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Abstract The multi‐to hyperspectral evolution of satellite ocean color sensors is anticipated to enable
satellite‐based identification of phytoplankton biodiversity, a key factor in aquatic ecosystem functioning and
upper ocean biogeochemistry. In this work the bio‐optical Phytoplankton Detection with Optics (PHYDOTax)
approach for deriving taxonomic (class‐level) phytoplankton community composition (PCC, e.g. diatoms,
dinoflagellates) from hyperspectral information is evaluated in the Chesapeake Bay estuary on the U.S. East
Coast. PHYDOTax is among relatively few optical‐based PCC differentiation approaches available for optically
complex waters, but it has not yet been evaluated beyond the California coastal regime where it was developed.
Study goals include: (a) testing the approach in a turbid estuary including novel incorporation of colored
dissolved organic matter (CDOM) and non‐algal particles (NAP), and (b) performance assessment with both
synthetic mixture and field data sets. Algorithm skill was robust on synthetic mixtures. Using field data,
cryptophyte and/or cyanophyte phytoplankton groups were predicted, but diatom and dinoflagellate detection
was not conclusive. For one field data set, small but significant improvements were observed in predicted PCC
groups when tested with incorporation of CDOM and NAP into the algorithm, but not for the second field data
set. Sensitivity to three hyperspectral‐relevant spectral resolutions (1, 5, 10 nm) was low for all field and
synthetic data. PHYDOTax can identify some phytoplankton groups in the estuary using hyperspectral, field‐
collected measurements, but validation‐quality data with broad temporospatial coverage are needed to
determine whether the approach is robust enough for science applications.

1. Introduction
As the synoptic‐scale of multispectral‐based ocean color observations from space have revolutionized our un-
derstanding of global ocean phytoplankton distribution and related upper ocean processes over the past few
decades, a new generation of current and future hyperspectral satellite sensors show potential for another leap
forward in remote sensing capabilities by enabling global‐scale measurements of phytoplankton diversity
(Dierssen et al., 2023; Werdell et al., 2019). Phytoplankton are single‐celled, photosynthesizing microalgae
ubiquitous in the sunlit upper layer of aquatic environments worldwide, hence directly influence both ocean food
webs and global climate. Where chlorophyll‐a (chl‐a) concentration derived from multispectral satellite infor-
mation estimates total phytoplankton community abundance and distribution, hyperspectral remote sensing ob-
servations may improve the ability to identify which phytoplankton types comprise that total (Cetinić et al., 2024).
Partitioning of phytoplankton community composition (PCC) may be based on cell size, ecological function, or
taxonomy (Sathyendranath, 2014). Shifts in PCC fractions reflect changes in ecological and environmental
factors such as water column nutrient status (Behrenfeld et al., 2021; Glibert, 2016), energy available to higher
trophic levels (e.g., how much, and which, fish could be in area), and upper ocean biogeochemistry (e.g., ocean
carbon uptake and sequestration). PCC from hyperspectral satellite sensors has the potential to advance our
understanding of, and ability to quantify, such processes at a global scale.

Unlike the relatively optically clear open ocean, far from coasts with low phytoplankton concentrations, coastal
waters are optically complex. At the interface of the land and sea, multiple types of optically active constituents
such as pigments and sediments from terrestrial runoff and mixing processes, in addition to phytoplankton, may
be present in coastal waters at high concentrations. Several approaches to optical identification of phytoplankton
diversity using hyperspectral information have been demonstrated (Bracher et al., 2017; Chase et al., 2017;
Kramer et al., 2022; Mouw et al., 2017; Sathyendranath, 2014), but most are not applicable to coastal regimes.
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PHYtoplankton Detection with Optics (PHYDOTax) is a semi‐analytical, bio‐optical algorithm unique among
PCC‐discrimination approaches as it was developed for optically complex waters (Palacios, 2012). Initial
development in California's Monterey Bay showed that PHYDOTax successfully partitioned PCC proportions,
specifically taxonomic, class‐level groups, and showed promise for evaluation in other optically complex regimes
(Palacios, 2012).

In this work the theoretical framework of PHYDOTax is evaluated in the Chesapeake Bay, informing efforts to
develop bio‐optical‐based PCC monitoring tools for turbid estuarine waters. As a region which hosts diverse and
economically important ecosystem services to the Mid‐Atlantic United States, including high‐value fisheries and
recreation which are impacted by phytoplankton‐related issues such as eutrophication and harmful algal blooms
(HABs; Wolny et al., 2020), this region exemplifies coastal zones worldwide where stakeholders have a need for
synoptic PCC data products (Bracher et al., 2017). As a shallow, semi‐enclosed estuary draining a 166,534 km2

watershed, this tidally dynamic bay is optically complex (Aurin et al., 2013; Tzortziou et al., 2006, 2007): its
waters include optically active constituents termed colored dissolved organic matter (CDOM) and non‐algal
particles (NAP; e.g. sediment) that do not covary with phytoplankton abundance and can be present at high
concentrations. CDOM and NAP can contribute non‐trivially to optical measurements (Mobley et al., 2004),
complicating accurate optical‐based PCC identification (Mouw et al., 2015). As the first effort to evaluate
PHYDOTax in an optically complex estuary and to incorporate CDOM and NAP, this work tests the adaptive
capabilities of PHYDOTax to a new water body.

1.1. Algorithm Background

Two terms are central to the PHYDOTax approach. First, spectral remote sensing reflectance (Rrs(λ)) as described
in this study is a measurement of “ocean color,” or light emitted from the ocean in the visible region of the
electromagnetic spectrum, and is applied as a descriptor of the optically active constituents within a water body.
Rrs(λ), referred to hereafter as Rrs, is derived from water leaving radiance measured just above the sea surface,
Lw(λ). Depending on measurement approach, Lw(λ) may be measured directly or extrapolated from upwelling
radiance, Lu(λ), which is instead measured just below the surface. Lw(λ) is then normalized to downwelling
irradiance, Ed(λ), measured just above the sea surface yielding the general Equation 1.

Rrs(λ) =
Lw (λ)
Ed (λ)

(1)

Second, theMoore‐Penrose inverse is a commonly used approach to solve a system of linear equations that lacks a
solution. It is distinctive among other generalized inverses (also called pseudo‐inverses) of matrices in that it
yields a least squares best fit solution for any finite (square or rectangular) matrix of real or complex numbers
(Ben‐Israel & Greville, 2003). Required inputs are an “unknown” matrix to be solved and “known” matrix of
components that are anticipated to comprise the unknown. As an over determined solution the knownmatrix must
have more wavelengths (rows) than spectral components (columns).

2. Data and Methods
2.1. PHYDOTax: Taxonomic PCC From Remote Sensing Reflectance

The PHYDOTax framework consists of the following as summarized from Palacios, 2012 and visually illustrated
in Figure S1 in Supporting Information S1. The “unknown” that PCC is derived from is an Rrs spectrum that can
be radiometrically measured at a discrete location via handheld, shipboard, or moored platforms, or retrieved by
airborne or satellite sensors. The “known” is a library of individual, modeled Rrs spectra that collectively
represent the phytoplankton classes and non‐algal constituents, that is, the bulk optical components and not
specific genera or species, that are expected to be in the water parcel represented by the Rrs measurement. The
known and unknown are normalized and subset (described in next paragraph) to yield the signature library matrix,
S, and unknown matrix, u, respectively. Matrix algebra then decomposes u into constituent parts as represented
by S according to Equations 2–4.

The algorithm can be described as the solution for a matrix of coefficients, m (Equation 2):

u = S · m (2)
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Solving for m re‐arranges the equation such that m is the dot product of the inverse matrix of S and u (Equation 3):

m = S− 1 · u (3)

S is a non‐square matrix, so a pseudo‐inverse (Moore‐Penrose inverse) of S is used (Equation 4):

m = S+ · u (4)

Equation 4 outputs a matrix of coefficients for each of the spectral signatures in S; the sum of the coefficients
equals 1. Output coefficients for the individual phytoplankton spectra were first summed for each class. For
example, the coefficients of two diatom genera in m were summed to represent a total diatom coefficient. This
was repeated for the dinoflagellate, cyanobacteria, cryptophyte, “other” phytoplankton (chlor-
ophyte + haptophyte; a bin of more rarely observed taxa), and binned non algal (CDOM + NAP) components
(Table 1a and Figures 1a–1g). Each class‐level coefficient was then normalized to the sum of all phytoplankton
coefficients, yielding PCC proportions for each phytoplankton group (diatoms, dinoflagellates, cryptophytes,
cyanophytes, and “other” phytoplankton).

PHYDOTax algorithm settings include the number and type of signatures in S as well as how S and u are
normalized and subset prior to application of the algorithm. Normalization is an approach to standardizing the
variability in spectral magnitude attributed to different concentrations of optically active constituents for inter-
comparison. Subsetting, or choosing a minimum, maximum, and spectral resolution value for the wavelengths of,
S and u defines the wavelengths at which the Rrs values are input into the algorithm (see also Section 2.2.3).

Table 1
Constituents of (a) PHYDOTax Rrs Library and (b) CHEMTAX Input Matrices Grouped by Classes and Non Algal Types (far Left Column)

(a) PHYDOTax remote sensing reflectance library
components (b) CHEMTAX components and identifying pigments

Component Groups
Genus, species of phytoplankton or type of non‐algal

component
Pigment

grouping typee
Diagnostic
pigmentd,e

Characteristic pigment
suitesd, e

Diatom Thalissiosira sp.a DIAT‐1 – Chl‐a, Chl‐c1, Chl‐c2f,
Fucoxanthin (Fuco)Skeletonema sp.a

Dinoflagellates Alexandrium catenellaa DINO‐1 Peridinin
(Peri)

Chl‐a, Chl‐c2f

Ceratium sp.a

Cryptophyte Rhodomonas sp.a, b CRYPTO Alloxanthin
(Allo)

Chl‐a, Chl‐c2f

C. fragilaropsisa

Cyanophyte, (common name
cyanobacteria, blue‐green algae)

Synechococcus sp.a CYANO‐2 – Chl‐a, Zeaxanthin (Zea)

Generic phycocyanin‐rich pico‐phytoplaknton (average of
Synechocystis & Anacystis marina)a,b

Haptophyte, (common name golden
brown algae)

Isochrysis galbanaa HAPTO‐8 – Chl‐a, Chl‐c3

Pavlova lutheria,b

Chlorophyte, (common name green
algae)

Dunaliella sp.a CHLORO‐1 – Total Chl‐b, Zeaxanthin,
Lutein (Lut)

Prasinophyte, (green algae) – PRASINO‐3 Prasinoxan‐
thin (Pras)

Total Chl‐b, Lutein, Chl‐a

Non algal components Colored dissolved organic matter (CDOM)c – – –

Non algal particles (NAP), brown earthc – – –

Note. Column 1 of (b) is CHEMTAX pigment grouping types from Jeffrey et al., 2012: diatoms (DIAT‐1), dinoflagellates (DINO‐1), cryptophytes (CRYPTO),
cyanobacteria (CYANO‐2), chlorophytes (CHLORO‐1), prasinophytes (PRAS‐3), haptophytes (HAPTO‐8). Columns 2 and 3 in (b) show the Diagnostic Pigments and
Characteristic Pigments Suites applied as identifiers (Jeffrey et al., 2012, Wright & Jeffrey, 2006a, 2006b) for those groups. Chl‐a, ‐b, ‐c1, and ‐c2 are abbreviations for
chlorophylls a, b, c1, and c2. See also Text S1 in Supporting Information S1. a(Palacios, 2012). b(Stramski et al., 2001) cultures and IOPs. c(Dierssen et al., 2006).
d(Jeffrey, 2006). e(Jeffrey, 2012). fAvailable in field pigment data as combined Chl‐c1 + Chl‐c2.
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Rrs spectral library: The list of spectra within the Rrs signature library (Table 1a, Figure 1) were determined
according to: (a) Rrs signatures available from previous work; and (b) the bulk, optically active groups (e.g.,
phytoplankton classes, non‐algal constituents) that were anticipated to be present in the water parcel being
measured with Rrs (Table 1a, first column). The Rrs signatures were modeled for each phytoplankton type from
lab‐measured inherent optical properties (IOPs) of monocultures, or modeled IOPs when lab‐based IOPs were not
available, using Hydrolight™ software as described in Palacios, 2012; Stramski et al., 2001. CDOM and NAP Rrs
signatures were also modeled with Hydrolight™ from their IOPs (Dierssen et al., 2006).

Figure 1. Spectral remote sensing reflectance (Rrs) signature library. Includes phytoplankton groups (a) dinoflagellates,
(b) diatoms, (c) cryptophytes, (d) cyanophytes, (e) haptophytes, and (f) chlorophytes, and (g) the non‐algal components
colored dissolved organic matter (CDOM, bold line) and non‐algal particles (NAP, thin line). Line colors are groupings by
class as shown in legend. Line styles indicate different types within each group (Table 1a). Y‐axes are units of Rrs for plots
(a–g). Spectra in panels (b, d) with dashed lines have values on a secondary, dashed y‐axis. Plot (h) is an example of the
signature library components (a–g) after being normalized and subset for PHYDOTax runs at 10 nm spectral resolution from
410 to 675 nm. Plot (h) y‐axis is Rrs normalized to the spectral maxima below 675 nm. Vertical lines illustrate the 10 nm
increments input into algorithm; this was varied at 1 and 5 nm for spectral sensitivity testing (Table 2; Figure 5, Figures S2
and S3 in Supporting Information S1).
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2.2. Data Sets

2.2.1. Synthetic Remote Sensing Reflectance Mixtures for Algorithm Testing

Expanding on previous methods for testing PHYDOTax on synthetic mixtures (Palacios, 2012), synthetic mix-
tures in this work were composed to investigate algorithm skill given differing: (a) spectral resolution and (b)
number of constituents in synthetic Rrs mixtures. The number, c, of constituents, that is, Rrs signatures, used to
create the mixtures differentiated the data sets where c ranged from 2 to 18 in increments of two for a total of nine
data sets. Individual Rrs mixtures were created by randomly choosing c Rrs signatures, normalizing each to its
maximum value, then summing them. As such the proportional composition of each mixture was known and
recorded for statistical testing. This was repeated 500 times creating 500 mixtures in each of the nine data sets. Rrs
signatures from Table 1 plus 7 additional, modeled and approximated, phytoplankton and non algal signatures
(Table S1 in Supporting Information S1) were used to create the mixtures.

2.2.2. Field Data and Area of Study

Chesapeake Bay field data were downloaded from NASA's SeaWiFS Bio‐optical Archive and Storage System
(SeaBASS, https://seabass.gsfc.nasa.gov), a standardized system for archiving and distributing in situ data
collected during satellite ocean color field validation efforts (Werdell et al., 2003). All instances of time‐ and
location‐coincident, surface‐collected, shipboard Rrs and phytoplankton pigment concentration data from the
Chesapeake Bay were downloaded. Only samples from the mainstem bay region, not the tidal tributaries, were
included. The mainstem spans ∼320 km north to south from its primary freshwater input, the Susquehanna River,
to its marine endmember, the Atlantic Ocean. The tidal tributaries are the tidally‐influenced portions of the rivers
entering the Bay. Data from 2 cruises detailed below fulfilled the requirements above.

Shipboard Rrs and pigment data: Cruise 1 and 2 sampling covered the mid to northern mainstem of the Ches-
apeake Bay (Figure 2a) during October 13–22, 2009 and July 11–16, 2011, respectively (Figures 2b and 2c), with
multiple sampling efforts per day. Cruise 1 was conducted by the Naval Research Lab (SeaBASS, 2009). Cruise 2
(SeaBASS, 2011) was the shipboard component of broad field efforts in support of NASA's GEOstationary
Coastal and Air Pollution Events (GEO‐CAPE) mission (Fishman et al., 2012). Phytoplankton pigments were
collected by filtering a known volume of water onto glass fiber filters, which were immediately stored in
aluminum foil pouches and placed in liquid nitrogen aboard the ship, then stored at − 80°C in the lab until analysis.
Pigment concentrations were determined with high performance liquid chromatography following Van Heukelem
&Thomas, 2001; Hooker et al., 2005. Shipboard Rrs collection and processing methods for Cruise 1 data were not

Figure 2. Area of study. (a) Locations of ship sampling in lower oligohaline and upper mesohaline regions of the mainstem
Chesapeake Bay. Blue circles and green square symbols indicate Cruises 1 and 2, respectively. Plot (b) shows the latitude of
each Cruise 1 sample collected (y axis) during 6 dates in October 2009 (x axis). Salinity values were not available for these
points, but latitude from north to south, from the primary river input toward the Atlantic Ocean, is a rough approximation of
lower to higher salinity. Plot (c) shows Cruise 2 salinity values for each sample collected (y axis) during 7 dates (x axis) in
July of 2011. Colors in panels (b, c) indicate log10(chla).
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available (SeaBASS, 2009). For Cruise 2, radiometric measurements were collected with a custom‐built, hand‐
held, above water SPECTRIX SPX300 spectrometer equipped with an extension tube permitting a 10° field‐of‐
view. These data were collected, processed, and glint‐corrected to yield Rrs following methods in (Lee
et al., 1997, 1999, Zhang et al., 2018), and the data repository documentation (SeaBASS, 2011).

CHEMTAX, Taxonomic PCC from pigment concentrations: CHEMical TAXonomy, or CHEMTAX, was
downloaded from the Australian Antarctic Data Center (Wright, 2017). This software derives the percentage of
each phytoplankton class present using identifying ratios of marker carotenoid pigment concentrations to total
chl‐a concentration, termed here marker:chla ratios (Mackey et al., 1996). Briefly, CHEMTAX methods include
first building an input matrix of marker:chl‐a ratios for the phytoplankton classes anticipated to be present in the
sample (classes and identifying pigments in Table 1b), optimization of this matrix, then factorization of the
pigment data. Resulting class‐level proportions are reported as percent of total chl‐a and used to evaluate
PHYDOTax‐based PCC proportions. Detailed CHEMTAX methods and input matrices reported in Text S1 and
Table S2 in Supporting Information S1.

2.2.3. Algorithm Performance and Sensitivity Analysis

Algorithm runs: PHYDOTax was run by applying the settings in Section 2.1 to synthetic and field data sets, then
output was tested against either the (a) PCC proportions of the synthetic Rrs mixtures, or (b) PCC proportions
determined by CHEMTAX from coincident, in‐water pigment concentrations, respectively. The spectral range
and resolution for each Rrs spectra in both the library, S, and the unknown measurement, u, were subset from 410
to 675 nm and normalized to their individual maximum value within that range. Sensitivity to spectral resolution
was evaluated by running PHYDOTax at 3 settings relevant to current and planned hyperspectral NASA mis-
sions: 1 nm, the highest resolution available from the data; 5 nm, the bandwidth for NASA's Plankton Aerosol
Cloud ocean Ecosystem (PACE) Ocean Color Imager (Werdell et al., 2019); and 10 nm, the anticipated resolution
of both the optical spectrometer on NASA's upcoming Surface Biology and Geology mission (SBG; Stavros
et al., 2023) and the selected Earth Venture instrument, the Geosynchronous Littoral Imaging and Monitoring
Radiometer (GLIMR, https://eos.unh.edu/glimr/about). For field data, runs were conducted with and without
CDOM and NAP signature input to test sensitivity to their inclusion.

Statistical tests for synthetic mixture data sets: PHYDOTax‐predicted PCC proportions (y) versus known pro-
portions used to create each synthetic mixture (x) were tested. As output proportion values within each data set
(500 in each) were normally distributed, Pearson's test was used to describe PHYDOTax performance. A critical
value of p < 0.05 was set for rejecting the null hypothesis that x and y are not related and accepting the alternative
hypothesis they are significantly correlated.

Statistical tests for field data sets: Proportions for the four phytoplankton classes most frequently observed in the
mainstem Chesapeake Bay and typically responsible for the majority of bloom biomass (Adolf et al., 2006;
Harding et al., 2015) were the focus of analysis: diatoms, dinoflagellates, cryptophytes, and cyanobacteria. More
rarely observed chlorophytes, prasinophytes, and haptophytes (Table 1a) were pooled and termed “other
phytoplankton.” The output non algal coefficients could not be evaluated as sufficient field measurements were
not available. PHYDOTax‐predicted PCC proportions (y) versus in water PCC (x) were tested for the four groups
with Spearman Rank Correlation (SRC), a non‐parametric analog of Pearson's correlation that is appropriate for
testing these non‐normally distributed, continuous data. Here the SRC coefficient, ρs, is applied to describe
whether the populations x and y are monotonically increasing together. This occurs when larger x values are on
average associated with larger y values, or positively related (0 < ρs ≤ 1). Otherwise, if − 1 ≤ ρs < 0 values were
monotonically decreasing together, or negatively related, and not a successful prediction. A p value of <0.05 was
set for rejecting the null hypothesis that x and y are not monotonically increasing (H0: when ρs ≤ 0) and accepting
the alternative hypothesis that they are (H1: ρs > 0). Due to small sample size, critical values for ρs were also set as
a function of n samples for each data set. The following ρs values yielded 80% power, where power is the percent
likelihood that the SRC test is detecting an effect when one actually exists, for a SRC two tailed t‐test with a
significance level of p < 0.05 (May & Looney, 2020): ρs > 0.55 for Cruise 1 (n = 25); and: ρs > 0.65 for Cruise 2
(n= 32). For example, if a SRC test of PHYDOTax‐predicted diatom proportions versus the in‐water proportions
yielded both ρs > 0.65 and p < 0.05, the relationship would be significantly, positively related and a successful
PHYDOTax result, but a result with ρs < 0.65 and p < 0.05 would not.
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Field PCC results above were further interpreted using expected seasonal averages and regression plots. For both
data sets, the mean, standard deviation and standard error were calculated and then compared to literature‐based
phenological PCC for the region. This served as a first order test of whether the CHEMTAX and PHYDOTax
PCC fractions were within anticipated ranges for each cruise. Regression plots of the data that were tested with
SRC visually informed performance differences with and without CDOM and NAP.

2.3. Evaluative PCC Maps Derived From Hyperspectral Remote Sensing

Airborne data: Hyperspectral data were collected via an Airborne Compact Atmospheric Mapper (ACAM) on
board a NASA UC‐12 aircraft on 20 July 2011. Airborne Compact Atmospheric Mapper data collection and
processing are fully described in (Zhang et al., 2018) and references therein. Briefly, the ACAM setup included
the Ocean Color (OC, 460–900 nm range) and Air Quality (AQ, 300–520 nm) spectrometers. Collection was at a
flight altitude of ∼8.5 km with ∼0.75 km cross track and ∼0.5 km along‐track spatial resolution. Atmospheric
correction is described in (Zhang et al., 2018) and was conducted using the traditional “black pixel” approach
(Gordon &Wang, 1994) with two adjustments. First, due to the low altitude of the plane, radiative transfer‐based
look‐up‐tables (LUTs) customized for the Chesapeake Bay were created in place of the standard LUTs used for
satellite or higher altitude airborne imagery. Second, non‐zero Rrs observed in the near‐infrared (NIR) due to
turbid Bay waters was addressed with an iterative, 2‐band NIR (750 and 865 nm) approach (Stumpf et al., 2003).
PHYDOTax was run on this swath at 10 nm spectral resolution.

Two satellite‐based physical conditions were also obtained for 20 July 2011 in the northern Chesapeake: sea
surface temperature (SST) and Kd (490), the diffuse attenuation coefficient for downwelling irradiance at 490 nm
in m− 1, a metric of water clarity. Multi‐scale Ultra‐high Resolution (MUR) SST data (v04.1, Global, 0.01°
resolution) were downloaded from NOAA Coastwatch ERDDAP (https://coastwatch.pfeg.noaa.gov/erddap).
This product is created by fusing and interpolating SST data from multiple platforms each day (e.g., nighttime
infrared & microwave‐based satellite SST, in situ SST; Chin et al., 2017). Kd (490) data were downloaded from
NOAA CoastWatch East Coast Node (https://www.star.nesdis.noaa.gov/pub/socd1/ecn/data/modis/k490noaa/
daily/cd/) and was derived fromMODIS Aqua 1 km resolution data according to methods of (Wang et al., 2009).

3. Results and Discussion
3.1. Algorithm Performance on Synthetic Mixtures

Testing algorithm skill given a variety of controlled data sets showed robust performance. All optical groups of
interest were predicted in all runs (Figure 3, p << 0.05). Cryptophyte and cyanophyte groups were detected with
the highest accuracy, irrespective of the number of components, c, in the Rrs mixtures suggesting their spectral
shapes are distinguished better than the others, discussed further in Section 3.3.2. Generally, the more complex
the mixtures (c > 8), the lower the correlation coefficients for that data set. Skill at differentiating diatom and
haptophyte groups was the lowest of all runs when c > 8 (Figure 3, darker blue regions), perhaps due to their
similar spectral shape (Figures 1b and 1e). Little sensitivity to spectral resolution is evident (Figure 3, gray bar on
x axis), suggesting PHYDOTax functions well at all hyperspectral resolutions on these data.

Caution is necessary when interpreting these results relative to the algorithm test results on field data below.
While synthetic and field PHYDOTax runs use the same input library, algorithm, and settings, their data sets are
not related. Synthetic Rrs mixtures are not intended to approximate a full radiative transfer model of the various
optical constituents in the Chesapeake Bay or approximate algorithm performance in the field. Rather these tests
inform algorithm skill given differing spectral resolution and mixture complexities, aiding interpretation of field‐
based results.

3.2. Customization of PHYDOTax for Application to Field Data

A comparison of the methods in the Monterey Bay study (MBS; Palacios, 2012) and this Chesapeake Bay study
(CBS) illustrates customizing PHYDOTax settings based on region, study question, and characteristics of the data
sets being applied. For the MBS, S included 13 phytoplankton spectral signatures. Most phytoplankton types in
the spectral library are cosmopolitan genera or species. Two signatures represented bloom‐forming phyto-
plankton types associated with HABs in the region (Pseudo‐nitzschia spp., Akashiwo sanguinea; Palacios, 2012).
The other phytoplankton signature types were determined by data availability, specifically which species were
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available as lab cultures as well as data available from previous work (Stramski et al., 2001). As this region is a
deep, open bay in a productive coastal eastern boundary upwelling regime, CDOM and NAP from terrestrial
sources was presumed to be small and not included in S. Both S and u were normalized to the spectral peak of chl‐
a fluorescence above 673 nm then subset to 455–675 nm at 10 nm spectral resolution. The 410–455 nm spectral
region was excluded due to instrument noise in imaging sensor data applied in the MBS (Palacios, 2012; Palacios
et al., 2015).

In contrast, for the CBS, S included 11 spectral signatures selected from the MBS library plus two signatures to
approximate CDOM and NAP (Figures 1a–1g; Table 1a). Compared to the MBS library, the HAB‐related
Pseudo‐nitzschia spp. and Akashiwo sanguinea signatures were excluded as they are not known to bloom in
high concentrations, or attributable to HAB events, in the Chesapeake. Also excluded was the coccolithophorid
haptophyte Emilliania huxleyi due to its unique, highly‐scattering Rrs signature and no evidence it blooms
commonly in the Bay. The remaining 11 Rrs signatures were applied to collectively represent the optical features
of the anticipated classes as well as CDOM and NAP in the region, these assumptions discussed in Section 3.4.
Spectra in S and u were subset to a larger spectral range than in the MBS, 410–675 nm, and then normalized to
their individual maxima as neither CDOM nor NAP spectra exhibit the chl‐a peak that was applied to normalizing
in the MBS. These similarities and differences of CBS and MBS methods demonstrate adjustment of the algo-
rithm in differing studies and data sets.

3.3. Algorithm Performance on Field Data

PHYDOTax PCC predictions were tested against coincident, in water PCC with field data sets in the northern
Chesapeake (Figure 2). Both cruises had similar, log‐normally distributed ranges of chl‐a values (Figures 2b and
2c: Cruise 1, 3.53–40.0 mg m− 3; Cruise 2, 5.38–57.8 mg m− 3). PHYDOTax successfully predicted 2 of the 4
phytoplankton classes of interest: cyanophytes and cryptophytes; Table 2. For Cruise 1 runs with CDOM and
NAP included in the spectral library, cryptophytes were detected by PHYDOTax at all 3 spectral resolutions
(Table 2a, ρs = 0.808–0.865, p << 0.05). With significant p values but correlation coefficients (ρs) just below
threshold, runs without CDOM and NAP did not quite meet detection criteria (Table 2a, ρs = 0.490–0.628,
p = 0.002–1.18 × 10− 4). For Cruise 2, irrespective of CDOM and NAP inclusion, cryptophytes were detected at

Figure 3. Results of PHYDOTax runs on synthetic Rrs mixtures. Clustered heatmap of Pearson correlation coefficients (colors) demonstrate significant positive
relationships for all classes (grouped columns) in all runs with varying numbers of components (rows) and all resolution settings (individual columns); p << 0.05 and
n = 500 for each run (i.e., each square): all runs were successful. Dendrograms at top and left side show hierarchical clustering of results according to similarity. Please
note the clustering defined the order of all rows and columns. Axes display how run settings differed: X axis, spectral resolution in nanometers (1, 5, and 10 nm, gray
bar) and name of optical group identified (diatom, cyanophyte, etc); Y axis, number of optically‐active constituents present in synthetic mixtures.
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all 3 spectral resolutions (Table 2b, ρs = 0.495–0.743, p << 0.05) as well as cyanophytes at 10 nm resolution
(Table 2b, ρs = 0.583–0.659, p << 0.05). Only Cruise 2 shows slight, but significant, spectral sensitivity for
cyanophytes with critical values met at 10 nm resolution but ρs values were just below the threshold for sig-
nificance at 1 and 5 nm (Table 2b). PHYDOTax exhibits low sensitivity for certain phytoplankton groups when
tested at different spectral resolutions. Sensitivity to non algal library components varied and is discussed in
Section 3.4.

For greater statistical confidence given sample sizes, PCC prediction was considered successful if critical values
set for both the p value and correlation coefficient, ρs, were satisfied. Across all spectral resolutions, some
cryptophytes in both cruises and all Cruise 2 cyanophyte runs had significant p values alongside positive, but too
low to be significant, ρs values. Detection of these groups in all runs may have been statistically significant if
sample size had been larger, but more data are needed to verify this.

3.3.1. Are PCC Estimates in Cruises 1 & 2 Reasonable Given Their Region/Season?

As both CHEMTAX and PHYDOTax apply an a priori set of input information to derive results, it is prudent to
perform an assessment of the output data using independent PCC data from the area to determine whether results
fall within a reasonable range. For CHEMTAX it is recommended to compare results against coincident cell count
based PCC proportions (Higgins et al., 2012; Lewitus et al., 2005; Wright, 2017). Instances of time‐space
coincident cell count and pigment concentration data from the field, however, are quite rare, including the
data sets in this study. Instead, seasonal mean PCC fractions based on long term pigment‐ and microscopy‐based
observations in the northern, mainstem Chesapeake Bay (Harding et al., 2015) were used as a measure of expected
class‐level PCC proportions against which field PCC values were compared. Cruises 1 and 2 were in fall and
summer, respectively, which have contrasting seasonal PCC useful for analysis.

Both CHEMTAX‐ and PHYDOTax‐based phytoplankton fractions generally agreed with seasonal expectations
(Figure 4, Table S4 in Supporting Information S1). Cruise 1 mean PCC (Figure 4a) was overall similar to ex-
pected fall mean PCC (Figure 4b) with diatoms as the largest proportion, cryptophytes second largest, and
comparatively low values for dinoflagellates and cyanophytes. For Cruise 2 no single group comprised >40% of
the total (Figure 4c), grossly matching the mixed summer assemblages seen in summer (Figure 4d) with an

Table 2
Spearman Rank Correlation Values for PHYDOTax‐Predicted Versus in Water Phytoplankton Community Composition Values at 3 Spectral Resolution Settings (1, 5,
and 10 nm) for Cruise 1 (a) and Cruise 2 (b)

1 nm resolution 5 nm resolution 10 nm resolution

no CDOM, NAP with CDOM, NAP no CDOM, NAP with CDOM, NAP no CDOM, NAP with CDOM, NAP

n ρs p ρs P ρs p ρs p ρs p ρs p

(a) Cruise #1–Spearman rank correlation values

Dinoflagellate 25 − 0.339 0.951 − 0.085 0.657 − 0.401 0.977 − 0.072 0.634 − 7.70E− 03 0.515 0.467 9.26E− 03

Diatom 25 0.275 0.0920 − 0.308 0.933 0.301 0.0720 − 0.155 0.770 0.148 0.239 − 0.149 0.762

Cryptophyte 25 0.628 3.91E− 04 0.828 1.58E−07 0.490 6.45E− 03 0.865 1.18E−08 0.557 0.002 0.808 5.06E−07

Cyanophyte 25 − 0.418 0.981 − 0.161 0.779 − 0.422 0.982 − 0.00692 0.513 − 0.363 0.963 − 0.431 0.984

(b) Cruise #2–Spearman rank correlation values

Dinoflagellate 32 − 0.104 0.715 − 0.319 0.962 − 0.0913 0.690 − 0.260 0.924 − 0.423 0.992 − 0.346 0.974

Diatom 32 0.354 0.0233 − 0.110 0.726 0.340 0.0285 0.0433 0.407 0.391 0.0134 − 0.107 0.720

Cryptophyte 32 0.582 0.000 0.737 7.60E−07 0.495 1.98E−03 0.743 5.46E−07 0.628 5.97E−05 0.647 3.14E−05

Cyanophyte 32 0.540 7.06E− 04 0.540 7.06E− 04 0.537 7.65E− 04 0.521 1.13E− 03 0.583 2.32E−04 0.659 2.07E−05

Note. The first column, n, is the number of samples. Whether colored dissolved organic matter (CDOM) and non algal particles (NAP) were included in the spectral
library is indicated in column headers. The SRC critical value of p < 0.05 was set to accept the alternative hypothesis that PHYDOTax‐based PCC was monotonically
increasing with predicted PCC. To account for the small sample sizes, critical values for the correlation coefficient, ρs, were also set as a condition for significance:
ρs > 0.65 (Cruise 1) or ρs > 0.55 (Cruise 2). Both thresholds are a function of n following (May & Looney, 2020). PHYDOTax correctly predicted the phytoplankton
group when both p and ρs thresholds for significance were met, indicated by bold text. Regression plots for results above are found in Figure 5 (10 nm spectral resolution
results), and Figures S2 and S3 in Supporting Information S1 (1 and 5 nm, respectively).
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important difference. In summer dinoflagellate and diatom fractions are, on average, roughly equal and slightly
more prevalent than cyanophytes and cryptophytes (Figure 4d), but PCC from Cruise 2 showed higher than
average cyanophyte proportions (Figure 4c). This difference is explained by regional and interannual deviation
from seasonal means due to hydrology (Adolf et al., 2006; Harding et al., 2015, 2019) and longer‐scale variability
in climate and nutrient enrichment (Harding et al., 2016) that can cause periods of high cyanobacterial dominance
(Adolf et al., 2006; Harding et al., 2015, 2019; Marshall et al., 2005; Paerl et al., 2006). This variability is not
captured by the long‐term seasonal means (Figure 4d). As there is agreement between the both Cruise 2 field‐
based PCC fractions (Figure 4c) and numerous cyanophytes were observed during this cruise (Zhang
et al., 2018), it is reasonable to conclude that both CHEMTAX and PHYDOTax were producing PCC values
representative of the in water conditions during Cruise 2 as well.

3.3.2. Spectral Shape, Phytoplankton Abundance, and Class Discrimination

Rrs data from Cruises 1 and 2 (Figures 4e and 4f) exhibit spectral shapes with absorption features similar to
predicted cryptophyte and cyanophyte groups (Figures 2c and 2d). Cryptophytes were detected best across the
two cruises (Table 2). Their spectra exhibit 3 unique troughs between ∼440 and 550 nm and a maxima shifted
toward 600 nm (Figure 1c), features plainly visible in the Cruise 1 Rrs spectra (Figure 4e). Cryptophytes were
among the smallest PCC fractions in the mixed Cruise 2 assemblage yet were still successfully predicted
(Table 2). Cruise 2 spectra Rrs also exhibit the cryptophyte features below ∼550 nm (Figure 4f), albeit at a much
smaller magnitude than Cruise 1 (Figure 4e). This spectral shape may permit their detection even when they are
present at a lower abundance. For Cruise 2 a unique trough at ∼625 nm in cyanophyte spectra (Figure 1d) due to
phycocyanin absorption, a pigment characteristic of this group (Lewitus et al., 2005), is also visible in the ship‐
based Rrs spectra (Figure 4f). Previous findings in the MBS differed, with cryptophyte and cyanophyte con-
centrations typically very low to zero and not predicted by PHYDOTax (Palacios, 2012). The relatively higher
cryptophyte PCC fraction in Cruise 1 and elevated Cruise 2 cyanophytes, plus their unique spectral shapes, likely

Figure 4. Mean phytoplankton community composition (PCC) for Cruise 1 (a–b) and Cruise 2 (c–d). Subplots (a, c) show the
observed PCC fractions measured in the field and are compared to expected, long‐term phenological mean PCC for fall (b) &
summer (d) from Harding et al., 2015. Number values in panels (a–d) reported in Table S3 in Supporting Information S1.
Plots (e, f) show all normalized shipboard Rrs spectra for Cruise 1 and Cruise 2, respectively, at 5 nm resolution.
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permitted successful detection. This is supported by the synthetic tests where these two groups were also pre-
dicted the best (Figure 3).

Neither diatom or dinoflagellate proportions were predicted based on SRC testing (Table 2). This is also in
contrast to MBS findings demonstrating successful discrimination between them, which was a notable result
given their similar brown‐green spectral shapes (Figures 1a and 1b). Chl‐a concentration also differed with MBS
having typically higher values. Total CBS chl‐a magnitude ranged from 100 to 101 mg m− 3, while the MBS chl‐a
varied considerably by year and location of station on the order of 100–102 mg m− 3. The highest chl‐a values
(102 mg m− 3) were in extremely dense dinoflagellate blooms. High concentrations of dinoflagellates, as well as
diatoms, often dominated MBS PCC. The high abundance, the assumed low levels of CDOM and NAP, and
perhaps the specificity of the spectral library applied to the MBS (the Rrs library included at least 1 of the
dinoflagellate species that were at high bloom abundances), may explain successful predictions of diatoms and
dinoflagellates in MBS, but not CBS, efforts.

3.3.3. Impacts of CDOM & NAP Addition to Spectral Library

Sensitivity to the addition of CDOM and NAP spectral signatures to the Rrs library was higher in Cruise 1 results
than Cruise 2 (Figure 5). Predicted diatom and cryptophyte proportions in Cruise 1 increased in spread on the y
axis with CDOM and NAP (Figure 5a) relative to their omission from runs (Figure 5b). This change significantly

Figure 5. Regressions of PHYDOTax‐predicted proportions for each phytoplankton type (y axis) versus expected
proportions (x axis) of total phytoplankton community composition for Cruise 1 (plots a, b) and Cruise 2 (plots c, d). Runs are
with (a, c) and without (b, d) colored dissolved organic matter and non‐algal particles incorporated in the algorithm. Colors &
shapes represent phytoplankton classes according to the legend. Significant results highlighted with bold text and asterisks,
see Table 2 for values. Above are results from PHYDOTax runs at 10 nm spectral resolution, see Figures S2 and S3 in
Supporting Information S1 for 1 and 5 nm.
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improved cryptophyte detection, but did not for diatoms (Figures 5a and 5b; Table 2a). Regardless of library
composition, dinoflagellate and cyanophyte predicted fractions remained low and largely between about 10% and
25% and <10% for the in water, pigment‐based PCC fractions. This could be due to their low abundance hence
presumably lower impact on the Rrs signal. Statistically, PHYDOTax only predicted cryptophyte fractions for
Cruise 1, but diatoms, cyanophytes, and dinoflagellates cluster together in similar ranges (Figure 5a). Given the
large differences in the PCC methodologies, and their respective assumptions, uncertainties, and potential for
error (Section 3.4), and the similar ranges of the phenological PCC fractions (Figure 5a) suggest that PHYDOTax
is predicting reasonable PCC fractions for all 4 groups in Cruise 1 when CDOM and NAP are accounted for
(Figure 5a).

In contrast, Cruise 2 results showed small, non‐significant differences with differing input library components.
Cryptophytes and cyanophytes were identified by PHYDOTax in both Cruise 2 runs, and ρs was slightly
improved with CDOM and NAP (Figures 5c and 5d, Table 2b). Significance was similar but PCC fractions
differed in these runs: PHYDOTax predicted more diatoms and dinoflagellates and less cyanophytes and cryp-
tophytes when CDOM and NAP were omitted (Figures 5c and 5d). Relative to other seasons, summer PCC
assemblages are typically mixed, that is, have similar proportions of these 4 groups (Figure 4d) potentially
convoluting their spectral fingerprints relative to seasons with 1–2 dominant classes (e.g., Figure 4b). Between
Cruises 1 and 2, only Cruise 1 was sensitive to incorporation of CDOM and NAP. This difference may be due to
the phenologically‐differing PCC proportions (mixed vs. 2 dominant groups) or differences in CDOM and NAP
concentration during the two cruises.

3.3.4. PCC From Cruise #2 Airborne Data on 20 July 2011

Airborne hyperspectral imagery shows qualitative spatial patterns of PCC (Figures 6a–6d). This region's spatial
heterogeneity is evident (Figures 6a–6f). Three patches with differing PCC can be discerned, with low cyano-
bacteria in the middle (∼38.8ºN–39ºN) along with higher dinoflagellate fractions and, to a lesser extent, elevated
fractions for the other groups. To the north and south of this area is an inverse pattern of higher cyanophyte
proportions and lower proportions for other groups (Figures 6a–6d), similar to Cruise 2 mean PCC (Figure 4c).
This potential for 3 optically‐different water masses is supported by satellite‐based sea surface temperature (SST;
Figure 6e) and the diffuse attenuation coefficient (Kd(490), Figure 6f). In the north the largest freshwater input
into the estuary, the Susquehanna River, enters the bay. Here Kd(490) and SST are highest above a front located at
∼39.1ºN that is likely due river input (note front location differs as SST is a 1‐day, modeled average, while
Kd(490) is a swath at a specific time in the tidal cycle). From there Kd(490) and SST are both lower in the middle
and lowest in the south.

One pixel of airborne data (Figure 6e, star) had two location‐coincident, shipboard measures of Rrs and pigments
termed Time A (Figures 7a and 7c) and Time B (Figures 7b and 7d) to compare. In situ and airborne Rrs show
similar magnitudes and maxima, but airborne spectra were considerably noisier (Figure 7). Small troughs at
∼580, 630, 650, and 690 nm (Figures 7c and 7d) are likely artifacts from sensor calibration and atmospheric
correction issues. A discontinuity at ∼505–515 nm is due to overlap of differing measurements from the ACAM's
two spectrometers (Zhang et al., 2018). Also ACAM Rrs from 400 to 500 nm, a spectral region with larger
uncertainty due to atmospheric correction, was overall higher than in the in situ Rrs (Figures 7c and 7d). Features
from ∼525 to 690 nm (Figures 1a–1g) useful for phytoplankton discrimination and present in ship Rrs are not
observed in airborne Rrs (Figure 7). Sensor calibration and atmospheric correction were responsible for the
uncertainty in ACAM Rrs (Zhang et al., 2018) and likely the major factor in the differences between airborne and
ship based spectral shape. By extension, no match was found between ship‐ and ACAM‐measured PCC pro-
portions. PCC from both Time A and B ACAM spectra (Figures 7c and 7d) predicted diatom fractions roughly
twice as large or more than the relative fractions of the other 3 groups (Time A: 33% diatoms, 18% dinoflagellates,
16% cryptophytes, 7% cyanobacteria; Time B: 49% diatoms, 21% cryptophytes, 10% dinoflagellates, and 8%
cyanobacteria). Shipboard predicted PCC at Time A (Figure 7a) was evenly distributed, ranging ∼13–21%, and
Time B (Figure 7b) PCC was also evenly mixed between 16% and 24%, except the cyanophyte fraction at 7%.

PHYDOTax is sensitive to spectral shape; its accuracy depends on atmospheric correction and sensor calibration
that preserve phytoplankton absorption and reflectance features (Palacios et al., 2015). Time A and B compar-
isons indicate the selected pixels of ACAM Rrs data are too noisy to predict PCC. Previous work also postulated
that mismatches between PHYDOTax‐based airborne PCC and coincident in situ PCC were in part attributable to
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atmospheric correction and sensor issues (Palacios et al., 2015). Physical
metrics do suggest that PCC patterns were associated with differing spectral
shapes of the 3 water masses (Figure 6), but more ship‐to‐airborne matchups
are required to assess to what extent these patterns represent actual in water
distribution.

3.4. Assumptions and Uncertainties

Uncertainty is tied to the error in the field and lab data from which PCC
fractions are derived. All data matchups between platforms (e.g., ship,
airplane, boat) used to test PCC predictions are subject to error due to the
temporospatial variability associated with sampling in a shallow, tidally dy-
namic estuary. Shipboard Rrs‐ and pigment data collected at the approximate
same time and location could be subject to meter‐scale patchiness in blooms
from tidal and wind dynamics. Patchiness of pigment‐based PCC and
phytoplankton abundance with depth in this region of the Chesapeake Bay
(Keller et al., 2014; Latasa et al., 2022) is also not captured in the shipboard
surface data. For airborne data each pixel represents average Rrs over a 3 × 3
box (∼1.5–2 km2) while ship‐based matchups are a small point in within
±1 hr of airborne flyover. These temporospatial differences in coverage
contribute to uncertainty in all field PCC estimates.

There is growing consensus that 4–6 degrees of freedom is the limit of
optically active components identifiable with hyperspectral Rrs (Cael
et al., 2020; Kramer & Siegel, 2019). The higher values are possible at
regional, but not global, scales (Kramer & Siegel, 2019), and may be more
likely to achieve when semi‐analytical algorithms such as PHYDOTax are
applied in optically complex waters (Cael et al., 2023). Here 6 total groups
were applied: diatoms, dinoflagellates, cyanophytes, cryptophytes, “other”
phytoplankton, and non algal components (Table 1), with algorithm perfor-
mance tested using the 4 most commonly blooming phytoplankton classes.
Verifying whether 4–6 degrees of freedom are indeed available requires
confirmation of whether sufficient difference exists between the spectral
shapes of the individual optical groups (here this means phytoplankton
classes, not individual species) to differentiate them from each other given
their calculated error (Cael et al., 2020). The uncertainty information needed
to answer this question, however, was not available from the data sets applied
in this effort.

PCC from spectral shape with PHYDOTax: A key question addressed by
algorithm testing is whether lab‐measured IOPs of monocultures (single
species), and by extension the spectral library of Rrs spectra modeled from

them, can represent a taxonomic class and then be applied to predict class‐level proportional abundance from Rrs
measurements, as PHYDOTax does. Several assumptions to simplify biological and optical complexity are part of
this approach. The spectral library is assumed to broadly represent the numerous phytoplankton, NAP (sediment),
and CDOM types potentially in the water. To achieve this, output coefficients for each of the several phyto-
plankton genera and species are binned into their respective classes, a broader taxonomic level than species or
genera which are the highest and second highest levels of taxon specificity, respectively. Species level identi-
fication is not a goal of PHYDOTax. Rather it assumes that genera/species share class‐level physiological
similarities which influence the light field, that is, cell wall structure, cell size, suite of accessory pigments, etc.
producing broad, common spectral features useful for identification. This can be mostly true for classes such as
cyanobacteria, which generally have phycoerythrin, creating their identifying spectral trough at ∼625 nm. This
assumption, however, may not hold for other classes. Dinoflagellates, for example, have a highly complex lineage
and hence considerable variety in potential accessory pigment configurations, cell shapes, and metabolic modes
which all can differentially influence spectral shape (Van Heukelem & Hooker, 2012). Also, the matrix factor-
ization approach assumes linearity between the proportion of taxon‐specific spectral shapes (a proportion of the

Figure 6. Evaluative maps of phytoplankton community composition from
airborne data collected on 20 July 2011 for the northern Chesapeake Bay and
satellite‐based physical conditions (plots e, f) on 20 July 2011 for qualitative
analysis. Maps (a–d) show relative proportions of (a) diatoms,
(b) dinoflagellates, (c) cryptophytes, and (d) cyanophytes. For the same date,
plot (e) is satellite‐based daily average sea surface temperature and plot (f) is
the diffuse attenuation coefficient at 490 nanonmeters (Kd(490)), a metric of
water clarity. Higher Kd(490) values indicate greater attenuation of light,
hence more turbid water. Station location of Times A and B in Figure 7
indicated by a star in panel (e).
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total Rrs signal) and their actual in‐water abundance. This is a large simplification compared to the complex, non‐
linear interaction of light with multiple optically active constituents and the water itself (Mobley, 1994). Even so,
results support these assumptions for cryptophytes and cyanophytes in this work as well as dinoflagellates, di-
atoms, and others in the Monterey Bay study (Palacios, 2012).

PCC from pigments with CHEMTAX: Among methods that utilize quantitative phytoplankton pigment con-
centrations to determine PCC (e.g., Chase et al., 2020; Higgins et al., 2012; Kramer & Siegel, 2019; reviewed in
Higgins et al., 2012), the commonly‐utilized CHEMTAX software was chosen for this analysis. Uncertainties in
this method include variability in pigment concentrations at intra‐ and interspecific levels not associated with
changes in abundance (Armbrecht et al., 2015; Kozlowski et al., 2011; Latasa et al., 2022), which can add error to
the pigment‐based PCC proportions the algorithm is tested against. Changes in marker:chla ratios may reflect
cellular‐level changes in photophysiology over the course of the day (e.g., photoacclimation, photoprotection) or
nutrient condition (Lewitus et al., 2005) rather than abundance. CHEMTAX‐based PCC proportions can be
inconsistent compared to cell count‐based PCC, particularly for sub‐class level taxonomic identification (Arm-
brecht et al., 2015; Kozlowski et al., 2011; Latasa et al., 2022). At the class level, however, CHEMTAX‐based
PCC fractions show significant correlation with cell count‐based PCC in the Chesapeake Bay (Harding
et al., 2015), the nearby NW Atlantic (Pan et al., 2011), and studies across a variety of aquatic regimes (e.g.,
Kozlowski et al., 2011). Even with these uncertainties, past work and results of this study support application of
CHEMTAX‐based PCC proportions as representative of in‐water PCC.

Lessons learned from CHEMTAX: Previous research on CHEMTAX, the conceptual ancestor of PHYDOTax
(Palacios, 2012), may inform future PHYDOTax development. CHEMTAX (and potentially PHYDOTax) can be
sensitive to the composition of the input matrix (Mackey et al., 1996). For PHYDOTax this matrix is the Rrs
spectral signature library (Figure 1), and for CHEMTAX it's a matrix of identifying pigment ratios (Table S2c and
S2d in Supporting Information S1). The process of deciding which phytoplankton types comprise these input
matrices is subjective to some degree and can be limited in scope due to the low availability of the highly‐
specialized data types that they require. Optimization of the input matrix to the pigment data set, prior to its
factorization, has been found to reduce this source of CHETMAX error attributable to composition and increase
statistical power of the results (Latasa, 2007; Mackey et al., 1996). The software includes one optimization
approach (Mackey et al., 1996; Wright, 2017), and others have since been developed that also proved successful
(e.g., Kozlowski et al., 2011; Latasa, 2007). PHYDOTax functionality may similarly benefit from developing and

Figure 7. Shipboard remote sensing reflectance (Rrs) collected at Time A, 17:25 UTC (a), and Time B, 21:44 UTC (b),
compared to airborne‐based Rrs at 16:42 UTC (c) and 21:17 UTC (d), respectively on 20 July 2011. Gray lines in panels (c, d)
represent pixel values within ta 3 × 3 pixel box centered over the ship station. Shipboard sampling and airborne flyovers both
occur within ±1 hr of each other at the location indicated by a star on Figure 6e.
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testing optimization methods for the Rrs spectral library. This includes understanding how differing the
composition of phytoplankton taxa in the library may impact performance of PHYDOTax. For example, the
library in this work includes mostly cosmopolitan, generalized coastal phytoplankton types commonly grown in
oceanography labs. Could PHYDOTax performance in the Chesapeake improve if wild isolates of genera and
species from the region were cultured to develop a new set of spectral signatures to represent the phytoplankton
classes of interest? Or are spectral library signatures from broadly coastal, but not highly region‐specific,
phytoplankton taxa sufficient to yield reliable results from PHYDOTax? Investigation of these and related
questions will improve understanding of how best to build and apply the input Rrs spectral library for
PHYDOTax.

3.5. Conclusions

Development of approaches to leverage upcoming hyperspectral satellite‐based information in coastal and
estuarine zones represents an opportunity to better understand these critical environments and to develop
advanced satellite products that will inform decisions which address societal challenges such as such as health,
safety, and food security (Schollaert Uz et al., 2019). This study contributed to these goals by testing a bio‐optical
approach to PCC identification with field data from two cruise campaigns in the Chesapeake Bay. PHYDOTax
discriminated cryptophyte and cyanophyte classes using ship‐based Rrs measurements and synthetic data.
Spectral sensitivity of the algorithm to input at differing hyperspectral resolutions of 1, 5, or 10 nm was low.
Sensitivity to addition of non algal components varied according to field data set and possibly seasonal PCC
composition. Due to the considerable temporal and spatial variability of the Chesapeake Bay relative to our data
set, our results do not conclude that PHYDOTax is an operational algorithm ready for Bay applications. These
results do provide the first support to the theory that PHYDOTax may be applied beyond the coastal upwelling
zone that it was developed in. Further development and testing is encouraged where sufficient data are available in
this and other optically complex regimes.

Data Availability Statement
Phytoplankton pigment and remote sensing reflectance (Rrs) data sets for algorithm performance evaluation were
downloaded from the NASA SeaWIFS Bio‐optical Archive and Storage System (SeaBASS; Werdell et al., 2003)
repository for in situ oceanographic data, maintained by the NASA Ocean Biology Processing Group (OBPG).
Original cruise 1 and 2 data are available at SeaBASS (2009) [https://doi.org/10.5067/SeaBASS/2009OCT_
CHESAPEAKE/DATA001] and SeaBASS (2011) [https://doi.org/10.5067/SeaBASS/GEO‐CAPE/DATA001],
respectively. Phytoplankton community composition was derived from pigment data with CHEMical TAXon-
omy (CHEMTAX) software, available at https://data.aad.gov.au/metadata/CHEMTAX (Wright, 2017) and
licensed under the CCBY Attribution License (http://creativecommons.org/licenses/by/4.0/). Hyperspectral
airborne data were provided by Chuanmin Hu (Univ. of South Florida) and Minwei Zhang (NASA/SAIC), link to
repository with data file below.

A comprehensive Code and Data Repository is located at Palacios andMcKibben (2023) [https://doi.org/10.5281/
zenodo.10360063]. For this work the original MATLAB PHYDOTax code from Palacios, 2012 was converted to
Python. This Python code plus all data related to this manuscript are within this repository. Specific data files
include the Rrs spectral libraries, the paired Rrs and pigment concentrations from ship‐based field data, the 20
July 2011 swath of airborne Rrs data, and the synthetic mixture data sets.

All manuscript data were processed with Python (v. 3.9.7) using open source packages NumPy (v. 1.20.3; https://
numpy.org), Pandas (v. 1.3.4; https://pandas.pydata.org), and/or Xarray (v. 0.16.1; https://xarray.dev). Figures
were plotted with open source Matplotlib (v. 3.2.1; https://matplotlib.org/) and Cartopy (v. 0.20.0; https://pypi.
org/project/Cartopy/) packages. See links for download and license information.
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