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A B S T R A C T   

In California and other agricultural regions that are facing challenges with water scarcity, accurate estimates of 
crop evapotranspiration (ETc) can support agricultural entities in ongoing efforts to improve on-farm water use 
efficiency. Remote sensing approaches for calculating ETc can be used to support wide area mapping of crop 
coefficients and ETc with the goal of increasing access to spatially and temporally distributed information for 
these variables, and advancing the use of evapotranspiration (ET) data in irrigation scheduling and management. 
We briefly review past work on the derivation of crop coefficients and ETc data from satellite-derived vegetation 
indices (VI) and evaluate the accuracy of a VI-based approach for calculation of ETc using a well instrumented, 
drip irrigated sugar beet (Beta vulgaris) field in the California Central Valley as a demonstration case. Sugar beets 
are grown around the world for sugar production, and are also being evaluated in California as a potential biofuel 
crop as well as for their ability to scavenge nitrogen from the soil, with important potential benefits for reduction 
of nitrate leaching from agricultural fields during the winter months. In this study, we evaluated the accuracy of 
ETc data from the Satellite Irrigation Management Support (SIMS) framework for sugar beets using ET data from 
a weighing lysimeter and a flux station instrumented with micrometeorological instrumentation. We used the 
Allen and Pereira (A&P) approach, which was developed to estimate single and basal crop coefficients from crop 
fractional cover (fc) and height, and combined with satellite-derived fc data and grass reference ET (ETo) data as 
implemented within SIMS to estimate daily ETc from SIMS (ETc-SIMS) for the sugar beet crop. The accuracy of the 
daily ETc-SIMS data was evaluated against daily actual ET data from the weighing lysimeter (ETa-lys) and actual ET 
calculated using an energy balance approach from micrometeorological instrumentation (ETa-eb). Over the 
course of the 181-day production cycle, ETc-SIMS totaled 737.1 mm, which was within 7.7% of total ETa-lys and 
3.7% of ETa-eb. On a daily timestep, SIMS mean bias error was − 0.31 mm/day relative to ETa-lys, and 0.15 mm/ 
day relative to ETa-eb. The results from this study highlight the potential utility of applying satellite-based fc data 
coupled with the A&P approach to estimate ETc for drip-irrigated crops.   

1. Introduction 

The California agricultural community is facing challenges related to 
the increasing interannual variability of precipitation and constraints on 
water resources. In response to sustained declines in groundwater levels 
and the extreme drought that began in 2011 and extended through 

2016, the Sustainable Groundwater Management Act (SGMA) was 
passed by the California Legislature in 2014 to regulate overdraft of 
aquifers and increase the sustainability of groundwater supplies. Addi-
tionally, in 2012, groundwater regulations were added to the Irrigated 
Lands Regulatory Program in California to prevent agricultural runoff 
and leaching of fertilizers from irrigated fields from impacting surface 
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and groundwater resources. These policies have led to increased interest 
among the agricultural community in adopting new information tech-
nologies to support data driven approaches in irrigation management 
and scheduling, with the goal of evaluating and potentially increasing 
on-farm water use efficiency. 

The Food and Agriculture Organization Irrigation and Drainage 
Paper 56 (FAO56) synthesized decades of research to provide a frame-
work and methodology for computing crop water requirements though 
the integration of reference evapotranspiration calculated from meteo-
rological data and crop coefficients (Allen et al., 1998). FAO56 provides 
look-up tables and equations to support calculation of crop coefficients 
(Kc) for a wide range of crops at different growth stages. FAO56 includes 
both single Kc and dual Kc approaches. In the dual Kc approach, the Kc 
value is determined through separate calculation of a basal crop coef-
ficient (Kcb) and a soil evaporation coefficient (Ke). Kcb is defined as 
evapotranspiration from a well-watered crop with a dry soil surface. Kcb 
is used primarily to represent the transpiration component of ET, but 
also includes diffusive soil evaporation, while Ke is used to capture 
evaporation from exposed soil. Kcb and Ke are summed to calculate the 
dual-Kc value, which is then multiplied by the reference ET calculated 
using the Penman–Monteith equation from meteorological measure-
ments obtained over a reference crop, typically a well-watered 0.12 m 
grass surface (ETo). Crop water stress can also be accounted for in this 
approach via incorporation of a stress coefficient (Ks) calculated using a 
soil water balance model. During the initial crop development period, 
evaporation from exposed soil typically accounts for the majority of ETc. 
As the crop canopy develops, evaporation from exposed soil decreases 
while the transpiration increases and eventually becomes the dominant 
process (Allen et al., 1998). 

Satellite observations enable estimation of crop water requirements 
on a regional scale with good spatial (30 m) and temporal (5–8 days) 
resolution (Kjaersgaard et al., 2011). By providing near real time mea-
surements of crop conditions through remote sensing at the scale of 
individual fields, information can benefit growers by allowing them to 
accurately and easily monitor the crop canopy development and the 
crop water requirements (Trout et al., 2008). Previous studies have used 
remote sensing on various crops to estimate Kc and Kcb values from 
vegetation indices (VIs), such as the Normalized Difference Vegetation 
Index (NDVI) and the Enhanced Vegetation Index (EVI), calculated from 
satellite top of atmosphere (TOA) reflectance or surface reflectance data, 
and these results have demonstrated the potential value for the agri-
cultural community of operational systems (Glenn etal.,2007; Pôças 
et al., 2020). Previous work related specifically to sugar beets using VIs 
approach is limited, however, and includes a study by González-Dugo 
and Mateos (2008) that used satellite observed VIs to obtain Kcb values 
for sugar beets in Spain. Their study concluded that there was value in 
using satellite VI data to estimate Kcb values, but did not evaluate the 
accuracy of the Kcb or ETc data. Instead, the study focused on evaluation 
of crop yields and water productivity. Tasumi and Allen (2007) also 
applied remote sensing and an energy balance model, the Mapping 
Evapotranspiration with Internalized Calibration (METRIC) model, to 
estimate Kc values for sugar beets and other major crops grown in Idaho. 

In the U.S., sugar beet (Beta vulgaris) is a valuable crop grown 
commercially with the purpose of producing sugar and biofuel (Panella 
et al., 2015). Kaffka et al. (2014) described key factors in California that 
enable the suitability and potential of sugar beets for biofuel production. 
Under the Energy Independence and Security Act (EISA) of 2007, sugar 
beet was qualified as a potential feedstock for advanced biofuel pro-
duction with the potential for greenhouse gas reductions of up to 50% 
(110th Congress, 2007). Due to the high sugar content, beets could 
potentially double ethanol production compared to other feedstocks 
(Panella and Kaffka, 2010). Furthermore, sugar beet processing 
by-products can serve as a soil amendment for nitrate reduction (Kumar 
et al., 2002). 

As the use of satellite-based models for estimating ET becomes more 
common, it is important to have robust ground-based measurements 

across a range of crop types and growth forms that can be used to 
evaluate remotely sensed ET. Surface reflectance-based models typically 
use information in the visible and near-infrared (VNIR) wavelengths to 
estimate Kc or Kcb, and then combine these values with daily ETo values 
derived from meteorological data to calculate ETc following the FAO56 
approach. Many previous studies have investigated the relationship 
between Kc or Kcb and VIs (Bausch and Neale, 1987; Bausch, 1993; 
Benedetti and Rossini, 1993; Hunsaker et al., 2003a, 2003b, 2005; Glenn 
et al., 2011), and Pôças et al. (2020) provide a recent review of the 
literature on this topic. Thermal-based remote sensing approaches use 
thermal infrared (TIR) measurements to solve energy balance equations 
to estimate ET (e.g., Allen et al., 2007; Bastiaanssen et al., 1998; Kustas 
et al., 2004). While there has been important recent progress on auto-
mation of energy balance models for field scale applications (Allen et al., 
2007; Semmens et al., 2016), sustained operational production of daily 
ET estimates from energy balance approaches remains challenging. 
VI-based approaches for field-scale ETc mapping have a few key ad-
vantages for irrigation management applications. First, moderate reso-
lution (10–300 m) VNIR measurements are available from a large 
constellation of satellite and airborne sources (Murray et al., 2009; 
Calera et al., 2017), increasing the temporal resolution of the satellite 
measurements. Second, the algorithms used in the models are compu-
tationally simpler and avoid the need for internal or scene-by-scene 
calibration (Rafn et al., 2008), facilitating automated data processing 
over large areas and reducing data latency, which is critical for irrigation 
management applications. Third, VNIR observations are available at 
higher spatial resolution compared to thermal based remote sensing for 
individual fields (Johnson and Trout, 2012), increasing the utility and 
accuracy for smaller fields without the need for pan-sharpening or data 
fusion. 

One important limitation of VI-based approaches is that they typi-
cally estimate ETc assuming well-watered conditions, and they are less 
sensitive to intermittent deficit irrigation and short-term crop stress, 
which can lead to overestimation of actual ET for deficit irrigated crops 
(Glenn et al., 2011). For irrigation management applications, however, 
estimation of ETc assuming well-watered conditions provides a consis-
tent reference for the irrigator, making it easier to adjust irrigation 
management to meet their production goals. In contrast, measurement 
of actual ET (ETa) requires the irrigator to use additional information to 
determine whether the ETa represents stressed or unstressed conditions, 
and then make corrections to calculate ETc as the baseline for an 
intentional deficit irrigation regime. 

A second limitation of VI-based approaches is that they are less 
sensitive to evaporation from bare soil, and require integration with a 
soil water balance model to estimate soil evaporation (González-Dugo 
and Mateos, 2008; Melton et al., 2012). While this can be an important 
limitation for estimation of evaporation from bare soil or sparsely 
covered fields during the winter, the period during which soil evapo-
ration is a significant percentage of total ETc during active crop pro-
duction is typically limited to a few weeks. A key objective in this study 
was to determine how well ETc from a VI-based approach compared to 
ground-based measurements, and to characterize the overall impact of 
these two limitations on the accuracy of the ETc estimates. 

Glenn et al. (2011) evaluated different VI-based methods used in ET 
studies and provided evidence that this method can be applied to ac-
quire accurate estimates of ET. Of the various VIs, the Normalized Dif-
ference Vegetation Index (NDVI) is a widely used measure of vegetation 
density and condition (Goward et al., 1991). One of the earliest appli-
cations of a VI-based approach was described by Bausch and Neale 
(1987) and this study found that NDVI was highly correlated with leaf 
area index (LAI) and fc. These authors proposed a linear transformation 
between NDVI and Kcb to represent a reflectance-based crop coefficient 
(Kcb-VI) which tracked closely with Kc measured by the weighing 
lysimeter. This study concluded that the Kcb-VI approach could be used 
to schedule irrigation at field scales. The Kcb-VI method has also been 
applied to numerous other crops, yielding the conclusions that: 1) The 
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use of NDVI as a supplement to static Kcb values can improve on farm 
water management (Hunsaker et al., 2007a, 2007b; Samani et al., 2009); 
and, 2) Kcb-VI also gave consistently accurate results and highlighted the 
potential to improve irrigation when plants are under aberrant condi-
tions compared to those represented by conventional FAO56 approaches 
(Hunsaker et al., 2003a, 2003b, 2005). 

Close correlation is commonly established between vegetation 
amount and transpiration, where, as vegetated cover increases, tran-
spiration increases (Glenn et al., 2007). Based on the strong relationship 
between NDVI and Kcb, Trout et al. (2008) and Johnson and Trout 
(2012) investigated the relationship between satellite derived NDVI and 
ground measured fractional cover (fc), the proportion of ground that is 
covered with green vegetation. Johnson and Trout (2012) used a mul-
tispectral camera to measure the fc of 49 commercial fields that con-
tained 18 different crop types over 11 Landsat overpass dates. They 
found that the Landsat NDVI formed a strong linear relationship with 
measured fc, supporting the use of satellite-derived NDVI to calculate fc 
for agricultural crops. 

Due to the cost-effectiveness and flexibility of satellite data, remote 
sensing has been implemented to map Kc and Kcb values and estimate ET 
on field and regional scales. Building on the studies described above, 
Melton et al. (2012) developed the Satellite Irrigation Management 
Support (SIMS) framework, which integrates satellite data and meteo-
rological data from the California Irrigation Management Information 
System (CIMIS) (Hart et al., 2009) to provide data for NDVI, fc, Kcb, and 
ET under well-watered conditions with a dry soil surface, which we 
notate as ETc-SIMS. ETc-SIMS largely represents the transpiration compo-
nent of ET. However, SIMS does set Kcb at a minimum of 0.15 to account 
for baseline evaporation from bare soil and includes diffusive soil 
evaporation (Melton et al., 2012). In addition, SIMS Kcb values can be 
combined with a soil water balance model to calculate soil evaporation 
coefficients (Ke) and crop stress coefficients (Ks), following the FAO56 
dual crop coefficient approach (Allen et al., 1998). SIMS was developed 
to support irrigation management and regional water accounting, to 
help irrigators and water managers account for interannual variability 
and heterogeneity in field conditions. Various studies have discussed the 
importance of adjusting tabulated Kc and Kcb values provided by FAO56 
based on local conditions and climate variability (Pereira et al., 2015; 
Drerup et al., 2017). A brief overview of SIMS is provided in Section 2.2, 
and detailed information about the SIMS algorithms and workflow can 
be found in Melton et al. (2012, 2020), and a full description of the Allen 
and Pereira (A&P) equations encoded within SIMS is provided in Pereira 
et al. (2020). 

In a recent study, Melton et al. (2018) described the improvements of 
SIMS, summarized work to date quantifying the accuracy of ETc-SIMS, 
and demonstrated the operational use of SIMS to improve irrigation 
management. Melton et al. (2018) also conducted an accuracy assess-
ment with in-situ measurements over a dozen crop types in California. 
Results showed that seasonal ETc-SIMS estimates are within 9% mean 
absolute error (MAE) of measured crop evapotranspiration for 
well-watered crops, and 15% MAE across all crops studied, including 
deficit irrigated crops such as wine grapes and cotton. 

Glenn et al. (2011) found that discrepancies between ET calculated 
from satellites and ground-based instrumentation can range from 5% to 
10% for lysimetry and 10–30% for open path eddy covariance. Here, we 
refer to data from the satellite-based approach as the “modeled” data, 
and the ET calculated from the ground-based observations as the 
“measurements”, recognizing that the ET data from the ground-based 
instrumentation also has errors and uncertainty, and involves applica-
tion of biophysical and micrometeorological models to calculate ET 
values from the measurements collected on the ground (Glenn et al., 
2011). It is important to distinguish that actual ET, from weighing 
lysimeter (ETa-lys) and flux station (ETa-eb), stands for ET calculated 
directly from measurements collected by instruments and includes soil 
evaporation and canopy transpiration, as well as the impact of any crop 
water stress. Differently, ETc-SIMS is determined from the combination of 

satellite-VI derived Kcb and ETo. ETc-SIMS does not account for soil 
evaporation and crop water stress unless it results in a reduction in 
biomass or crop geometry change, hence, a key question addressed by 
this study is the ability of ETc-SIMS to accurately estimate ET despite these 
limitations. As discussed by various studies, when using VI-based ap-
proaches for estimating and mapping ETc, a soil water balance model for 
the surface layer and the root zone may be utilized to further increase 
the accuracy of ETc estimates if soil evaporation or crop water stress are 
major considerations (Campos et al., 2013; Mateos et al., 2013; Pôças 
et al., 2015; Odi-Lara et al., 2016). 

The objective of this paper is to assess the accuracy and applicability 
of a VI-based remote sensing model that incorporates the A&P approach 
to estimate ETc in sugar beets. We also evaluated the accuracy of the ETa- 

eb measurements against ETa-lys measurements to evaluate the utility of 
using an energy balance residual approach for measurement of latent 
energy fluxes from a flux station. Our strategy in this assessment was to 
quantify each independently calibrated measurement that occurred 
simultaneously at the same location to evaluate the potential utility of 
the VI-based remote sensing approach used by SIMS for estimation of 
ETc for drip-irrigated sugar beets. 

2. Methods 

2.1. Study site 

The sugar beet field is located in Five Points, CA (Lat: 36.3379, Long: 
− 120.1131, Elev: 82.0 m) at the West Side Research and Extension 
Center (WSREC) with average annual precipitation of 175 mm. The site 
has a flat terrain with a Mediterranean climate of cool, wet winters and 
warm, dry summers. The prevailing wind comes from the northwest 
(Fig. 1) and the soil type at the site is Panoche clay loam (Typic 
Torriorthents). 

The beets were planted on Oct 22, 2014 with a 0.15 m spacing be-
tween plants and a 0.02 m seeding depth. The field was 106 m (348 ft) 
long and 61 m (200 ft) wide with 140 rows oriented ~1 degree north-
west. The field was irrigated with sprinklers prior to planting, through 
germination and the early stages of crop development, and then the 
irrigation switched to surface drip irrigation on Jan 2nd, 2015. Irriga-
tion was measured in the field using flow meters (Badger Meter, Mil-
waukee, WI, USA) installed on two drip laterals in the field, as well as 
from measurements recorded by the weighing lysimeter. For the study 
period from Jan 1st to June 30th, 2015, the field was irrigated 2–3 times 
per week using the surface drip irrigation system and a total of 659 mm 
of water was applied (Fig. 1). The WSREC staff managed the irrigation 
scheduling based on data from the weighing lysimeter located in the 
field. California Irrigation Management Information System (CIMIS) 
weather station #2 was used to obtain ETo data. This weather station 
(Lat: 36.336222, Long: − 120.112910, Elev: 86.9 m) is located inside the 
WSREC field station and installed over a well-watered grass field. The 
field was harvested August 4th, 2015. 

2.2. Remotely sensed data 

The Satellite Irrigation Management Support (SIMS) system was 
developed to support mapping of crop development and crop water 
demand throughout California (Melton et al., 2012). SIMS uses 
satellite-derived surface reflectances to map NDVI, fc, and Kcb (basal 
crop coefficients). To calculate the daily ETc-SIMS, Kcb is combined with 
daily ETo data from the California Department of Water Resources 
California Irrigation Management Information System (CIMIS). 

SIMS can be driven with satellite data from multispectral instruments 
onboard satellites including Landsat 5, Landsat 7, Landsat 8, Sentinel- 
2A, Sentinel-2B and others that collect measurements in the VNIR 
wavelengths. For the comparisons with ground measurements of ET 
described below, atmospherically corrected surface reflectance data 
were obtained from the USGS Landsat Collection 1 for the Operational 
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Land Imager (OLI) on Landsat 8. Landsat 7 and Landsat 8 each have a 16- 
day revisit interval, but since they are staggered, one observation is 
available approximately every 8-days. Due to overlap in the scene 
boundaries, Landsat observations are available more frequently for 
some locations, as was the case for our field site. SIMS uses the highest 
quality, cloud-free observations for each pixel and composites them into 
a mosaic every eight days. In cases where data is available from both 
Landsat 7 and Landsat 8, Landsat 8 is given priority. Due to the fact that 
our study site is located within the overlap between Path 42 and Path 43, 
we were able to obtain one Landsat 8 scene almost every 8 days 
excepting cloud cover. Landsat scenes used in this study can be found in  
Table 1. 

2.3. Calculation of ETc-SIMS from satellite data and CIMIS ETo 

SIMS first calculates NDVI values from surface reflectance values as: 
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Fig. 1. (top-left): Field diagram showing the location of the weighing lysimeter and REB station during the 2015 growing season. Image date: 2015/05/02. (top- 
right): Windrose of the study site with the wind speed in miles per hour. (bottom): Irrigation and rainfall, and grass reference ET (ETo). 

Table 1 
Landsat scenes acquired and used in the analysis.  

Path Row Landsat 7 
acquired dates 

Landsat 8 acquired dates 

42  35 / 19-Feb-2015, 07-Mar-2015, 08-Apr-2015, 10- 
May-2015, 26-May-2015, 11-Jun-2015, 27- 
Jun-2015, 13-Jul-2015, 29-Jul-2015 

43  35 Jan-1–2015 26-Feb-2015, 14-Mar-2015, 30-Mar-2015, 15- 
Apr-2015, 01-May-2015, 02-Jun-2015, 18- 
Jun-2015, 04-Jul-2015, 20-Jul-2015, 05-Aug- 
2015  
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NDVI =
NIR − R
NIR + R

(1)  

Where NIR is the reflectance in the near-infrared wavelengths, and R is 
the reflectance in the red wavelengths. NDVI is then linearly interpo-
lated between cloud-free satellite overpass dates to calculate a daily 
timeseries (Fig. 2). Next, SIMS applies the equation described in Trout 
et al. (2008) and Johnson and Trout (2012) to map fc from NDVI at a 
spatial resolution of 30 m x 30 m per pixel following Eq. (2): 

fc = 1.26 ∗ NDVI–0.18 (2) 

SIMS calculates Kcb values via the fc values (Fig. 2) calculated from 
the satellite observation using Eq. (2) and a density coefficient (Kd) 
derived from a biophysical description of the canopy. This approach 
follows Allen and Pereira (2009), Eq. (10): 

Kd = min
(

1,ML ∗ fceff , f(1/(1+h))
c eff

)
(3)  

where, fc eff is the effective fraction of ground covered or shaded by 
vegetation, h is the crop height (Fig. 2), and ML is a canopy radiation 
transparency factor ranging from 1.5 to 2.0 (Allen and Pereira, 2009; 
Pereira et al., 2020). Kd links increase in Kcb to increasing vegetation 
amount. Details of calculations of crop height are provided in Pereira 
et al. (2020, this issue) and in the SIMS User Manual (Melton et al., 
2020). For this study, we used a ML of 2.0 for sugarbeet. As a simplifying 
assumption to facilitate full automation, the current release of SIMS 
assumes standard climate conditions. 

Kcb full, which represents conditions at peak plant growth for con-
ditions having nearly full ground cover, is calculated as a simplified 
version of Eq. 7a of Allen and Pereira (2009): 

Kcb full = Fr ∗ (min(1.0+ 0.1hmax, 1.2)) (4)  

where Fr (range 0–1) is an adjustment factor related to stomatal regu-
lation. For annuals, Fr is assigned a standard value of 1. For perennials, 
which tend to exhibit more stomatal control on transpiration, Fr is < 1 
and varies by crop type and seasonal growth stage (Allen and Pereira, 
2009; Pereira et al., 2020). For this study, we used a Fr of 1.0 for 
sugarbeet. 

Kcb is then derived following Eq. (5a) from Allen and Pereira (2009): 

Kcb− SIMS = Kcb min +Kd ∗
(
Kcb full–Kcb min

)
(5)  

where Kcb min is set to 0.15, which is the minimum Kcb value for bare soil 
under typical agricultural conditions (Allen and Pereira, 2009). Values 
of hmax are drawn from Table 12 of FAO56 (Allen et al., 1998). Values for 
h are estimated for annual crops as a linear function of fc and hmax. For 
tree and vine crops, values from Table 11 of FAO56 are used for the late 
stage start and stop dates. 

As a final step, SIMS calculates ETc-SIMS following the FAO56 dual 
crop coefficient approach (Allen et al., 1998), as: 

ETc− SIMS = (Kcb− SIMS +Ke) ∗ ETo (6)  

Where Kcb is the SIMS basal crop coefficient calculated from Eq. (5), Ke is 
the soil evaporation coefficient, and ETo is the grass reference ET. Due to 
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Fig. 2. Timeseries of NDVI from Landsat (top), fraction cover from SIMS (middle), and crop height from SIMS (bottom) for the sugar beet field.  
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the fact that reflectance-based approaches are less sensitive to evapo-
ration from exposed soil, in Eq. (6) SIMS was originally developed to 
estimate Kcb and currently must set the evaporation coefficient (Ke) as 
equal to zero for wide area mapping ET applications. In a drip irrigated 
system with lines shaded by vegetation, as in the present study, this 
simplification is acceptable. Ongoing work will enhance SIMS to include 
a gridded soil water balance model to support calculation of Ke. For this 
study, ETo was obtained from Spatial CIMIS (Hart et al., 2009) operated 
by the California Department of Water Resources. While the Spatial 
CIMIS data was used in this study, outside of California SIMS utilizes ETo 
data from gridMET (Abatzoglou and Ficklin, 2017). Additional details 
on the A&P approach and SIMS algorithms and documentation can be 
found in Pereira et al. (2020) and Melton et al. (2020), respectively. 

2.4. Weighing lysimeter 

This site has a weighing lysimeter located in the center of the field 
consisting of a 2-m by 2-m by 2.25-m deep soil tank positioned on a 
mechanical tank scale (Model FS-4; Cardinal Scale Manufacturing Co., 
Webb City, MO) that is housed underground. Due to limitations on the 
lysimeter’s accessibility by tractors, the lysimeter plot was hand planted 
following the same scheme as the rest of the field. The soil and plants in 
the lysimeter were irrigated from a supply tank located underneath the 
lysimeter each time the lysimeter weight decreased by 4 kg (i.e., 1 mm 
of water). On a daily basis, ET was monitored and computed through the 
weight change in the soil tank via the 91 kg capacity stainless steel “S” 
beam load cell (Omega Engineering Inc., Norwalk, CT). The data were 
logged onto a CR3000 datalogger (Campbell Scientific Inc., Logan, UT) 
once every 60 s. The accuracy of the weighing lysimeter measurements 
is controlled through calibration. In this study, the calibration was done 
by using a known weight (40–200 kg) on the surfaces of the lysimeter. 
Additionally, two 0.3 kg weights were used to ensure detections of small 
changes. The load cell then recorded and averaged three readings (mV) 
for each known weight. Last, a linear regression, between load cell 
readings (x-axis) and weights (y-axis), was determined and incorporated 
into the lysimeter’s program. Besides the factory calibration in Jan 
2014, two additional calibrations were conducted, on Dec 23rd, 2014 
and Feb 18th, 2015, to validate and ensure the accuracy of the weighing 
lysimeter. Both calibrations produced very high coefficient of determi-
nation values (R2) with 0.9999 for 2014 and 0.9998 for 2015, indicating 
a high level of accuracy of the weighing lysimeter. 

The theory and details of the weighing lysimeter are well docu-
mented in the literature, and details can be found in Bryla et al. (2010). 
Specific details for the lysimeter used in this study are described in Thao 
(2017). 

2.5. Flux measurements 

Open path eddy covariance (OPEC) is an approach that uses mea-
surements collected by micrometeorological instrumentation to calcu-
late ET. The OPEC approach has been extensively used to estimate actual 
crop evapotranspiration (ETa) and validate remote sensing models 
(Moorhead et al., 2019). Full OPEC instrumentation includes both a 3D 
sonic anemometer and an infrared gas analyzer. As a result, it is quite 
expensive and many studies have also explored use of the residual of the 
energy balance (REB) approach, which also uses a 3D sonic anemometer 
but does not require use of an infrared gas analyzer. The REB approach 
applies the energy balance equation (Eq. 8) to estimate latent heat flux 
density as the residual with a forced energy balance closure (Twine 
et al., 2000), and this micrometeorological measurement is mainly 
implemented over vegetated regions (Pan et al., 2017). Anapalli et al. 
(2018) used the REB approach in a cotton and a corn field. In the cotton 
field, which also had a large-scale field lysimeter, they found that ET 
measured from the flux data compared well with ET measured in the 
lysimeter yielding a RMSE for daily ET of 1.2 mm and a seasonal ET 
error within 1%. In the corn field, they found a strong correlation 

between ET measured from the flux data and reference ET data for al-
falfa and grass with Pearson’s correlation coefficients of 0.81 and 0.70, 
respectively. Their results demonstrated that the REB procedure is a 
possible alternative method for calculation of actual ET from micro-
meteorological instrumentation, and a cost-effective alternative to ETa 
measurements from lysimetry and OPEC systems. 

Flux measurements require enough fetch, the horizontal distance 
from sensor to predominant wind direction, to achieve representative 
measurements from an area of interest. A general rule of thumb requires 
a fetch to measurement height ratio of 100:1, over a homogenous and 
flat surface with no sudden changes in landcover (Businger, 1986; Gash, 
1986; Horst and Weil, 1994; Tanner, 1988). However, Burba (2001) 
conducted EC measurements over a tallgrass prairie and found that over 
80% of the latent heat flux came from 80 m within the predominant 
wind for a measurement height of 1.5 m. Additionally, they examined 
the effect of roughness on fetch and found that the largest contribution 
of latent heat flux came from 12 to 18 m and 30–35 m of predominant 
wind distance for high (canopy height of 0.6 m) and low (canopy height 
< 0.05 m) roughness, respectively. 

In this study, the REB station, following the approach described by 
Linquist et al. (2015), was deployed to estimate latent heat flux density 
and calculate the ETa-eb from the residual of the energy balance. One 
limitation of the REB approach is that it does not provide a direct 
measurement of latent heat fluxes via an infrared gas analyzer and a 
sonic anemometer and instead derives the latent heat flux through the 
residual. As a result, the energy balance closure, as described in Twine 
et al. (2000), is not determinable. Our study site has a flat terrain with a 
predominant wind from the northwest with a secondary contribution 
from north-northwest (Fig. 1). Due to the small size of the area of study, 
a ratio of 100:1 is restricted. To best ensure a sufficient fetch while 
avoiding edges of the field, we placed the station about 90 m from the 
predominant wind as shown in Fig. 1. 

The assembly of the station was based on procedures described by 
McElrone et al. (2013). All data were logged and stored in a datalogger 
(CR1000, Campbell Scientific Inc., Logan, UT). A data logger program 
was used for data acquisition and post-processing following the steps 
described in Shapland et al. (2013). The station was maintained and 
adjusted weekly so that all sensors were clean and functioning properly. 

2.5.1. Net radiation and ground heat flux density 
A two-way net radiometer (NR Lite 2 Net Radiometer, Kipp & Zonen, 

Delft, Netherlands) was maintained at 2 m above the canopy to measure 
net radiation (Rn), the total incoming radiation minus the total outgoing 
radiation. Six soil heat flux plates (REBS HFT3 Heat Flux Plate, REBS, 
Inc., Seattle, WA, USA) were buried at a depth of 5 cm. Each plate was 
paired with soil thermocouple probes (TCAV Soil Thermocouple Probe, 
Campbell Scientific, Inc., Logan, UT, USA), installed on either side of the 
plate, with one probe installed diagonally from a depth of 5–2 cm, and 
the second probe installed diagonally from 2 cm to 5 cm. Six capacitance 
probes (Decagon 10HS, Meter Group, Pullman, WA, USA) were also 
installed near each soil heat flux sensor package at a depth of 5 cm to 
measure volumetric water content. These sensors provided measure-
ments of ground heat flux (G) that included the soil heat flux across the 
heat flow transducer (GT) and change in heat storage in the soil layer 
above the transducers (∆S), such that G = GT + ∆S (Shapland et al., 
2013). 

2.5.2. Sensible heat flux density from eddy covariance 
A three-dimensional ultrasonic anemometer (81000 3D Sonic 

Anemometer, RM YOUNG, Traverse City, MI, USA) was maintained at 
1.5 m above the canopy to collect wind velocity and sonic temperature, 
with a sampling frequency of 10 Hz, to measure sensible heat flux 
density (H) from the sonic anemometer via the covariance of the vertical 
wind and the sonic temperature (Eq. 7, Swinbank, 1951): 
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H = ρaCp

(
w′Ts

′
)

(7)  

Where ρa is the air density (g m− 3), Cp is the specific heat of air at 
constant pressure (J g− 1 K− 1), w is the speed of vertical wind component 
(m s− 1), and Ts is the sonic temperature (K). w′Ts

′ is the covariance 
between the vertical wind component and the sonic temperature with a 
two-dimensional coordinate rotation (Tanner and Thurtell, 1969). A 
two-dimensional rotation is also implemented within the logger pro-
gram (Meyers and Baldocchi, 2005). 

2.5.3. Latent heat flux density and evapotranspiration 
The latent heat flux density, an indirect measurement, is determined 

from the residual of the energy balance (Twine et al., 2000): 

λE = Rn − G − H (8)  

Where λE is the latent heat flux density (MJ m− 2), Rn is the net radiation 
(MJ m− 2), G is the ground heat flux density (MJ m− 2), and H is the 
sensible heat flux density (MJ m− 2). All flux densities were converted 
from W m− 2 to MJ m− 2 for the calculation above, with gap-filling via 
linear interpolation applied prior to being used in the calculation of λE. 
These instantaneous (half-hourly) λE were then computed into daily 
profiles. The mass flux density of water vapor, ET (mm), is then deter-
mined as: 

ET =
λE
λ

(9)  

Where λ is the latent heat of evaporation, which equals 2.45 MJ per 
0.0001 m3. 

3. Results 

3.1. Energy balance components 

The hourly values (24-h profile) for each of the individual energy 
balance components throughout the season were averaged to construct 
the seasonal mean hourly energy balance. The flux densities (Rn and G) 
usually increased around 6AM and transitioned into stable conditions 
after 6PM. 

During summer in the Central Valley, as the daily average temper-
ature increases throughout the season, we would expect a positive trend 
in H, similar to Rn and G. However, we observed a decrease in H as the 
season moved towards summer, suggesting that incoming radiant en-
ergy was not the only source of incoming energy. On a finer resolution in  
Fig. 3, we observed low or negative daytime H (cyan to light green hue) 
from late May to the beginning of July, which indicates an advection 

effect, as additional energy other than radiation was added into the 
system. To investigate this, we evaluated NDVI data around the field 
throughout the season, to examine the local environmental conditions 
and assess the potential for advection effects. An example from a Landsat 
8 image acquired on June 2nd is shown in Fig. 4. The field is surrounded 
by pixels with low NDVI, indicating bare, dry soil in the fields adjacent 
to our study site. One possible reason for the advection effect observed 
might be that in 2015, as a result of the exceptional drought in Cali-
fornia, most of the surrounding fields were left bare and the study field 
was one of the only irrigated fields at WSREC. With a predominant wind 
from the NW, the cooler environmental system in the field serves as a 
sink of energy, as heat transfer will occur spontaneously from higher 
temperature bodies to lower temperature bodies. During canopy 
development, more areas were shaded, resulting in cooler soil temper-
atures, which further increased the field’s ability to absorb heat. 
Consequentially, the additional energy stimulated the growth of λE 
based on the energy balance presented in Eq. (8). 

For periods with negative daily H, in order to avoid uncertainties 
associated with nighttime fluxes, we used the daytime (6AM–6PM, in-
clusive) H along with corresponding daytime Rn and G to calculate the 
residual of the energy balance, instead of using linear interpolation. By 
using daytime fluxes when daytime H is below zero, the possibility of the 
field serving as a daytime sink of energy is not neglected, while avoiding 
the uncertainties with nighttime fluxes. Due to the fact that the closure 
was forced inherently by the REB approach, it is important that we were 
able to compare the data from REB station against the weighing lysim-
eter. This allowed us to assess the accuracy of λE via the comparison 
with the weighing lysimeter data, which agreed well (Figs. 5 and 6). 

3.2. Daily evapotranspiration and intercomparison 

3.2.1. Comparisons between methods 
All daily ET values collected during the growing season from the flux 

station, weighing lysimeter, and SIMS were plotted against each other to 
test the strength of the relationship between measurements (Fig. 5). In 
addition, statistical metrics for the comparison of daily ETc-SIMS against 
ETa-lys and ETa-eb were computed (Table 2). 

Overall, the results of the comparison between measurements 
showed good agreement, with R2 values above 0.9 in all cases. In the 
comparison between ground measurements, the trendline suggests that 
a slight underestimation of ETa-eb relative to ETa-lys was observed for the 
lower values of ETa, while an overestimation occurred for the higher ETa 
values. The comparison of daily ETc-SIMS against ETa-lys also showed 
good agreement, with model efficiency (EF) of 0.91, regression coeffi-
cient close to 1, MAE of 0.56 mm/day, root mean squared error (RMSE) 
of 0.73 mm/day, and mean bias error (MBE) of − 0.31 mm/day, In the 

Fig. 3. Distribution of sensible heat flux throughout the growing season.  
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comparison between daily ETc-SIMS against ETa-eb, ETc-SIMS had a small 
positive bias relative to ETa-eb (MBE of 0.15 mm/day), the model EF was 
high (0.93), MAE was only 0.47 mm/day and RMSE was 0.65 mm/day 
(Table 2). 

3.2.2. Intercomparison of evapotranspiration 
From the fc data shown in Fig. 2, we estimated the lengths of crop 

stages and plotted linear regressions representing each growth stage. In 

the comparison between ETc-SIMS and ETa-lys, a close relationship was 
obtained for both mid and late seasons, while an underestimation of ETc- 

SIMS was observed in the initial and crop establishment stage. The 
comparison between ETc-SIMS and ETa-eb showed that there was slight 
overestimation of ETc-SIMS for the mid-season. However, closer re-
lationships between the two sets of data were observed in the initial and 
crop establishment stage and late seasons (Fig. 6). In Figs. 7 and 8, 
vertical lines were drawn to distinguish growth stages where the first 

Fig. 4. NDVI from Landsat for the study site and surrounding area on June 2, 2015.  
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section is the initial and crop development stage (01/01/2015–02/26/ 
2015); the second section is the mid-season (02/27/2015–06/02/2015); 
and the last section is the late season (06/03/2015–06/30/2015). On a 
daily timestep, ETa-lys and ETa-eb tracked closely with each other (Fig. 7). 
Over the development stage, the weighing lysimeter, in general, had the 

highest ET, and ETa-lys was consistently higher than ETa-eb and ETc-SIMS, 
though agreement between these measurements increased as the crop 
reached maturity. ETc-SIMS was generally the lowest, likely due to the soil 
evaporation from exposed soil, which is only considered to a limited 
extent in ETc-SIMS. As the canopy develops, transpiration becomes 
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Fig. 6. Linear regressions of ETc-SIMS versus ETa-lys measured by weighing lysimeter and ETa-eb measured by the REB station. Comparisons are separated into different 
crop growth stages based on the fractional cover shown in Fig. 2. 

Table 2 
Statistical metrics comparing the daily ET measured by REB and weighing lysimeter with remotely sensed ET data from SIMS. For each comparison, we calculated 
Mean Bias Error (MBE); Mean Absolute Error (MAE); Root Mean Square Error (RMSE); and Modeling Efficiency (EF).   

ETa-lys ETa-eb  

MBE MAE RMSE EF MBE MAE RMSE EF 

ETc-SIMS − 0.31 mm 0.56 mm 0.73 mm  0.91 0.15 mm 0.47 mm 0.65 mm  0.93  
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dominant and increased alignment among all measurements was 
observed; e.g., during the mid-season and towards the end of the crop 
cycle, a max ETc-SIMS of 7.88 mm was observed on May 31st, compared 
to 7.98 mm for ETa-lys and 7.28 mm for ETa-eb (Fig. 7). During crop 
establishment, daily ETc-SIMS underestimated ETa-lys and ETa-eb by 51.0% 
and 8.2%, respectively. During mid-season, daily ETc-SIMS performed 
very well with an underestimation of 3.5% and an overestimation of 
6.9% compared to ETa-lys and ETa-eb, respectively. Similar patterns were 
observed in late season, where ETc-SIMS overestimated both ETa-lys and 
ETa-eb by 0.6% (Fig. 6), representing very strong agreement overall. 

Daily Kc-lys and Kc-eb values were calculated from ETa-lys and ETa-eb, 
by dividing the daily ET values by the daily ETo from CIMIS station #2. 
Daily Kcb-SIMS values were calculated through linear interpolation be-
tween the satellite-based Kcb values from SIMS calculated on satellite 

overpass dates. The daily Kc and Kcb timeseries from each of these data 
sources are plotted in Fig. 8. Over the entire study period, daily Kc-lys and 
Kc-eb measurements were noisy, while Kcb values from SIMS (Kcb-SIMS) 
stayed relatively smooth due to the dependence on satellite NDVI 
measurements which track crop canopy development. Kcb-SIMS presented 
a relatively dynamic curve with a max Kcb-SIMS of 1.02, highlighting the 
value of using satellite data to measure variations in crop canopy density 
and extent relative to idealized conditions. SIMS, accompanied by both 
the lysimeter and flux station, entered the mid-season ~15 days earlier 
than crop growth stages suggested in FAO56. This result illustrates the 
ability of satellite data to capture localized variability in rates of crop 
canopy development driven by variations in agronomic practices and 
interannual variability in weather conditions. During the mid- and late- 
season, when soil evaporation was low, Kcb-SIMS aligned closely with Kc- 
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lys and Kc-eb (Fig. 8). 
The cumulative values of ET throughout the sugar beet crop cycle for 

the various sources are presented in Fig. 9. On the primary y-axis, the 
seasonal total of ETa-lys was 793.9 mm; ETa-eb was 709.6 mm; and ETc- 

SIMS was 737.1 mm. On the secondary y-axis, the total irrigation and 
precipitation was 696.6 mm. Seasonally, ETc-SIMS was 7.7% lower than 
ETa-lys and 3.7% higher than ETa-eb. We also separated cumulative ET 
into corresponding crop stages. During initial and crop establishment, 
cumulative ETc-SIMS, ETa-lys, ETa-eb were 51.3 mm, 81.8 mm, and 
59.9 mm, respectively; during mid-season, cumulative ETc-SIMS, ETa-lys, 
ETa-eb was 491.2 mm, 518.4 mm, and 456.6 mm, respectively; during 
late season, cumulative ETc-SIMS, ETa-lys, ETa-eb was 194.6 mm, 
193.7 mm, and 193.1 mm, respectively. 

4. Discussion 

4.1. Comparison between ground measurements 

During the growing season, the weighing lysimeter was carefully 
maintained to ensure data quality. Additionally, it was calibrated twice 
with high R2 values of 0.9999 in December 2014 and 0.9998 in February 
2015. This supported the accuracy and reliability of the measurements 
from the weighing lysimeter. Over the course of the study, daily average 
ETa-eb was 8% lower than ETa-lys (Fig. 5). Moorhead et al. (2019) re-
ported similar findings for sorghum and corn with a daily underesti-
mation of 14% using Eq. (8) with H calculated from a scintillometer. 
Although weighing lysimeters are generally considered to provide the 
most accurate characterization of ET (Howell et al., 1985; Evett et al., 
2012), the WSREC weighing lysimeter, similar to most weighing ly-
simeters, has a calibrated irrigation system (1 mm of water/4 kg weight 
loss) and is maintained differently than the rest of the field. Compared to 
weighing lysimeters, REB is a portable and cost-effective alternative that 
captures a more complete spatial representation of the field. However, 
without the direct measurement of the latent energy flux, it is not 
possible to evaluate the energy balance closure, and thus difficult to 
evaluate the accuracy without a second independent measurement. By 
forcing closure, some of the storage terms are also neglected in the REB 
approach. In future studies, it would be preferable to employ an infrared 
gas analyzer to benchmark the REB approach across different crop types. 
Overall, when compared to the ETa-lys data at this site, ETa-eb agrees well, 
with underestimation of 11% at a seasonal timestep (Fig. 9), and a MAE 
of 8% at a daily timestep (Fig. 5). This level of agreement shows strong 
potential for use of the REB approach in water management applications 
when use of lysimetry or full OPEC instrumentation is not feasible. 

4.2. Intercomparison and implications for Kcb from NDVI 

The overall pattern in daily ET for the crop is summarized in Fig. 7. 
Daily ET peaked at approximately 8.23 mm/day and 8.55 mm/day for 
the weighing lysimeter and REB station, respectively. The timing of this 
peak corresponded with a maximum ETc-SIMS value of 7.96 mm/day. 
The maximum Kcb-SIMS was 1.02, as shown in Fig. 8. Hauer et al. (2015) 
used field measured canopy height and fc coupled with A&P approach 
and found a maximum Kcb of 1.12 for a sugar beet field. González-Dugo 
and Mateos (2008) derived a maximum Kcb (using a soil adjusted 
vegetation index (SAVI)) ranging from ~1.0–1.2 from four sugar beet 
fields. FAO56 Table 12 lists Kc mid value of 1.2 and FAO56 Table 17 lists 
Kcb mid value of 1.15 for sugar beet under well-watered conditions in 
sub-humid climates (Allen et al., 1998). The maximum Kcb-SIMS 
compared well with these studies, although at the lower end. Following 
the period of maximum daily ET around June 18th, there is a sharp 
decline in ETc-SIMS and both sets of ground measurements, which 
correspond to the end of irrigation for the field and the onset of senes-
cence of the crop (Figs. 7 and 8). This suggests that Kcb-SIMS has the 
ability to accurately capture localized information, especially at the 
peak crop stage (Fig. 8). In addition, Kcb-SIMS values throughout the crop 

cycle are within the range of values obtained by González-Dugo and 
Mateos (2008), where the VI based approach to estimate Kcb was also 
applied. 

4.3. Strengths and limitations of SIMS 

Due to the reliance primarily on measurement in the visible and 
near-infrared wavelengths, SIMS can be implemented using remote 
sensing data from a variety of satellite and airborne platforms including 
Landsat and Sentinel-2. Using data from multiple satellites, SIMS can 
currently update satellite-derived NDVI, fc, and Kcb values every 4–5 
days through the combined use of data from Landsat 8, Sentinel-2A and 
Sentinel-2B. Johnson et al. (2016) showed in field trials for lettuce and 
broccoli that use of SIMS data with other irrigation and nutrient man-
agement applications, such as CropManage developed by the University 
of California Agriculture and Natural Resources (UCANR) Institute, 
resulted in reductions in applied water of 20–40% relative to static 
irrigation schedules. 

Daily ETc-SIMS considerably underestimated daily ETa-lys by 51.0% on 
average during the crop development stage (Fig. 6), which is likely due 
to the model’s parametrizations of the diffusive evaporative component. 
This suggests that incorporation of a gridded soil water balance model to 
account for evaporation from bare soil via calculation of Ke values is 
necessary to help SIMS provide a better estimation of ETc during the 
period of initial and crop establishment stages. During the mid- to late- 
season, good agreement was observed between each independent mea-
surement of ET from the sugar beet field (Fig. 6). As reported in Glenn 
et al. (2011), the uncertainty between satellite-estimated ET and in-situ 
measurements can generally range from ~5–10% for lysimetry and 
~10–30% for flux data. Similar results were found in Padilla et al. 
(2011), where they used a Kcb-VI approach (complemented with a soil 
water balance for Ke and stress coefficient) to estimate ET in wheat and 
corn. Their modeled results compared well with both daily ETa 
measured from EC and the lysimeter, with an average overestimation of 
8%. Mateos et al. (2013) used a Kcb-VI approach (in conditions of no 
water stress) in cotton and found their modeled results overestimated 
daily ETa measured from EC by less than 10%. We found that the sea-
sonal difference of ETc-SIMS was 7.7% lower than ETa-lys and 3.7% higher 
than ETa-eb (Fig. 9). The RMSE values for the comparison between 
ETc-SIMS and ETa-lys (0.73 mm, Table 2) and between ETc-SIMS and ETa-eb 
(0.65 mm, Table 2) are in agreement with RMSE reported (0.75 mm) in 
Mateos et al. (2013). The high modeling efficiency for the comparison: 
1) between ETa-lys and ETc-SIMS (0.91); 2) between ETa-eb and ETc-SIMS 
(0.93) further indicates the good performance of SIMS (Table 2). These 
results suggest that SIMS is able to provide ET estimates within the ex-
pected range of uncertainty of the in-situ measurements. The close 
alignment of ETc-SIMS with ETa-lys and ETa-eb from mid- and late season 
(Figs. 6 and 7) further showcases that Kcb-SIMS, calculated using the A&P 
approach coupled with satellite-derived VI and fc data, has the potential 
for operational ET estimation for irrigation management of sugar beets. 

Although daily ETc-SIMS underestimated ETa-lys by only 2.97% 
throughout the whole growing period as shown in Fig. 5, the approach 
used to calculate ETc-SIMS from satellite-derived VI data misses soil 
evaporation during the crop establishment period (Fig. 7). Compared to 
daily average ETa-lys, ETc-SIMS greatly underestimated ET by 51.0% 
during the crop establishment period, versus a 3.5% underestimation 
during mid-season and a 0.6% overestimation for end-season (Fig. 6). 
The underestimations during the initial and establishment periods sug-
gest that the limitation of missing soil evaporation is evident; while the 
later close alignments confirm that ETc-SIMS agrees well with ETa-lys once 
the crop canopy is established, validating the use of Kcb from NDVI with 
A&P approach. 

When compared to daily ETa-eb, daily ETc-SIMS overestimated ET by 
4.6% during the entire crop cycle (Fig. 5). Throughout crop stages, daily 
ETc-SIMS consistently overestimated ETa-eb, except the 8.2% underesti-
mation during the initial and crop establishment (Fig. 6). The 
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underestimation further proves the need to account for soil evaporation 
in the early stages. The later overestimations could be caused by flux 
measurements as any overestimations in H or underestimations in Rn 
and G would result an underestimation of λE based on Eq. (8). However, 
this is unknown due to the lack of determination of the energy balance 
closure, further highlighting the importance of having an independent 
measurement of λE along with other energy balance sensors. 

Considering phenology directly influences evaporative rates, it could 
be beneficial to incorporate other climatic variables within SIMS since 
accurate estimations of Kcb are contingent on the crop growth stages 
(Richardson et al., 2013; Hunsaker et al., 2002). Although this study 
demonstrated strong alignment between SIMS and two independent 
field measurements of ET, variables including cumulative growing de-
gree days (CGDD), derived by maximum, minimum, and base temper-
ature, could be used to determine crop growth stages and better 
construct the Kcb curve for mid- and late-season in the future (Stegman, 
1988; Slack et al., 1996; Raes et al., 2012). This has previously been 
done in studies such as Hunsaker et al. (2003a, 2003b), where they used 
CGDD in addition to NDVI to construct the Kcb curve (R2 = 0.82) after 
full canopy cover (NDVI > 0.8). However, as advection can affect sur-
face energy dynamics, it is important to distinguish a reasonable tem-
perature threshold should CGDD be incorporated with NDVI. 

5. Conclusion 

The performance of SIMS for ET mapping was evaluated in a drip 
irrigated sugar beet field in the California Central Valley over a 181-day 
crop cycle. The accuracy of ETc-SIMS was assessed against ET data from a 
weighing lysimeter and a REB flux station. Daily ETc-SIMS data was 
derived from Landsat 8 surface reflectance data coupled with the A&P 
approach. Comparisons performed in this study for ETc-SIMS yielded an 
RMSE of 0.73 mm/day and 0.65 mm/day compared to ETa-lys and ETa- 

eb, respectively. Seasonally, ETc-SIMS totaled 737.1 mm, which was 
within 7.7% of total ETa-lys, and 3.7% of ETa-eb. 

Daily ETc-SIMS was 0.55 mm/day lower than daily ETa-lys on average, 
resulting in an underestimation relative to ETa-lys of 38.7 mm during the 
initial crop establishment period, highlighting the limited sensitivity of 
VI-based approaches to soil evaporation. Once the crop canopy began to 
develop, however, there was strong alignment between ETc-SIMS and ETa- 

lys with differences of only 0.25 mm/day as transpiration become the 
predominant component of ET. ETc-SIMS also agreed well during this 
period with ETa-eb, with differences of − 0.31 mm/day. ETc-SIMS also had 
better agreement with ETa-eb during the initial crop establishment 
period with differences of only 0.01 mm /day. Results from use of the 
REB approach in this study are promising and show reasonable overall 
agreement with the lysimeter measurement. In the future, deployment 
of an IRGA alongside the REB instrumentation would be important in 
benchmarking the performance of the REB approach before extensive 
use as the sole ground data source for assessment of remotely sensed ET 
estimates. 

Acknowledging the underestimation of soil evaporation during the 
initial period of crop establishment, we conclude that ETc-SIMS is able to 
provide reasonable daily and seasonal estimates of ETc for sugar beets, 
especially during the mid- and late-season. This assessment of SIMS 
further supports the utility of applying satellite VI-based methods 
coupled with the A&P approach to estimate ETc for drip-irrigated crops. 
To address the underestimation of soil evaporation during the initial 
period of crop establishment, future studies should incorporate a grid-
ded soil water balance model to support calculation of Ke to estimate soil 
evaporation within SIMS. Currently, SIMS is being implemented and 
validated for a wide range of crop types in the Salinas Valley and Central 
Valley in California, and ongoing work is supporting expansion across 
the western U.S. The ability of SIMS to rapidly estimate field scale ETc 
via fully automated methods could be useful and significant to agricul-
tural producers and water resource managers for future water use effi-
ciency and conservation efforts. 
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Allen, R., 2020. Prediction of crop coefficients from fraction of ground cover and 
height. Background and validation using ground and remote sensing data. Agric. 
Water Manag. 241, 106197. 
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