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Abstract
Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource 
management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling 
propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, 
a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instru-
mented winegrape vineyards over the 2017–2020 time period and the spatial and temporal variation in errors are analyzed. 
We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can 
persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly 
strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33–0.65 mm/day (7–27%) across 
sites, while SIMS introduced RMSE of 0.55–0.83 mm/day (19–24%). The relative error contribution from meteorological 
inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were 
larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error 
contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface 
conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that 
SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. 
The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs 
dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing 
spatial uncertainty in the meteorological forcing of ET.
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Introduction

Evapotranspiration (ET) is controlled by the present state 
of both the land surface and the near-surface meteorologi-
cal conditions. Calculating ET using biophysical models 
requires information about the land surface, including 
the availability of water in soil or vegetation and the rate 
at which it can be conducted to the atmosphere. It also 
requires information about local meteorological con-
ditions, like temperature and humidity, that determine 
evaporative demand. Incomplete information about local 
conditions necessitates estimating or making assumptions 
about the values of several ET forcing variables. Judging 
the accuracy and robustness of any ET estimation method 
requires examining the spatial and temporal dynamics 
of errors in model inputs and the impact of those errors 
on final ET estimates. Quantification of model errors is 
important when applying remote sensing-based ET esti-
mation methods to water resource management problems 
(Foster et al. 2020).

This paper examines the contribution of meteorologi-
cal and land surface data inputs to errors in ET estimates 
using the Satellite Irrigation Management Support (SIMS) 
model (Melton et al. 2012; Pereira et al. 2020) for three 
climatically distinct winegrape vineyards in California. 
SIMS is used for agricultural applications like irriga-
tion scheduling, as well as for larger scale water resource 
management and assessment. The SIMS model is com-
putationally efficient and provides ET estimates that use 
satellite data to account for the current crop growth stage, 
canopy extent and condition, and provide users with ET 
values that represent crop water requirements under well-
watered conditions. These features make SIMS useful for 
irrigation scheduling and management. This analysis of 
the contribution of model inputs to the spatial and tem-
poral distribution of model ET errors will be useful to 
practitioners who rely on SIMS ET estimates, and also 
for future improvement of the model. While this study 
focuses on errors in SIMS, some of the results will have 
implications for remote sensing-driven ET estimation 
more generally. There are many different approaches for 
estimating ET and many different parameterizations of the 
soil–vegetation–atmosphere system. However, any model 
must account for the fact that ET can be limited either by 
meteorological conditions (local evaporative demand) or 
by land surface conditions (availability of water and plant 
physiology). Therefore, any ET estimation method can be 
affected by uncertainty in both meteorological and land 
surface data inputs, which are the focus of this analysis.

To account for meteorological forcing of ET, SIMS 
relies on the ASCE Penman–Monteith grass reference ET 
(ETo) (Allen et al. 2005; Walter et al. 2000) calculated 

using meteorological data collected by the California 
Irrigation Management System (CIMIS). CIMIS uses the 
grass reference as the standard for California and CIMIS 
weather stations are installed over grass surfaces. ETo 
is commonly used to account for atmospheric evapora-
tive demand and radiative forcing of ET for agricultural 
applications like irrigation scheduling (Allen et al. 1998). 
While different models parametrize atmospheric and radia-
tive forcing of ET differently, these calculations all rely on 
measurements or estimates of basic physical variables like 
air temperature, humidity, windspeed, and net radiation. 
Errors in these common inputs can have similar impacts 
on different models of potential ET. A challenge in real-
world applications is accurately estimating the values of 
these physical variables at locations in between weather 
stations. One aim of this study is to characterize the errors 
in overall ET estimates resulting from uncertainty related 
to meteorological forcing.

While there have been multiple studies that have charac-
terized the errors of satellite-driven energy balance models 
over vineyard sites (Knipper et al. 2020, 2019; Semmens 
et al. 2016; Carrasco-Benavides et al. 2012), few studies 
have evaluated reflectance-based approaches for calcula-
tion of ET over winegrape vineyards. A notable exception 
is an approach using Sentinel-2 satellite shortwave infrared 
(SWIR) bands that are found to be responsive to crop water 
status and soil moisture and have recently have been incor-
porated into the Shuttleworth–Wallace modeling scheme 
(Shuttleworth and Wallace, 1985) for estimating vineyard 
ET (D’Urso et al. 2021). SIMS is a reflectance-based model 
that implements portions of the FAO-56 dual crop coeffi-
cient model (Allen et al. 1998), a widely used parameteriza-
tion of the soil–vegetation–atmosphere system for ET esti-
mation in irrigated agriculture. SIMS operationalizes this 
model using a combination of remotely sensed vegetation 
measurements and spatially resolved crop type information. 
The model can be run using surface reflectance measure-
ments available from multiple satellites and uses the density 
coefficient approach developed by Allen and Pereira (2009) 
to derive basal crop coefficients from satellite observations 
of the crop canopy. SIMS has been shown to produce useful 
ET estimates in practice, particularly for irrigated agriculture 
in the Western United States (Melton et al. 2021; Pereira 
et al. 2020).

SIMS calculates crop ET (ETc) as the product of two 
values, ETo and a basal crop coefficient (Kcb): ETo * 
Kcb = ETc. Kcb accounts for both the availability of water 
and the ability of the crop to conduct that water to the 
atmosphere. In this study, we focus on attributing errors to 
uncertainty in meteorological versus land surface compo-
nents of the model. In practice, ETo and Kcb are themselves 
computed using many input variables, the values of which 



517Irrigation Science (2022) 40:515–530 

1 3

must be measured, estimated, or assumed. Within the SIMS 
model, inputs to Kcb are computed using a combination 
of multispectral remotely sensed measurements (canopy 
cover fraction) as well as prior information or assump-
tions about vegetation type and stomatal control (Melton 
et al. 2012; Pereira et al. 2020). Because the assumptions of 
SIMS are clear and physically interpretable, we can make 
stronger claims about the representativeness of the error 
characterization.

Understanding the dynamics and impacts of errors in 
model input data will be useful to practitioners who use 
SIMS and related satellite-driven or FAO-56 crop coefficient 
models for applications including irrigation scheduling and 
water resource monitoring. In addition, error propagation 
observed in SIMS is likely to be representative of that in 
other classes of ET models because of similarities in the 
treatment of meteorological forcing terms. For example, 
the impact of local versus regional meteorological inputs 
into the reflectance-based ET model of D’Urso et al (2021) 
indicates significant errors can result using non-representa-
tive meteorological forcing (Bhattarai et al., 2022). Finally, 
SIMS uses a relatively simple approach to estimate land 
surface conductance, one which has a clear physical inter-
pretation. As such, SIMS offers a straightforward basis for 
assessing the relative contribution of different data inputs 
to errors in final ET estimates. In principle, reflectance-
based approaches can be improved upon by incorporating 
additional remotely sensed or in situ measurements like soil 
moisture or land surface temperature. Results using SIMS 
will give an indication of how much error reduction would 
be possible using a more complex land surface model that 
can represent ET variation arising from such factors.

The first part of this study compares the impact of using 
ETo computed from in situ measurements versus ETo esti-
mates from a gridded data product. For the comparison, ETo 
estimates are derived from measurements at the weather 
stations comprising the California Irrigation Management 
Information System (CIMIS). The California Department 
of Water Resources (CDWR) distributes a gridded ETo 
product ("Spatial CIMIS") that combines geostationary sat-
ellite imagery with interpolated meteorological variables 
between weather stations (Hart et al. 2009). While useful 
in the absence of in situ measurements, all spatially inter-
polated weather data products necessarily introduce errors 
due to unknown spatial variation (not captured by geosta-
tistical models) and representativeness error when down-
scaling from multi-kilometer grid cells to field scale. Our 
analysis will help practitioners understand the characteristics 
and impact of errors introduced using spatially interpolated 
ETo values when estimating ET and there is no weather 
station nearby.

The second part of the study compares SIMS crop coef-
ficient estimates with the ground-based measurements of 

fraction of grass reference ET (EToF), computed as the ratio 
of actual ET measured at each flux tower and ETo. In par-
ticular, we examine estimates of the basal crop coefficient 
(Kcb), which SIMS computes as a function of normalized 
difference vegetation index (NDVI) and fractional cover data 
following the density coefficient approach (Allen and Pereira 
2009; Pereira et al. 2020). Kcb is expected to correspond 
to the EToF in a field or vineyard where the crop is well 
watered (transpiration is not water limited) and the exposed 
soil surface is dry. The overall dual crop coefficient Kc also 
includes the effects of soil evaporation (Ke) and water stress 
(Ks) (Allen et al. 1998), but estimating these contributions 
requires knowing soil water content in the evaporable and 
root zones, respectively. While the soil system can be mod-
eled, in general it is difficult to remotely determine irriga-
tion schedules or volumes without direct input from a user 
with knowledge of irrigation applications. For simplicity, 
we will still refer to the difference between SIMS Kcb and 
ground-based EToF as error despite the fact that Kcb * ETo 
is technically not an estimate of ETa in general, though it 
is commonly used as a proxy in practice. Observed differ-
ences between SIMS Kcb and ground-based EToF can be 
explained by one or more of the following: (a) SIMS esti-
mate of basal crop coefficient, Kcb, is different from the 
true (idealized) Kcb, (b) evaporation is occurring from a 
wet soil surface (Ke > 0, thus Kcb < Kc), or (c) transpira-
tion is water limited (Ks < 1, thus Kcb > Kc). While we can-
not definitively disaggregate errors into these three sources, 
we can assess their relative magnitude and variability. One 
goal of this analysis is to characterize the errors that result 
when using SIMS Kcb as estimates of EToF. This analysis 
provides insight for practitioners who rely on crop coeffi-
cient estimates for irrigation scheduling and can also inform 
future development of the SIMS model.

Methods

In the following sections, we describe the data and proce-
dures used to produce actual ET (ETa) from in situ meas-
urements, ASCE Penman–Monteith grass reference ET 
(ETo) from in situ measurements, Spatial CIMIS ETo data 
(EToSC), and SIMS Kcb data from remotely sensed meas-
urements. The remaining variable used in comparisons, 
EToF, is computed as ETa / ETo. Table 1 summarizes all of 
the major variables included in this study. Figure 1 shows 
the high-level variables examined in this study and the data 
sources used to compute them.

In situ ET data

Eddy covariance flux data from three towers that are part 
of the Grape Remote Sensing Atmospheric Profile and 
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Evapotranspiration eXperiment (GRAPEX) project (websi 
te) were used to calculate daily ET (Kustas et al. 2018). 
One tower is located in a Cabernet Sauvignon vineyard 
(BAR012) in the North Coast region and two in the Central 
Valley including a Pinot Noir (SLM001) and a Chardon-
nay vineyard (RIP760) (Fig. 2). The climate at BAR012 is 
substantially different from the climate at the Central Val-
ley sites with estimated average annual ETo of 114 cm, 
142 cm, and 147 cm at BAR012, SLM001, and RIP760, 
respectively. The three sites share similar instrumenta-
tion and are equipped to measure the four energy balance 

components: latent energy flux (LE), sensible heat flux (H), 
soil heat flux (G), and net radiation (Rn). Full details of the 
instrumentation used and data processing methods for the 
in situ measurements are provided in Alfieri et al. (2019) and 
briefly summarized here. Measurements of G were averaged 
from diagonal transects of five soil heat flux plates which 
span the vineyards and rows, and at each plate pairs of soil 
thermocouples and a soil moisture sensor are deployed to 
account for heat storage above the plate. A range of cor-
rections and adjustments were made to raw flux measure-
ments (LE and H); for example, filtering of anomalous high 

Table 1  Definitions and descriptions of variables used in the study

Variable Abbreviation Data source Calculation

Actual ET ETa In situ micro-meteorological instru-
mentation deployed on a flux tower 
within each vineyard

LE computed using eddy covariance measurements (Alfieri 
et al. 2019) with application of the energy balance closure 
method of Volk et al. (2021)

Reference ET ETo In situ meteorological instrumentation Compute hourly ASCE ETo (Walter et al., 2000; Allen et al. 
2005) from in situ measurements, sum hourly calculations 
to daily

Fraction of reference ET EToF In situ meteorological instrumentation Computed as the ratio ETa/ETo
Spatial CIMIS gridded ETo EToSC CDWR Spatial CIMIS Spatially gridded ETo estimates computed by interpolating 

meteorological variables between CIMIS weather stations 
and satellite-based computations of solar radiation

SIMS basal crop coefficient Kcb SIMS Kcb computed from surface 
reflectances from the Harmonized 
Landsat-Sentinel (HLS) dataset

Calculated using satellite retrievals of NDVI and crop-spe-
cific relationships between fractional cover, crop height, 
stomatal control, and potential transpiration

Fig. 1  Schematic of model inputs, data sources and processing steps. 
The black solid border boxes correspond to values calculated using 
in situ measurements that are taken as "ground truth" for the purpose 
of analysis. The red boxes correspond to values that are calculated 

using a model, whose contribution to overall ET errors are being 
studied. The boxes with dashed line borders provide additional detail 
on inputs

https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/hydrology-and-remote-sensing-laboratory/docs/grapex/grapex-home/
https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/hydrology-and-remote-sensing-laboratory/docs/grapex/grapex-home/


519Irrigation Science (2022) 40:515–530 

1 3

frequency (20 Hz) measurements using a Median Absolute 
Deviation approach (Mauder et al. 2013) and adjustment of 
fluxes using the Webb, Pearman, and Leuning density cor-
rections (Webb et al. 1980). Micrometeorological and flux 
data were then aggregated over half-hourly periods. LE (W/
m^2) fluxes are converted to ET (mm/day) using the known 
properties of water including its density and latent heat of 
vaporization.

For this analysis, half-hourly flux data were post-pro-
cessed using the “flux-data-qaqc” Python package (Volk 
et al. 2021) to produce daily ET estimates that are corrected 
for energy imbalance. The method involves limited gap-fill-
ing of energy balance components, daily averaging of fluxes, 
and correction of daily LE and H fluxes using an approach 
based on the FLUXNET2015 dataset and ONEFlux flux pro-
cessing methods (Pastorello et al. 2020). Briefly, the energy 
balance closure correction uses a centered sliding window 
(typically 15 days) of the daily energy balance ratio (LE + H 
/ Rn—G) to partition the daily energy balance residual/error 
(Rn–G–LE–H) to LE and H such that the average corrected 
closure is adjusted towards a value of 1.0 over the sliding 
window time period. Observations that, after correction, 
produced an energy balance closure ratio below 0.75 were 
removed from the sample.

Estimates of remotely sensed ET from SIMS, which 
are produced at a spatial resolution of 30 × 30 m, were 
sampled around flux tower locations using a 7 × 7 pixel 
footprints (total size 210 × 210 m) at sites SLM001 and 
RIP760 and a 5 × 5 pixel footprint (total size 150 × 150 m) 
at site BAR012. Footprints were calculated following the 
methods described in (Melton et al. 2021). The footprints 
are shifted into the predominant upwind direction while 

maintaining overlap with the tower. Dominant wind speeds 
and directions were based on daytime (6:00–18:00 local 
time) windrose diagrams. The 150 × 150 m footprints were 
used at BAR012 because the larger footprint included 
areas outside of the vineyard boundary after accounting 
for the predominant upwind direction. SLM001 and par-
ticularly RIP760 have higher advection on average than 
BAR012 resulting in larger footprints and the flux towers 
being less centrally located within the footprint.

ETo estimation from in situ measurements

ETo was calculated by the ASCE Penman–Monteith grass 
reference formulation (Walter et  al. 2000; Allen et al. 
2005). This is the same formulation of reference ET used 
in Spatial CIMIS. Hourly ETo (mm/hr) was derived using 
in situ measurements of the inputs to the ASCE hourly 
ETo equation, then hourly values were summed to get daily 
ETo (mm/day). Temperature and humidity were measured 
by a Campbell HMP45C probe, from which actual and 
saturation vapor pressure were computed (Alfieri et al. 
2019). Elevation was known for each of the sites. Clear 
sky shortwave radiation was calculated using the method 
described in FAO-56 (Allen et al. 1998). Actual down-
welling shortwave radiation was measured by an in situ 
radiometer. Average wind speed at 2 m above the canopy 
was computed using a sonic anemometer. While the actual 
land surface (winegrape vines growing on trellises) itself 
causes changes in wind behavior relative to the reference 
crop (short grass), we assumed that in situ wind measure-
ments were still more representative of local variation than 

Fig. 2  Vineyard locations and 
flux tower footprints. Black 
points show the locations of the 
vineyards in California. The 
colored background is the aver-
age annual EToSC for the dura-
tion of the study in cm, which 
illustrates climatic variation 
between the sites. For each site, 
the flux tower footprint (blue 
square) is shown relative to the 
position of the tower itself (red 
point). The footprints reflect 
average local wind conditions 
and were generated using the 
method described in Sect. 2.1. 
The footprints for SLM001 and 
RIP760 are 210 × 210 m, which 
corresponds to a 7 × 7 grid of 
30 m pixels. The footprint for 
BAR012 is 150 × 150 m, which 
corresponds to a 5 × 5 grid of 
30 m pixels
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gridded estimates interpolated from the nearest agricul-
tural weather stations.

Spatial CIMIS ETo data product

Calculating ET over a spatially continuous area requires 
estimating the values of meteorological variables at unob-
served locations (i.e., where there is no weather station 
nearby). It is a common practice to use estimates of mete-
orological variables generated by interpolation (to exactly 
fit measurement data where available) or smoothing (to 
minimize error while satisfying shape constraints) between 
weather stations over a 2D grid. Spatial CIMIS (Hart et al. 
2009) is a daily, spatially gridded 2 km ETo data prod-
uct distributed by the CDWR (websi te). This operational 
product is generated using multiple data smoothing meth-
ods for different meteorological variables, combined with 
hourly GOES visible-region satellite imagery (Diak and 
Gautier 1983; Gautier et al. 1980; NOAA Office of Satel-
lite and Product Operations 1994).

SIMS basal crop coefficient estimation

SIMS computes Kcb largely as a function of remotely 
sensed NDVI retrievals. For this study, we computed 
NDVI from Harmonized Landsat Sentinel-2 (HLS) sur-
face reflectance (Claverie et al. 2018) red and near-infra-
red bands (websi te). The red band observations are from 
Landsat-8 OLI band 4 and Sentinel-2 band 4. The near-
infrared band observations are from Landsat-8 OLI band 
5 and Sentinel-2 band 8A. Observations were used from 
the following HLS tiles: T10SFH (SLM001), T10SEH 
and T10SDH (BAR012), T10SGF and T11SKA (RIP760). 
The NDVI rasters were clipped using the flux tower foot-
prints described in Sect. 2.1. Eight-day composites were 
then computed for the multi-year time series by retaining 
the maximum value for each pixel over the compositing 
period. The number of clear observations range from 0 to 
12 per composite period, varying by period and location 
based on satellite orbits and cloud cover. The compos-
ites were arranged in series and missing data (composite 
periods with no clear observations) were filled using lin-
ear interpolation. If the first (beginning of 2017) or last 
(end of 2020) composites had missing values, a fill value 
of 0.15 was used, which is a typical NDVI observed for 
bare-soil conditions (Johnson and Trout 2012). The NDVI 
composites were transformed to Kcb using the procedures 
described by Pereira et al. (2020) and parameter values 
reflecting the average stomatal control characteristics of 

winegrapes. The result of this processing pipeline was 
a series of Kcb rasters for each 8-day period. Kcb was 
assumed to be constant for each 8-day period. Daily aver-
age Kcb values for the average of the flux tower footprint 
were computed as the average of the pixel values within 
the footprint.

Validation

This study compares ETa with ET estimates from (1) ground-
based EToF and CIMIS ETo and (2) SIMS crop coefficient 
and ground-based ETo. For each of the comparisons, the fol-
lowing statistics were computed: (1) root mean square error 
(RMSE), which estimates the average magnitude of overall 
error, (2) bias, which is the average (signed) error, and (3) 
the unbiased root mean squared error (ubRMSE), which esti-
mates the contribution of random error ("noise") to the overall 
error. These three statistics are related by the following rela-
tion: RMSE^2 = Bias^2 + ubRMSE^2 (Entekhabi et al. 2009). 
Correlation, which estimates the degree of linear relationship 
between variables irrespective of bias and differences in scale, 
was also computed for the ETo and Kcb/EToF comparisons. 
Correlation was not computed for the ETa/SIMS ET compari-
sons because ETa explicitly depends on ETo and EToF by 
assumption (i.e., would be computing Corr(X, X*Y)), so the 
statistic was not informative for our purposes and prone to 
misinterpretation. Across sites and years, there were days with 
a value of ETa but not ETo (e.g., temperature and humidity 
measurements missing) and days for which the opposite was 
true (e.g., sonic anemometer measurements missing). In the 
timeseries figures in Results, these days are plotted with one 
value or the other but are excluded from computation of sum-
mary statistics.

In addition to overall accuracy statistics, errors are sum-
marized by site and by year using kernel density estimation 
(KDE) plots. KDE is similar to a histogram in that it summa-
rizes the distribution of sample data. KDE is different from 
histograms in that it directly estimates the probability density 
function rather than simply counting samples that fall within 
non-overlapping bins. KDE uses a kernel function with a spec-
ified bandwidth that computes a local weighted average of the 
empirical density. The kernel function bandwidth is conceptu-
ally similar to bin width in a histogram in that it determines the 
scale at which observations are considered similar and controls 
the smoothness of the resulting density estimate. In this paper, 
the KDE plots are generated using the function kdeplot 
from the seaborn plotting library in Python (Waskom 2021). 
kdeplot computes the KDE using the gaussian_kde function 
from the Scipy statistics package (Virtanen et al. 2020). gauss-
ian_kde automatically computes an appropriate bandwidth of 

https://cimis.water.ca.gov/SpatialData.aspx?t=1
https://hls.gsfc.nasa.gov/


521Irrigation Science (2022) 40:515–530 

1 3

the Gaussian kernel following the methods described by Scott 
(1992). The plotted curves are scaled to have cumulative den-
sity equal to one.

Results

Error from estimated ETo

Errors in EToSC can lead to both systematic and random 
errors in ET estimates. Figures 3, 4, 5 show the time series 
for each site of EToSC versus ground-based ETo (Figs. 3a, 
4a, 5a), ET estimated using EToSC versus ETa (Figs. 3b, 
4b, 5b), and the resulting daily errors (Figs. 3c, 4c, 5c). 
The biases at BAR012 (Fig. 3) and SLM001 (Fig. 4) are 
readily apparent both in the raw data and particularly in 
the error time series. In addition to showing bias over the 

duration of the sample, we see that the expected bias for a 
given day appears to depend strongly on the time of year. 
Note that the amplitudes of the 30- and 90-day average 
bias regularly peak during the middle of the growing sea-
son—positive at BAR012 (Fig. 3) and negative at SLM001 
(Fig. 4)—and approach zero during the winter months. 
This means that the effect of biases in EToSC could have 
a particularly significant impact on ET estimates at daily 
or monthly timescales. There is a similar seasonal pat-
tern in errors at RIP760 (Fig. 5), but the amplitude of the 
errors is much smaller, and the bias is negligible at yearly 
or greater timescales.

Figures 3, 4, 5 also show the effect of random errors on 
overall estimates. The local (in time) variance of the errors 
also varies seasonally, although the pattern is less obvious 
than with the bias. The error variance increases slightly 
during the growing season, but several large daily errors 
are apparent in the spring and fall. Most of the random 

Fig. 3  ETo errors at BAR012. Panel a shows EToSC versus ETo 
computed from in  situ measurements at daily timesteps. Panel b 
shows ET computed as the product of EToSC and ground-based 

EToF versus ETa at daily timesteps. Panel c shows individual daily 
ET errors (Eta–EToSC*EToF) as well as averaged daily errors over 
30- and 90 day windows
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error appears to be "averaged out" in the 90-day moving 
average as shown by the smooth seasonal pattern in these 
curves. The 30-day moving averages still vary with higher 
frequency than the seasonal pattern shown in the 90-day. 
It is not immediately clear whether this variation reflects 
underlying structure in the errors (subtle systematic errors 
in EToSC) or whether the effect of the random error is still 
substantial at 30-day time scales.

Despite site-level variation, some clear patterns emerge 
across the full data sample. Figure 6 summarizes charac-
teristics of the errors including the distributions of errors 
for each site (Figs. 6a, d), the distributions of errors for 
each year (Figs. 6b, e), and statistics that summarize the 
contribution of bias and random noise to overall errors 
(Figs. 6c, f). Results indicate that the bias in EToSC var-
ies in space, as demonstrated by the variation in biases 
at the three sites. The bias at BAR012 is negative, the 
bias at SLM001 is positive, and the bias at RIP760 is 

approximately zero (Fig. 6a and c). In contrast, the bias 
in EToSC does not vary significantly from year to year 
(Figs. 6b and c). The minor exception is 2017, when the 
errors skew slightly positive. This is likely a result of a 
seasonally biased sample, as the data records at BAR012 
and RIP760 start in May 2017.

All sites and years have non-negligible random error. 
The amplitude of random error is estimated as ubRMSE 
and can be observed in the width of the error distributions. 
At BAR012 and SLM001, the amplitude of bias is slightly 
larger than the random error, but approximately equal. At 
RIP760, the random error is significantly larger than the bias 
(ubRMSE ≈ RMSE) but is still smaller than the random 
error at the other two sites. Over sufficiently long timescales, 
the impact of this random noise on time-integrated ET esti-
mates decreases. However, the bias can also vary in time 
on sub-annual timescales, as shown in Figs. 3, 4, 5. This 

Fig. 4  ETo errors at SLM001. Panel a shows EToSC versus ETo 
computed from in  situ measurements at daily timesteps. Panel b 
shows ET computed as the product of EToSC and ground-based 

EToF versus ETa at daily timesteps. Panel c shows individual daily 
ET errors (Eta–EToSC*EToF) as well as averaged daily errors over 
30- and 90 day windows
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seasonally varying bias can be interpreted as noise at time 
scales of a year or greater.

Error from SIMS Kcb

Errors in EToF estimates can also lead to both systematic 
and random errors in ET estimates. Throughout this section, 
"EToF errors" refers to the difference between the Kcb value 
calculated by SIMS and the ground-based EToF value. Fig-
ures 7, 8, 9 show the SIMS Kcb values versus EToF values 
(Figs. 7a, 8a, 9a), the corresponding ET values (Figs. 7b, 
8b, 9b), and the daily ET errors resulting from EToF errors 
(Figs. 7c, 8c, 9c). The full NDVI time series, used to com-
pute SIMS Kcb, for each site can be seen in Supplementary 
Fig. 1.

Figures 7, 8, 9 make it clear that Kcb errors vary season-
ally and the expected error (bias) depends on time of year. At 
BAR012 and RIP760 (Figs. 7, 9), the (negative and positive, 
respectively) biases generally have the largest magnitude 

during mid to late summer. The magnitude of the bias varies 
from year to year, but the sign of the bias remains constant 
at these two sites. SLM001 (Fig. 8) is different in that the 
sign of the bias varies from year to year, with 2017 and 2020 
being negative and 2018 and 2019 being positive. It is dif-
ficult to explain this variation without more information, but 
the simplest explanation would be differences in manage-
ment practices that cause ET to be water limited (stressed) in 
2018 and 2019, or for non-negligible soil evaporation from 
irrigation occurring in 2017 and 2020.

One source of error that is readily apparent at all three 
sites is the contribution of soil evaporation to overall ET. 
This error arises through two distinct pathways. The first 
is when precipitation causes the EToF to spike (often 
EToF > 1) before returning to a "baseline" EToF as water is 
quickly depleted from the evaporable zone. These precipita-
tion spikes are visible at each of the three sites, particularly 
in the winter months when precipitation is more frequent 
and significant. While SIMS includes an optional soil water 

Fig. 5  ETo errors at RIP760. Panel a shows EToSC versus ETo com-
puted from in  situ measurements at daily timesteps. Panel b shows 
ET computed as the product of EToSC and ground-based EToF ver-

sus ETa at daily timesteps. Panel c shows individual daily ET errors 
(Eta–EToSC*EToF) as well as averaged daily errors over 30- and 
90 day windows
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balance model to calculate soil evaporation, this function 
was excluded for the purposes of this analysis to focus on 
the errors associated solely with the satellite-based estimates 
of Kcb.

The second source of soil evaporation is irrigation. 
For example, the underestimation at RIP760 in 2017 and 
2019–2020 and at SLM001 in 2017 is fairly consistent 
throughout the middle of the growing season when there 
is close to zero precipitation. The EToF stays consistently 
above SIMS Kcb for weeks or months, which indicates regu-
lar irrigation. The irrigation underestimates are not consist-
ent across sites or even across years at a single site. The 
inter-annual variation is most easily explained by differences 
in management practices, particularly irrigation volume and 
the use of cover crops. We see an example of this at RIP760 
in 2020, where the ETo is consistent with prior years but the 
EToF increases significantly.

There are also instances where Kcb is consistently higher 
than EToF, for example at BAR012 (Fig. 7) and in 2018 at 
SLM001 (Fig. 8). This can be caused by transpiration limi-
tations imposed by water available in the root zone (water 
stress). These errors are smaller in magnitude than some of 
the underestimates caused by soil evaporation but can be sig-
nificant when they occur in the middle of the growing sea-
son. There are cases where the hypothesized water limitation 
could manifest as a reduction in NDVI, which leads to a drop 

in Kcb. However, the degree to which transpiration is water 
limited likely will not be fully reflected in a drop in NDVI. 
This is a known fundamental limitation that SIMS, like other 
reflectance-based methods, can only detect chronic stress 
that causes reduced leaf area or fractional canopy cover, and 
even then it cannot detect reduction in transpiration due to 
transitory water limitations.

Figure 10 summarizes characteristics of the errors in SIMS 
Kcb estimates and how these errors propagate to overall ET 
estimates. The top row (Fig. 10a, b, c) compares SIMS Kcb 
estimates versus the ground-based EToF values. The second 
row (Fig. 10d, e, f) compares ET estimated as the product of 
SIMS Kcb and ground ETo with ground ETa values. Like the 
errors from EToSC, the average bias and random error vary 
fairly significantly between sites. The bias at RIP760 is sig-
nificant, where the satellite-driven model is underestimating 
the ground-based ET by more than 0.8 mm/day. This is also 
observed in the EToF and ET errors (Fig. 10a, b, d, and e), 
where the RIP760 and 2020 densities have  large tails on the 
left side. This bias derives largely from 2020 where Kcb is 
significantly smaller than EToF for much of the year. In con-
trast, the bias is positive at BAR012 and approximately zero at 
SLM001 over the duration of the sample. Bias in Kcb varies 
from year to year more than the bias in EToF does.

At all sites and all years, ubRMSE is greater than the ampli-
tude of the bias. On the surface, this would suggest that the 

Fig. 6  EToSC errors across sites and years. Panels a, b, d, and e are 
kernel density plots of errors, generated by using a Gaussian kernel. 
Panels a and d show the ETo and ET errors, respectively, aggregated 

by site. Panels b and e show the same errors aggregated by year. Pan-
els c and f show error statistics for ETo and ET, respectively, broken 
out by site and by year
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effect of random error is larger than bias in estimates of Kcb/
EToF. However, it is also possible that there are seasonal 
(non-random) errors that partially or completely counteract 
one another over longer timescales. This possibility merits fur-
ther consideration given that errors appear to vary in multiple 
dimensions by site and by year. For this analysis, again we 
must look at the individual site time series data.

Discussion

While there is significant variation in errors between the 
sites, and we cannot assume that the three vineyards included 
in this analysis are fully representative of all winegrape cul-
tivation in California, our analysis reveals sources of error 
that are likely to affect ET estimation at many locations.

The findings on errors in spatially interpolated ETo are 
important not only for SIMS, but for spatially integrated 
ET modeling in general. Not every model uses ASCE 

Penman–Monteith ETo, but many spatially integrated ET 
models do rely on estimates of atmospheric and radiative 
forcing variables like temperature, humidity, and net radia-
tion. Even with high-quality datasets like Spatial CIMIS that 
use an extensive network of agricultural weather stations, 
estimation error and representativeness error are unavoida-
ble when using spatially gridded meteorological data. While 
the ETo data product explains significant temporal variation, 
it can have temporally persistent and spatially idiosyncratic 
biases due to unobserved spatial variation not captured by 
weather stations or extrapolated by the model.

These biases in ETo can be significant in the context 
of water management applications. For example, the daily 
biases at BAR012 and SLM001 add up to errors of –140 mm 
(–5.5 inches) and 170 mm (6.7 inches), respectively, when 
aggregated to a yearly scale. In addition, the biases appear to 
vary spatially as evidenced by the difference of sign at dif-
ferent sites. This means that addressing this source of error 

Fig. 7  EToF errors  at BAR012. Panel a shows SIMS Kcb versus 
ground-based EToF computed from in  situ measurements at daily 
timesteps. Panel b shows ET computed as the product of SIMS Kcb 

and ground-based ETo versus ETa at daily timesteps. Panel c shows 
individual daily ET errors (ETa–ETo*Kcb) as well as averaged daily 
errors over 30- and 90 day windows
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will require more than a spatially uniform bias correction 
for a given dataset. More generally, drawing strong conclu-
sions about ET or irrigation water use will require methods 
for quantifying the uncertainty from spatially interpolated 
weather data on final ET estimates.

The errors from Kcb are harder to interpret given the 
nature of the comparison to EToF, but still reveal important 
features of SIMS and crop coefficient models generally. The 
first is that crop coefficient errors appear to be temporally 
dependent. This is not surprising, given that transpiration 
is partially biologically controlled and so will be related to 
crop phenology. Excluding site-years with significant bare-
soil evaporation, Kcb tracks EToF fairly closely with some 
years having small positive or negative biases that might 
depend on management practices. However, SIMS seems 
to consistently overestimate EToF in winter months. This is 
likely due to the presence of a cover crop, which increases 
the NDVI (and Kcb) and can also limit bare-soil evaporation 

(decreases EToF). The effect of this problem is minimal on 
annual ET estimates due to ETo being lowest in the winter.

Table 2 summarizes some characteristics of the ET errors, 
including the range of approximate magnitudes across sites 
and year and the underlying sources of variance. The error 
magnitude ranges for timescales greater than a year describe 
ranges of errors over site and year cross sections, as depicted 
in Figs. 6 and 10. The 90-day bias estimates describe the 
ranges of 90-day moving average errors as shown in Fig. 3, 
4, 5 and 7, 8, 9. The comparative assessment of sources of 
variance are informal due to the sample size and complexity 
of the data. They reflect subjective assessments of the data 
depicted in Figs. 6 and 10 and are not the results of rigorous 
statistical tests.

Interpretation of the error contribution from land surface 
data inputs depends on application context. Throughout this 
study, we examine errors resulting from using SIMS Kcb 
as an estimate of EToF. However, for some applications, 

Fig. 8  EToF errors  at SLM001. Panel a shows SIMS Kcb versus 
ground-based EToF computed from in  situ measurements at daily 
timesteps. Panel b shows ET computed as the product of SIMS Kcb 

and ground-based ETo versus ETa at daily timesteps. Panel c shows 
individual daily ET errors (ETa—ETo*Kcb) as well as averaged daily 
errors over 30- and 90 day windows
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this error may be reducible. For example, in applications 
like irrigation scheduling where both precipitation amounts 
and applied water volumes and schedules are known, it is 
feasible to estimate the contribution of soil evaporation (Ke) 
and crop water stress (Ks) to the overall crop coefficient (Kc) 
(Allen et al. 1998). At various points in time, soil evapora-
tion from irrigation appears to contribute significantly to 
errors at RIP760 (Fig. 9) and, to a lesser extent, at SLM001 
(Fig. 8). In addition, intermittent periods of deficit irrigation 
and vine water stress are characteristic of winegrape produc-
tion, and capturing this influence would be expected to fur-
ther reduce the error contribution from land surface inputs 
and reduce the tendency of SIMS to overestimate actual 
ET in vineyards during the summer months, as observed 
at SLM001 and BAR012. In this study, we observe that the 
error contribution from meteorological and land surface 
data inputs are of similar magnitude. If applied water or soil 
moisture data are available and incorporated, it could make 

it such that the error contribution from meteorological inputs 
exceeds that of land surface inputs.

One common pattern across sites and years was the cor-
relation of errors in time at sub-annual timesteps. While, on 
average, the ubRMSE is greater than or equal to the mag-
nitude of bias at timesteps of a year or more, this does not 
mean that the majority of ET error contributions are truly 
random. For example, the ET estimates calculated using 
SIMS Kcb at SLM001 (Fig. 8) are approximately unbiased 
when computed over the full duration of the sample. How-
ever, the moving average errors in Fig. 8c make it clear that, 
for a given 30- or 90-day sample, the ET estimates may be 
biased. At SLM001, it happens to be the case that the time-
varying local biases approximately cancel each other out 
over sufficiently long timescales. Time-varying local bias 
is present in both SIMS Kcb and EToSC. There are many 
potential mechanisms that could contribute to these phe-
nomena. For SIMS Kcb, time-varying bias could arise from 

Fig. 9  EToF errors  at RIP760. Panel a shows SIMS Kcb versus 
ground-based EToF computed from in  situ measurements at daily 
timesteps. Panel b shows ET computed as the product of SIMS Kcb 

and ground-based ETo versus ETa at daily timesteps. Panel c shows 
individual daily ET errors (ETa—ETo*Kcb) as well as averaged daily 
errors over 30- and 90 day windows



528 Irrigation Science (2022) 40:515–530

1 3

seasonal management practices like irrigation or the pres-
ence of cover crops. For EToSC, time-varying bias likely 
results from the fact that the ETo is a nonlinear function of 
temperature and humidity, which vary seasonally.

Improving the accuracy of the meteorological inputs can 
be more challenging. The most direct pathway to reduc-
ing error contributions from the meteorological inputs is 
to increase the density of agricultural weather station net-
works. Cost-effective expansion can be informed by analy-
ses to optimize the spatial configuration of mesoscale envi-
ronmental monitoring networks, such as those performed 
for the Kansas Mesonet (Patrignani et al. 2020). However, 
limitations on funding, availability of suitable locations 

or water supplies for irrigation of the reference crop may 
constrain the ability of network managers to add new sites 
at optimal locations. Other potential avenues for address-
ing error contributions include blending of meteorological 
inputs from mesoscale weather models, reanalysis data, and 
satellite observations (Pelosi et al. 2021), development of 
approaches to facilitate assimilation of local wind speed and 
other meteorological measurements collected over surfaces 
that differ from ASCE standard reference conditions (Ander-
son et al. 2017), and careful evaluation of the impacts of 
different spatial interpolation methods on the accuracy of 
the ETo data calculated from the gridded meteorological 
inputs (Ha et al. 2011).

Fig. 10  EToF errors across sites and years. Panels a, b, d, and e are 
kernel density plots of errors, generated by using a Gaussian kernel. 
Panels a and d show the ETo and ET errors, respectively, aggregated 

by site. Panels B and E show the same errors aggregated by year. Pan-
els c and f show error statistics for ETo and ET, respectively, broken 
out by site and by year

Table 2  Characterization of ET error contributions from EToSC and SIMS Kcb

Table values synthesize information from Figs. 3–10. "Range" is the approximate range of error magnitudes calculated across sites and years. 
"Variance" is a comparison of the relative magnitude of error variance across sites and time. The comparison symbols, describing the relative 
contribution to variation in ET errors, can be interpreted as follow: "x > y" means the variation is greater in x but variation in x and y are on the 
same order of magnitude. "x >  > y" means most variation in errors occurs in x and that y is negligible in comparison. "x ≈ y" means that it is not 
clear that errors vary significantly more or less in x than in y.

Variable Errors for timescale > 1 year Errors for 90-day 
timescale

Errors for 
30-day time-
scale

ET RMSE |ET bias| ET ubRMSE |ET bias| |ET bias|

EToSC Range 0.4–0.7 mm/day 0.1–0.5 mm/day 0.4–0.6 mm/day 0–1.0 mm/day 0–1.5 mm/day
Variance sites > time sites >  > time time > sites time ≈ sites time ≈ sites

SIMS Kcb Range 0.6–0.8 mm/day 0–0.7 mm/day 0.5–0.8 mm/day 0–2.0 mm/day 0–2.0 mm/day
Variance sites ≈ time sites ≈ time sites ≈ time time > sites time > sites
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In summary, this study produced results that should be 
of interest both to practitioners who use SIMS for irriga-
tion scheduling, as well as for ET modeling more broadly. 
For the former, this study provides a robust and nuanced 
characterization of the errors that arise from meteorologi-
cal and land surface inputs when using SIMS and other 
similar reflectance-based ET models. This information is 
useful when trying to account for uncertainty in modeled 
ET estimates. Regarding ET modeling more generally, the 
study shows that errors in meteorological forcing data can 
be substantial and were approximately equal to the errors 
from the land surface model at two out of three sites. This 
is important because, while it is clear how one can improve 
on SIMS Kcb as an estimate of EToF, the same is not neces-
sarily true of providing meteorological inputs representative 
of local conditions. Data products like EToSC are generated 
using complex spatial curve-fitting methods, and yet still can 
introduce substantial error to ET estimates. Until this source 
of error can be reduced, it will be very important to consider 
its effects when applying remote sensing ET models to water 
resource management. Similarly, the results from Bhattarai 
et al. (2022) indicate that an ET model sensitive to vapor 
pressure deficit and wind speed requires a bias correction to 
weather station observations to achieve reliable daily esti-
mates. Without local weather station observations, this will 
continue to be a source of error.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00271- 022- 00808-9.

Funding CD acknowledges funding from Stanford Data Science Schol-
ars program. CD and MM acknowledge funding from NSF INFEWS: 
N/P/H2O (#2024004). LJ acknowledges funding from USDA Agri-
cultural Marketing Service (#AM200100XXXXG032). Support for 
FM and SIMS was provided by the NASA Western Water Applica-
tions Office and the California State University Agricultural Research 
Institute. Support for GRAPEX was provided by the NASA Applied 
Sciences Program Water Resources Application Area (Grant No. 
NNH17AE39I) and the USDA Agricultural Research Service. USDA 
is an equal opportunity provider and employer.

Declarations 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alfieri JG, Kustas WP, Prueger JH, McKee LG, Hipps LE, Gao F 
(2019) A multi-year intercomparison of micrometeorological 
observations at adjacent vineyards in California’s Central Valley 
during GRAPEX. Irrig Sci 37(3):345–357

Allen RG, Pereira LS (2009) Estimating crop coefficients from fraction 
of ground cover and height. Irrig Sci 28(1):17–34

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspi-
ration - guidelines for computing crop water requirements FAO 
irrigation and drainage paper No 56 U.N. 56 food & agriculture 
organization. Fao 300(9):DO51909

Allen RG, Walter IA, Elliott RL, Howell TA, Itenfisu D, Jensen ME, 
Snyder RL (2005) The ASCE Standardized Reference Evapotran-
spiration Equation. American Society of Civil Engineers, Reston 
VA

Anderson RG, Ferreira JF, Jenkins DL, da Silva Dias N, Suarez DL 
(2017) Incorporating field wind data to improve crop evapo-
transpiration parameterization in heterogeneous regions. Irrig 
Sci 35(6):533–547

Bhattarai N, D’Urso G, Kustas WP, Bambach N, Knipper K, Ander-
son MC, Gao F, Alsina M, Aboutalebi M, McKee LG, Alfieri 
JG, McElrone A, Prueger JH, Belfiore O (2022) Influence of 
modeling domain and meteorological forcing data on spectral-
based Shuttleworth-Wallace derived daily evapotranspiration 
estimates using Sentinel-2. Irrig Sci. https:// doi. org/ 10. 1007/ 
s00271- 022- 00768-0

Carrasco-Benavides M, Ortega-Farías S, Lagos LO, Kleissl J, Morales 
L, Poblete-Echeverría C, Allen RG (2012) Crop coefficients and 
actual evapotranspiration of a drip-irrigated Merlot vineyard using 
multispectral satellite images. Irrig Sci 30(6):485–497

Claverie M, Ju J, Masek J, Dungan J, Vermote E, Roger J, Skakun S, 
Justice C (2018) The harmonized landsat and sentinel-2 surface 
reflectance data set. Remote Sens Environ 219:145–161

D’Urso G, Bolognesi SF, Kustas WP, Knipper KR, Anderson MC, 
Alsina MM, Hain CR, Alfieri JG, Prueger JH, Gao F, McKee LG, 
De Michele C, McElrone AJ, Bambach N, Sanchez L, Belfiore 
OR (2021) Determining evapotranspiration by using combina-
tion equation models with sentinel-2 data and comparison with 
thermal-based energy balance in a California irrigated Vineyard. 
Remote Sens 13:3720. https:// doi. org/ 10. 3390/ rs131 83720

Diak GR, Gautier C (1983) Improvements to a simple physical model 
for estimating insolation from GOES data. J Climate Appl Mete-
orol 22:505–508

Entekhabi D, Reichle RE, Koster RD (2009) Performance metrics for 
soil moisture retrievals and application requirements. J Hydrome-
teorol 11(3):832–840. https:// doi. org/ 10. 1175/ 2010J HM1223.1

Foster T, Mieno T, Brozović N (2020) Satellite-based monitoring 
of irrigation water use: assessing measurement errors and their 
implications for agricultural water management policy. Water Res 
Res. https:// doi. org/ 10. 1029/ 2020W R0283 78

Gautier C, Diak GR, Masse S (1980) A simple physical model to esti-
mate incident solar radiation at the surface from GOES satellite 
data. J Appl Meteorol 19(8):1005–1012

Ha W, Gowda PH, Oommen T, Marek TH, Porter DO, Howell TA 
(2011) Spatial interpolation of daily reference evapotranspira-
tion in the Texas high plains. In World Environmental and Water 
Resources Congress: Bearing Knowledge for Sustainability. pp. 
2796–2804.

Hart QJ, Brugnach M, Temesgen B, Rueda C, Ustin S, Frame K (2009) 
Daily reference evapotranspiration for California using satellite 
imagery and weather station measurement interpolation. Civ Eng 
Environ Syst 26(1):19–33

https://doi.org/10.1007/s00271-022-00808-9
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00271-022-00768-0
https://doi.org/10.1007/s00271-022-00768-0
https://doi.org/10.3390/rs13183720
https://doi.org/10.1175/2010JHM1223.1
https://doi.org/10.1029/2020WR028378


530 Irrigation Science (2022) 40:515–530

1 3

Johnson L, Trout T (2012) Satellite NDVI assisted monitoring of veg-
etable crop evapotranspiration in California’s San Joaquin Valley. 
Rem Sens 4:439–455. https:// doi. org/ 10. 3390/ rs402 0439

Knipper KR, Kustas WP, Anderson MC, Alfieri JG, Prueger JH, 
Hain CR, Gao F, Yang Y, McKee LG, Nieto H, Hipps LE (2019) 
Evapotranspiration estimates derived using thermal-based satel-
lite remote sensing and data fusion for irrigation management in 
California vineyards. Irrig Sci 37(3):431–449

Knipper KR, Kustas WP, Anderson MC, Nieto H, Alfieri JG, Prueger 
JH, Hain CR, Gao F, McKee LG, Alsina MM, Sanchez L (2020) 
Using high-spatiotemporal thermal satellite ET retrievals to moni-
tor water use over California vineyards of different climate, vine 
variety and trellis design. Agric Water Manag 241:106361

Kustas WP, Anderson MC, Alfieri JG, Knipper K, Torres-Rua A, Parry 
CK, Nieto H, Agam N, White WA, Gao F, McKee L (2018) The 
grape remote sensing atmospheric profile and evapotranspiration 
experiment. Bull Am Meteor Soc 99(9):1791–1812

Mauder M, Cuntz M, Drüe C et al (2013) A strategy for quality and 
uncertainty assessment of long-term eddy-covariance measure-
ments. Agricul Meteorol 169:122–135. https:// doi. org/ 10. 1016/j. 
agrfo rmet. 2012. 09. 006

Melton F, Johnson L, Lund C, Pierce L, Michaelis A, Hiatt S, Guzman 
A, Adhikari D, Purdy A, Rosevelt C, Votava P, Trout T, Temes-
gen B, Frame K, Sheffner E, Nemani R (2012) Satellite irrigation 
management support with the terrestrial observation and predic-
tion system: an operational framework for integration of satellite 
and surface observations to support improvements in agricultural 
water resource management. IEEE. J Sel Top Appl Earth Obs 
Remote Sens 5:1709–1721

Melton FS, Huntington J, Grimm R, Herring J, Hall M, Rollison D, 
Erickson T, Allen R, Anderson M, Fisher JB, Kilic A et al (2021) 
OpenET: Filling a critical data gap in water management for the 
western united states. J Am Water Res Assoc. https:// doi. org/ 10. 
1111/ 1752- 1688. 12956

NOAA Office of Satellite and Product Operations (1994) NOAA Geo-
stationary Operational Environmental Satellite (GOES) I-M and 
N-P Series Imager Data. NOAA Natl Cent Env Inf. https:// doi. 
org/ 10. 25921/ Z9JQ- K976

Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, 
Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P (2020) 
The FLUXNET2015 dataset and the ONEFlux processing pipeline 
for eddy covariance data. Sci Data 7(1):1–27

Patrignani A, Mohankumar N, Redmond C, Santos EA, Knapp M 
(2020) Optimizing the spatial configuration of mesoscale envi-
ronmental monitoring networks using a geometric approach. J 
Atmos Ocean Tech 37(5):943–956

Pelosi A, Chirico GB (2021) Regional assessment of daily reference 
evapotranspiration: can ground observations be replaced by blend-
ing ERA5-Land meteorological reanalysis and CM-SAF satellite-
based radiation data? Agric Water Manag 258:107169

Pereira LS, Paredes P, Melton F, Johnson L, Wang T, López-Urrea 
R, Cancela JJ, Allen RG (2020) Prediction of crop coefficients 
from fraction of ground cover and height background and valida-
tion using ground and remote sensing data. Agric Water Manag 
241:106197

Semmens KA, Anderson MC, Kustas WP, Gao F, Alfieri JG, McKee 
L, Prueger JH, Hain CR, Cammalleri C, Yang Y, Xia T (2016) 
Monitoring daily evapotranspiration over two California vineyards 
using Landsat 8 in a multi-sensor data fusion approach. Remote 
Sens Environ 185:155–170

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cour-
napeau D et al (2020) SciPy 1.0: Fundamental Algorithms for 
Scientific Computing in Python. Nat Methods 17:261–72. https:// 
doi. org/ 10. 1002/ qj. 49710 644707

Volk J, Huntington J, Allen R, Melton F, Anderson M, Kilic A (2021) 
Flux-data-qaqc: a python package for energy balance closure and 
post-processing of eddy flux data. J Open Source Softw 6:3418

Walter IA, Allen RG, Elliott R, Jensen ME, Itenfisu D (2000) ASCE's 
Standardized Reference Evapotranspiration Equation. Proceed-
ings, Watershed Management and Operations Management Con-
ference, Fort Collins CO. American Society of Civil Engineers.

Webb EK, Pearman GI, Leuning R (1980) Correction of flux measure-
ments for density effects due to heat and water vapour transfer. 
Q J Royal Meteorol Soc 106:85–100. https:// doi. org/ 10. 1002/ qj. 
49710 644707

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/rs4020439
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1111/1752-1688.12956
https://doi.org/10.1111/1752-1688.12956
https://doi.org/10.25921/Z9JQ-K976
https://doi.org/10.25921/Z9JQ-K976
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1002/qj.49710644707
https://doi.org/10.1002/qj.49710644707

	Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS
	Recommended Citation
	Authors

	Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS
	Abstract
	Introduction
	Methods
	In situ ET data
	ETo estimation from in situ measurements
	Spatial CIMIS ETo data product
	SIMS basal crop coefficient estimation
	Validation

	Results
	Error from estimated ETo
	Error from SIMS Kcb

	Discussion
	References


