700–800 nm range (“red edge”), and the water absorption 
around the 1,400 and 1,900 nm bands. The spectra of 𝐴𝐴 𝐴𝐴

𝐺𝐺

𝜆𝜆
 (the geometric scattering component) appears to be flat 

with little variations. This feature seems reasonable because the geometric scattering component mainly reflects 

Figure 5. Ross-thick Li-sparse (RTLS) representation of the simulated surface bidirectional reflectance distribution function (BRDF). The top two panels show 
comparison of the original BRDF (color surface) with the BRDF generated with the RTLS parameters (green dots) for the (a) 540 and the (b) 850 nm bands. In Panel 
(c), the solid lines show the RTLS parameters for all the 201 spectral bands (𝐴𝐴 𝑲𝑲𝜆𝜆 ), where the dashed lines indicate the estimation of 𝐴𝐴 𝑲𝑲𝜆𝜆 by Equation 6 with the spectra of 
soil reflectance and leaf single albedo shown in Figure 2. The r 2 statistics between 𝐴𝐴 𝑲𝑲𝜆𝜆 and its estimates are ∼0.99 for all three components.
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the mutual shadowing effects of the landscape elements (e.g., leaves, stems, etc.), which are supposed to be inde-
pendent on wavelength.

We should point that the RTLS parameters shown in Figure 5, especially the volumetric and the geometric scat-
tering components (𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
, 𝐴𝐴

𝐺𝐺

𝜆𝜆
 ), are allowed to be negative as far as the overall bidirectional reflectance is positive. 

If we force the parameters to be nonnegative, the explanation power (by the r 2 statistics) of the simulated BRDF 
by the RTLS model drops from 80% to 50% at some wavelengths. Allowing the RTLS parameters to be negative 
is thus a compromise between the higher explanation power and the lower certainty in the physical interpretation 
of  the corresponding BRDF components. A fundamental reason for this compromise is that the RTLS kernel 
functions are far from a complete basis of the functional space spanned by all possible BRDFs. The kernel 
functions are not orthogonal, either, which implies multicollinearity between the predicting variables (the RTLS 
kernel functions) in the regression analysis to fit the predicted variable (the model simulated BRDF). Therefore, 
the values of individual RTLS parameters (𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
, 𝐴𝐴

𝐺𝐺

𝜆𝜆
 , in particular) estimated from the regression analysis may be 

associated with large uncertainties and not suitable for literal physical interpretation. Given both reasons, we 
tolerate negative values of 𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
 or 𝐴𝐴 𝐴𝐴

𝐺𝐺

𝜆𝜆
 in certain ranges. More discussions on the topic of interpreting the physical 

meaning of the RTLS components can be found in the Appendix A.

We use the spectra of the soil reflectance and the leaf single albedo shown in Figure 2 to approximate the RTLS 
parameters shown in Figure 5, using Equation 6 as the regression equation. The task can be accomplished with 
non-linear regression. As shown in Figure 5c, the estimated RTLS parameters (indicated by dash lines) are almost 
identical to the original ones. The root-mean-square-errors (RMSE) between the true and the estimated RTLS 
parameters are ∼0.008 for the isotropic (k L) and the volumetric (k V) components and ∼0.001 for the geometric 
component (k G). The corresponding r 2 statistics are ∼0.99 for all the components. Therefore, if we know the 
spectra of soil surface reflectance and leaf single albedo of a vegetation stand, we can very accurately estimate the 
hyperspectral RTLS parameters and therefore the surface BRDF of the landscape. This is exactly what we hypoth-
esized and theoretically proved in developing the AGHSD algorithm. The results in Figure 5 provide  the  exper-
imental support to our algorithm.

We proceed to apply the AGHSD algorithm to generate the global hyperspectral synthetic BRDF data set from 
the corresponding MODIS products. For real satellite data, we generally do not know the optical properties of 
the landscape represented by each of the pixels. Therefore, we use Equation 8 to map the multispectral MODIS 
BRDF parameters (𝐴𝐴 𝑲𝑲

𝑀𝑀

𝜆𝜆
 ) into the spectral library generated in Q. Yang et al. (2020) and P. Yang et al. (2020) 

to estimate the corresponding hyperspectral BRDF parameters (𝐴𝐴 𝑲𝑲
𝐻𝐻

𝜆𝜆
 ). The data set is hosted at our data portal 

(https://data.nas.nasa.gov/aghsd/index.html) and publicly accessible.

Figure 6 shows a false-color image of global land surface (between 60°N and 60°S) generated with the synthetic 
hyperspectral BRDF data using the same illumination-view geometry as Figure 1. We applied a Minimum-Noise 
Fraction (MNF) transformation (Chang & Du, 1999; A. A. Green et al., 1988) to the data and used the first three 
MNF PCs respectively as the red, green, and blue bands in creating the image. MNF transformation is a special 
PC Analysis (PCA) technique commonly used in hyperspectral image processing to derive information from the 
spectral content (Cawse-Nicholson et al., 2021). The leading PCs can be thought as key spectral signatures that 
are found in the spectra samples in the scene. In our example, at the global scale, the first two MNF components 

Figure 6. A false-color image of global land surface generated with the synthetic hyperspectral bidirectional reflectance 
distribution function data using the same illumination-view geometry as in Figure 1. A minimum noise fraction transform is 
applied to the data and the first three leading principal components are used as the Red, the Green, and the Blue channels, 
respectively. The yellow boxes indicate the location of the sites examined in Figure 7.
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Figure 7. Comparison between the synthetic hyperspectral bidirectional reflectance distribution function Ross-thick 
Li-sparse parameters (lines) with the corresponding MODIS data (dots) at the eight chosen sites.
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(i.e., the red and the green band) clearly represent spectral characteristics of bare soil and vegetation, respectively 
(Figure 6). Visual examination of the false-color image (Figure 6) indicates that the synthetic data well reveal 
the same spatial details as the MODIS image (Figure 1), where the landscape variations and landcover changes 
across the globe are accurately captured. Note that the MNF PCs depend on the spatial domain of the analysis and 
can be a powerful tool to illustrate subtle variations in spectral features, and thus vegetation species and mineral 
contents, at regional or local scales (Cawse-Nicholson et al., 2021). This is a distinct advantage of the MNF 
false-color image over the true-color representation (i.e., using only three spectral bands) of hyperspectral data.

We randomly pick a few sites of different land cover types and over different continent to further examine the 
performance of the AGHSD algorithm. Figure 7 shows the spectra of the estimated hyperspectral RTLS parame-
ters compared with the corresponding MODIS data over the chosen sites. In general, the spectra of the synthetic 
RTLS parameters are highly consistent with MODIS data at the selected bands. These spectra tend to closely 
follow the trajectories of the leaf single albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) or the soil reflectance (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ). This is particularly true for the 
vegetated sites (Sites 2, 4, 6, and 8), where the regulation of the leaf optical properties on the RTLS parameters 
are similar as those identified in the Monte Carlo model simulations (Figure 5). Similar influences of soil surface 
reflectance are observed on the Lambertian component parameter (𝐴𝐴 𝐴𝐴

𝐿𝐿

𝜆𝜆
 ) for the non-vegetated sites (Sites 1, 3, 5, 

and 7).

The spectra of the 𝐴𝐴 𝐴𝐴
𝐺𝐺

𝜆𝜆
 and the 𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
 parameters occasionally show signs of overfitting, which are typically induced 

by the inflation of coefficients and translate into increased variability of the predicted variables. At Site 6, for 
instance, the curve of the 𝐴𝐴 𝐴𝐴

𝑉𝑉

𝜆𝜆
 parameter exhibits sharp variations around 1,900 nm, which are most likely artifacts 

resulted from the regression analysis. Weaker overfitting signs are also recognizable at Site 7 around several 
wavelengths. We are testing additional regression techniques, including the Tikhonov regularization or ridge 
regression method (Li et al., 2015) and the bounded-error estimation of parameters (Jaulin & Walter, 1993), to 
mitigate the problem. Overfitting may also be a reminder that the functional space of the hyperspectral BRDF 
vectors (𝐴𝐴 𝑲𝑲

𝐻𝐻

𝜆𝜆
 ) is under-represented by the spectral library, so that some of the target vectors may not be close to 

any of the 40,000 example spectra in the library. The only way to address this issue is to populate the spectral 
library with more diverse spectra examples around the globe. We shall report the progress of these efforts, includ-
ing the improvement of the AGHSD data, in the future.

4. Discussions
We have emphasized that the synthetic data generated by our algorithm do not necessarily reflect the real-world 
truth. Yet it is still interesting—and natural—to ask: how realistic are they? Here we discuss this question in a 
few different contexts.

First, if we ask the question without consideration of the geolocation of the synthetic data, we claim that a 
well-represented BRDF spectra, such as those of Sites 1 and 2 in Figure 7, can be as realistic as any physics-based 
models (e.g., FLiES). That is, if there is a forest stand (or bare ground) that has the same (or similar) leaf single 
albedo (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) and soil reflectance (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) as contained in our library, the BRDF of the forest (or the ground) could 
be accurately represented by our synthetic data. Such a forest stand potentially exists somewhere on Earth.

Second, if we bring in the geolocation context and ask whether a synthetic BRDF spectra realistically represents 
the “ground truth” at the specific pixel, the answer becomes less certain: it may or may not. The uncertainty is 
ultimately induced by the fact that the mapping from the multispectral data (MODIS) to the hyperspectral space 
is not fully constrained. The same multispectral BRDF vector could correspond to several candidate hyperspectral 
solutions, from which we must pick one. Without further information, our algorithm simply does not know which 
solution is more realistic than the others.

Uncertainties also exist in the multispectral BRDF products. If such uncertainties are totally random, they should 
have little impact on the regression results with Equation 6. However, if they are systematic biases and, in particu-
lar, if such biases are correlated with surface optical properties (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ), the retrieved parameters from the 
regression analysis will be biased as well. Such uncertainties can propagate to the estimated RTLS coefficients 
for the other wavelengths with scaling factors determined by the spectra of surface optical properties. If we 
further consider uncertainties in the prior knowledge of surface optical properties, the propagation of errors will 
be more complicated.
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Hyperspectral observations can be brought in to help us determine the optimal solution of surface BRDF 
and to detect and suppress uncertainties in the multispectral data and the prior surface optical properties. 
Existing hyperspectral observations include those from AVIRIS, DESIS, PRISMA, EMIT, as well as the 
EO-1/Hyperion. Strictly speaking, using satellite or airborne observations to retrieve or improve the prior 
knowledge of surface/atmosphere variables is the task of inversion modeling. For the development of AGHSD, 
we are interested in identifying the sources of uncertainties in light transport from the surface to the top 
of the atmosphere so that we can forwardly simulate their impacts on the at-sensor signals. We are devel-
oping a forward modeling algorithm based on the well-known concept of Green's function (Lyapustin & 
Knyazikhin, 2001) to accurately and efficiently model TOA radiance from surface BRDF. By adjusting the 
level of uncertainties in the surface BRDF parameters, we expect to derive a set of more realistic “model 
truths” to test the inverse scientific algorithms. We plan to report the development of the synthetic TOA hyper-
spectral data in a separate paper.

Finally, suppose the hyperspectral remote sensing observations allow us to choose the realistic BRDF spectra 
(𝐴𝐴 𝑲𝑲

𝐻𝐻

𝜆𝜆
 ) for a given pixel, are we able to separate the optical properties (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) from the influence of the 

landscape structure characteristics (𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , and 𝐴𝐴 𝑲𝑲 𝑐𝑐 —see Equation 6 for details)? This is another important yet 
challenging problem that requires intensive research (Knyazikhin et al., 2013; Z. Wang et al., 2017). Theoretically 
speaking, an inverse problem of this kind can only be solved with additional information (Baret & Buis, 2008; 
Combal et al., 2002; Rodgers, 2000), which may be derived from hyperspectral data or other type of observations 
(e.g., LIDAR measurements of vegetation structure). Further discussion on this topic is out of the scope of this 
paper and we refer the interested audience to recent papers on surface imaging algorithms with hyperspectral 
remote sensing data (Cawse-Nicholson et al., 2021; Raiho et al., 2023). Nevertheless, we hope the development 
of AGHSD and the associated forward modeling framework provide an experimental environment that may help 
test scientific algorithms with this regards.

5. Conclusions
This paper introduces the AGHSD, in particular the surface BRDF product. We derive the synthetic surface 
BRDF, represented by the parameters of the RTLS model, from the corresponding MODIS products. Based on 
the theories of radiative transfer in vegetation canopies, we derive a simple but robust relationship that indicates 
the RTLS parameters of hyperspectral surface BRDF can be accurately expressed as a weighted sum of the soil 
surface reflectance, the leaf single albedo, and the canopy scattering coefficient. The weighting coefficients of 
these components are determined by the structural characteristics of the landscape and thus do not depend on the 
wavelength of the spectra. Therefore, they can be estimated from the multispectral MODIS data.

We validate our algorithm with the Monte Carlo Ray Tracing radiative transfer model, FLiES. The simulation 
results are highly consistent with the theoretic derivations. The simulated BRDF resulted from the first and the 
multiple scattering components show distinct spatial distribution signatures associated with the geometric-optical 
and the volumetric-scattering kernels, which are independent on wavelength, of the RTLS model. In comparison, 
their magnitudes are regulated by the leaf single albedo and the canopy scattering coefficient, which are depend-
ent on wavelengths. With prior knowledge of these optical properties, our algorithm can very accurately estimate 
the hyperspectral RTLS parameters for the simulated surface BRDF.

We apply the algorithm to generate a global hyperspectral BRDF data at 1 km and 8-day resolutions for 2019 
based on the MODIS (MCD19A3) products. The spectra of the synthetic RTLS parameters are highly accurate as 
the MODIS data at the selected spectral bands. The spectra are also consistent and coherent at other wavelengths 
in general. These results indicate that, in most cases, we can use weighted spectra of surface soil and vegetation 
optical properties to satisfactorily interpolate/extrapolate the RTLS parameters from the few MODIS bands to 
any hyperspectral SBG bands.

We also detect weakness of the current algorithm. It is found that at unvegetated pixels, the algorithm may over-
fit the model to the multispectral data and introduce spurious variations in the spectra of the RTLS parameters. 
This problem was essentially caused by the under-representativeness of the spectral library used currently by 
the algorithm. Future work thus is required to populate the spectral library with more diverse spectra samples in 
order to mitigate the problem. In addition, we are testing alternative regression techniques, including Tikhonov 
regularization and Bounded-Error Estimation, to detect and address the occurrence of model overfitting in our 
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algorithm. We also plan to compare the AGHSD data with available hyperspectral observations from satellite and 
airborne sensors (e.g., AVIRIS-NG and DESIS) to further examine the quality of the data set.

Finally, we emphasize that AGHSD is specifically generated to support the development and testing of SBG 
community science algorithms. The data set is publicly accessible from our data portal (https://data.nas.nasa.gov/
aghsd/index.html). All SBG communities, including terrestrial ecology, aquatic ecosystems, surface minerology, 
and the cryosphere community, can use AGHSD to test if their algorithms or processing pipelines can correctly 
handle the format and the volume of weekly global hyperspectral data. On the other hand, we emphasize that 
the community should not expect to discover new scientific results from the synthetic data set. As described in 
this paper, no hyperspectral “ground truth” is used in generating AGHSD. Indeed, such a wall-to-wall global 
hyperspectral data set still awaits to be derived from future hyperspectral satellite sensors, which highlights the 
importance and excitement of the SBG mission.

Appendix A: Additional Results of Monte Carlo Ray Tracing Model Experiments
A1. Convergence of Multiple Scattering

Figure A1 shows the decomposition of the multiple scattering (k 𝐴𝐴 ≥  2) bidirectional reflectance distribution func-
tion (BRDF) component of Figure 4 in the main text into the second (k = 2), the third (k = 3), and the fourth (k = 4) 
scattering components. For both the 540 nm and the 850 bands, all the components have similar “bowl-shaped” 
distributions. We calculate the spatial correlation coefficients between the BRDF components as a means to 
evaluate the convergence of the shape of the angular distributions. For both bands, the correlation coefficients 
(r) between the second and the third scattering components are ∼0.985, which increase to ∼0.996 between the 
third and the fourth scattering components. Therefore, these results support the argument that the spatial/angular 
distribution of the radiation fields resulted from multiple (k 𝐴𝐴 ≥  2) scatterings converge rapidly. In comparison, the 
correlation coefficients between the first and the second scattering components are negative (−0.6 or −0.7) for 
both bands (Figure 4 in the main text). The contrast between the first and the multiple scattering BRDF compo-
nents also support our approach to treat them separately, as expressed in Equations 4–7.

Figure A1. Decomposition of the multiple scattering (k 𝐴𝐴 ≥  2) component of the bidirectional reflectance distribution function shown in Figure 4 into the second (k = 2), 
the third (k = 3), and the fourth (k = 4) scattering components, respectively. For both spectral bands, the correlation coefficients (r) between the second and the third 
scattering components are ∼0.985, which increase to ∼0.996 between the third and the fourth scattering components.
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A2. BRDF Components From Soil Surface, Vegetation Boundary, and Vegetation Interior

The key idea of the Ames Global Hyperspectral Synthetic Data set algorithm is that the surface BRDF can 
be largely decomposed to contributions from the soil surface, the first scattering component of vegetation 
canopies (vegetation boundary), and the multiple scattering component of vegetation canopies (vegetation 
interiors), and each of these components can be represented as the product of the spectrally dependent 
optical properties (soil reflectance 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 , leaf single albedo 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 , and canopy scattering coefficient 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) and a 
spectrally independent weight function that depends on the illumination-view geometries (Equations 4–6 in 
the main text). Each of the weight functions can be looked at as a normalized BRDF and thus represented 
by its own Ross-Thick-Li-Sparse (RTLS) parameters (𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 ). These parameters can be determined 
by regression analysis with Equation  6. Table  A1 shows the values of 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 corresponding to the 
BRDF RTLS parameters in Figure 5 in the main text. Examples of 3D plots of these functions are shown 
in Figure A2. As shown, the BRDF of the soil surface has a “dome” shape and the one representing the 
multiple scattering component of vegetation canopies (“vegetation interior”) has a “bowl” shape. The BRDF 
representing the first scattering component of vegetation canopies (“vegetation boundary”) falls somewhere 
in between (Figure A2).

However, we should avoid strict interpretations of the physical meaning of the 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 parameters. Although 
the RTLS kernels are semi-physical, they are neither a complete nor an orthogonal) basis for the functional 
space of BRDF. As discussed in the main text, although negative component of BRDF appears non-physical, 
we have to allow some of the parameters to be negative to increase the RTLS models explanation power of the 
simulated BRDF. The surface optical properties (𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 , 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 , and 𝐴𝐴 𝐴𝐴𝜆𝜆𝜆𝜆𝜆 ) are not totally mutually independent either. 
The multicollinearity among these variables also can induce ambiguity in the retrieved 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝜆𝜆
 parameters (where 

the superscript “i” represents one of the Lambertian (L), the volumetric (V), and the geometric (G) compo-
nents). Based on these considerations, we didn't discuss much about the values of the 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 parameters 
in the main text.

Isotropic Volumetric Geometric

𝐴𝐴 𝑲𝑲𝑠𝑠 0.387 0.084 −0.300

𝐴𝐴 𝑲𝑲 𝑙𝑙 0.312 0.024 0.379

𝐴𝐴 𝑲𝑲 𝑐𝑐 −0.067 −0.046 −0.027

Table A1 
Values of the 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 Vectors Corresponding to the Ross-Thick Li-Sparse Coefficients Shown in Figure 5

Figure A2. Surface bidirectional reflectance distribution function corresponding to the Ross-thick Li-sparse vectors 𝐴𝐴 𝑲𝑲𝑠𝑠 , 𝐴𝐴 𝑲𝑲 𝑙𝑙 , 𝐴𝐴 𝑲𝑲 𝑐𝑐 shown in Table A1. The solar zenith 
angle is 30° in these plots.
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A3. Model Sensitivity Experiments

Although the Forest Light Environmental Simulator (FLiES) experiment results reported in the main text are 
based on one model configuration, we have conducted model sensitivity experiments with various combina-
tions of spectral optical properties of leaves, barks, and soil surfaces (Figure A3), landscape/forest structures 
(Figure A4), as well as model parameters (solar illumination geometry, leaf surface angle distribution function, 
etc.). We have repeated the model experiments and the analysis for over 100 model configurations, the results 
are all very similar to those presented in the paper. They all support our argument that the hyperspectral surface 
BRDF can be accurately approximated as a weighted sum of the soil surface reflectance, the leaf single albedo, 
and the canopy scattering coefficient.

A particular model sensitivity experiment we conducted is regarding the differences between the radiation 
fields in broadleaf and needleleaf forests. Because FLiES does not explicitly distinguish between broadleaf 
and needleleaf forests, we simulated the contrasts between the two types of forests by varying the shapes 
of tree crowns (e.g., cones vs. ellipsoids) and the ratio of the spherical average shoot silhouette area to the 
total needle area (referred to as “sbar” in the FLiES document). According to the document and the liter-
ature, sbar is fixed to be 0.25 for broadleaf forests and is generally lower (e.g., 0.15) for needleleaf forests 
(e.g., Oker-Blom & Smolander, 1988), which also suggests stronger clumping effects. We specify the crown 
shapes in our study scene to be cones and set the sbar parameters to be 0.15 and 0.1 in the model simulations. 
The results are shown in Figure A5 below. Under the otherwise the same model configurations, changing 
the crown shapes from ellipsoids to cones and changing  the sbar parameter from 0.25 to 0.15 (or 0.10) 
tend to reduce the magnitude of the surface BRDF, especially the multiple scattering components. This is 
likely due to the increased clumping effects (Kobayashi et al., 2010). The spatial/angular distributions of the 
BRDFs slightly change with the changes in crown shapes and the values of sbar. But we can always accu-
rately retrieve the RTLS parameters from the simulations with Equation 6. The rates of convergence by the 
multiple-scattering components of the simulated BRDF are also similar to  those described above. All these 
results, though not necessarily exhaustive, suggest that our modeling approach (Equations 4–7) is robust to 
the extent as allowed by FLiES.

Figure A3. Examples of forest spectral optical properties, including reflectance/transmittance of leaves, barks, and soil surfaces used in the model sensitivity 
experiments of Forest Light Environmental Simulator.
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Acronyms
AGHSD NASA Ames Global Hyperspectral Synthetic Data set
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
BRDF Bidirectional Reflectance Distribution Function
CHIME Copernicus Hyperspectral Imaging Mission for the Environment
DESIS DLR Earth Sensing Imaging Spectrometer
ECOSTRESS Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
EMIT Earth Surface Mineral Dust Source Investigation
EnMAP Environmental Mapping and Analysis Program
FLiES Forest Light Environment Simulator

Figure A4. Examples of landscape/vegetation canopies, including bare ground, shrubs, and forests, used in the model 
sensitivity experiments of Forest Light Environmental Simulator.

Figure A5. Surface bidirectional reflectance distribution function simulated by Forest Light Environmental Simulator similar to Figure 3 but with cone-shaped tree 
crowns and the ratios of the spherical average shoot silhouette area to the total needle area (“sbar”) decreasing from 0.25 to 0.10.
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HISUI Hyperspectral Imager Suite
HyspIRI Hyperspectral Infrared Imager
MAIAC Multi-Angle Implementation Atmospheric Correction
MNF Minimum Noise Fraction
MODIS Moderate Resolution Imaging Spectroradiometer
PCA Principal Component Analysis
PRISMA Hyperspectral Precursor of the Application Mission
RTLS Ross-Thick-Li-Sparse
SBG Surface Biology and Geology
TIR Thermal Infrared
TOA Top-of-Atmosphere
TOC Top-of-Canopy
VSWIR Visible to Short-Wave Infrared

Data Availability Statement
The AGHSD surface BRDF data set, with a total volume of ∼48 TB, is publicly available for download through 
NASA Advanced Supercomputing (NAS) Data Portal (https://data.nas.nasa.gov/aghsd/aghsddata/version2.0/). 
The code example to illustrate the algorithm is available via Zenodo at https://zenodo.org/record/7877752#.
ZExFg-zMKWA.
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