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Abstract

When two groups are compared in a pre-post study, two different conclusions can be drawn between the two-sample t-test
and the analysis of covariance (ANCOVA). It is known as Lord’s Paradox, and it occurs because the parameter in the
two-sample t-test and the parameter of interest in the ANCOVA model are not the same quantity. The difference between
the two parameters can be explained by the covariance of linearly combined random variables which is an important topic
in introductory statistical theory courses. Lord’s paradox is frequently observed in practice, and it is very important for
students (future researchers) to have clear understanding of the paradox. The objective of this article is to explain Lord’s
Paradox using the covariance of linearly combined random variables. The paradox is explained using three scenarios in
the context of educational research. The first scenario is when the average baseline (pre-score) is greater in the treatment
group than the control group, the second scenario is when the average baseline is lower in the treatment group than the
control group, and the third scenario is when the average baseline is same between the two groups by randomization. This
article is written at the level of introductory statistical theory courses for undergraduate and graduate statistics students to
help understanding the difference between the parameter of interest in the two-sample t-test and the parameter of interest
in the ANCOVA model.

Keywords: two-sample t-test, ANCOVA, covariance, linear combination of random variables, pre-post studies

1. Introduction

When two groups are compared in a pre-post study, Lord’s Paradox can be observed between two researchers when
a researcher compares the average change using the two-sample t-test and the other researcher compares the average
post-measurement using the analysis of covariance or simply ANCOVA (Lord 1967; Lord 1969). The paradox has been
studied in the context of health sciences, environmental sciences, and psychometrics (Holland & Rubin, 1983; Wainer
& Brown, 2006; Glymour et al., 2005; Tu et al., 2008; Pearl, 2016). It is an interesting phenomenon which frequently
occurs in practice, but it is not easy to quantify the exact difference between the parameter in the two-sample t-test and
the parameter in the ANCOVA model without statistical theory. In this article, we explain Lord’s Paradox using the
covariance of linearly combined random variables which is discussed in many statistical theory textbooks (Wackerly et
al., 2008; Ross, 2012).

2. Motivating Example

The following example is adapted from the example given by Wright (2006). Suppose two groups of students are com-
pared in their mathematics skills. Group 1 is the treatment group of size n1 (receiving a new teaching method), and Group
0 is the control group of size n0 (receiving a traditional teaching method). Assume each student took pre-test and post-test.

2.1 Scenario 1 (Wright, 2006)

Suppose each student selects a group by his or her own will. Suppose a student with high motivation (who tends to show
high academic performance) is more likely to select Group 1, and suppose a student with relative low motivation is more
likely to select Group 0. Wright (2006) illustrated a similar scenario with balanced group sizes n1 = 5 and n0 = 5 for
Group 1 and Group 0, respectively. See Table 1 for the hypothetical data with minor modification from the example of
Wright (2006).
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Table 1. Hypothetical data of a pre-post study (Scenario 1)

ID Group Pre Post Difference
1 0 20 30 10
2 0 30 35 5
3 0 40 40 0
4 0 50 45 -5
5 0 60 50 -10
6 1 40 50 10
7 1 50 55 5
8 1 60 60 0
9 1 70 65 -5
10 1 80 70 -10

Hypothetical Data (Scenario 1)
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Figure 1. Hypothetical data of a pre-post study (Scenario 1)

The average difference is (10 + 5 + 0 − 5 − 10) / 5 = 0 for both groups which can be calculated from Table 1, but the
post-score is 10 points greater on average when we condition on the pre-score as shown in Figure 1. (The data in real
world may contain random noise around the line.) Using the two-sample t-test, the data are not against the null hypothesis
at all (same group average). Using the ANCOVA model, on the other hand, the data are against the null hypothesis and
serve as strong evidence for the alternative hypothesis (greater average post-score in Group 1 conditioning on pre-score).
This is a traditional example of Lord’s Paradox (Lord, 1967; Wright, 2003; Maxwell and Delaney, 2004; Wainer and
Brown 2006). In addition to the graphic illustration, an analytic explanation of the paradox can be provided using the
covariance of linearly combined random variables.

3. Covariance of Linearly Combined Random Variables

Several textbooks for the first semester of undergraduate statistical theory courses include the following proposition
(Wackerly et al., 2008; Ross, 2012).

3.1 Proposition

Let U1, . . . ,Un and W1, . . . ,Wm be random variables. Let L1 =
∑n

i=1 aiUi and L2 =
∑m

j=1 b jW j for fixed real numbers
a1, . . . , an and b1, . . . , bm. Then

Cov(L1, L2) =
n∑

i=1

m∑
j=1

aib j Cov(Ui,W j) .
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Since V(L1) = Cov(L1, L1), a special result for the variance is

V(L1) =
n∑

i=1

n∑
j=1

aia j Cov(Ui,U j)

=

n∑
i=1

a2
i V(Ui) + 2

n∑
i=1

∑
j> i

aia j Cov(Ui,U j) .

From these results, we can explain why the two-sample t-test and the ANCOVA model can lead to different conclusions.

3.2 Two-sample t-test

Let Zi denote the pre-score and Yi denote the post-score of the ith subject in a sample. Let Xi denote the group indicator
for the ith subject, where Xi = 0 for Group 0 (control) and Xi = 1 for Group 1 (treatment). The two-sample t-test can be
formulated as a simple linear model

Di = β0 + β1Xi + ϵi , (1)

where Di = Yi − Zi is the change in test score (hence a positive value of Di is a desirable outcome), and ϵi ∼ N(0, σ2) is a
random variable which is independent of Xi. In Equation (1), the parameter of interest is the difference in the two group
averages

β1 = E(Di | Xi = 1) − E(Di | Xi = 0) .

The null hypothesis is H0: β1 = 0, and the one-sided alternative hypothesis is H1: β1 > 0. An alternative expression of β1
is

β1 =
Cov(Xi,Di)

V(Xi)
(2)

because
Cov(Xi,Di) = Cov(Xi, β0 + β1Xi + ϵi)

= Cov(Xi, β0) +Cov(Xi, β1Xi) +Cov(Xi, ϵi)
= β1 V(Xi)

by the proposition in Section 3.1.

3.3 ANCOVA

Preserving the same notation used in Section 3.2, the ANCOVA model assumes

Yi = γ0 + γ1Xi + γ2Zi + δi , (3)

where δi ∼ N(0, τ2) is a random variable which is independent of Xi and Zi. Under the ANCOVA model, the parameter
of interest is γ1, the difference in the expected post-score when we compare a randomly selected subject in Group 1 to
a randomly selected subject in Group 0 of the same pre-score. The null hypothesis is H0: γ1 = 0, and the one-sided
alternative hypothesis is H1: γ1 > 0. An alternative expression of the ANCOVA model is

Di = γ0 + γ1Xi + (γ2 − 1) Zi + δi

by subtracting Zi on both sides of Equation (3). Using the proposition in Section 3.1,

Cov(Xi,Di) = Cov(Xi, γ0 + γ1Xi + (γ2 − 1) Zi + δi)
= γ1V(Xi) + (γ2 − 1) Cov(Xi,Zi) ,

so the parameter of interest can be written as

γ1 =
Cov(Xi,Di) + (1 − γ2) Cov(Xi,Zi)

V(Xi)

= β1 + (1 − γ2)
(
Cov(Xi,Zi)

V(Xi)

)
from Equation (2). Using the same argument of the two-sample t-test, we can write

κ1 ≡
Cov(Xi,Zi)

V(Xi)
= E(Zi | Xi = 1) − E(Zi | Xi = 0) ,

3
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which is interpreted as the difference in the average pre-score when we compare Group 1 to Group 0.

3.4 Summary

In general, the two-sample t-test and the ANCOVA model have different parameters of interest, and they are related as

γ1 = β1 + (1 − γ2) κ1 ,
β1 = γ1 + (γ2 − 1) κ1 .

(4)

They are the same quantity (i.e., β1 = γ1) if κ1 = 0 or γ2 = 1. The first condition κ1 = 0 can be satisfied by randomization
(i.e., conducting an experimental study instead of an observational study), but the second condition γ2 = 1 is out of
researcher’s control. In most pre-post studies, pre- and post-scores are positively correlated in both groups, so γ2 > 0. In
addition, we often have 0 < γ2 < 1 because of regression toward the mean (Stigler, 1997; Barnett et al., 2005).

4. Hypothetical Scenarios

In this section, using the relationship between β1 and γ1 in Equation (4), three scenarios are discussed in the context of
the educational research. The first scenario is when the average baseline (pre-score) is greater in the treatment group than
in the control group (Section 2.1), the second scenario is when the average baseline is lower in the treatment group than
in the control group, and the third scenario is when the average baseline is the same between the treatment group and the
control group by randomization. The control group is referred to as Group 0, and the treatment group is referred to as
Group 1.

4.1 Revisiting Scenario 1

In Scenario 1 (from Section 2.1), the ordinary least square estimation (OLSE) results in γ̂1 = 10 and γ̂2 = 0.5. Due to
self-selection by students, the pre-score is greater in Group 1 by 20 points on average when compared to Group 0, so

β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 10 + (0.5 − 1) (20) = 0

for the two-sample t-test. This is an example of Lord’s Paradox when the ANCOVA model can reject the null hypothesis,
whereas the two-sample t-test cannot reject the null hypothesis even though the new teaching method seems significantly
more effective than the traditional teaching method when we compare two randomly selected students from each group
with the same baseline score.

4.2 Scenario 2 (Lower Average Baseline Score in the Treatment Group)

In the second scenario, assume the instructor allocates each student to Group 0 (control) or Group 1 (treatment) believing
that the new teaching method would benefit students particularly with low academic performance. See Table 2 for hypo-
thetical data, and see Figure 2 for the scatter plot of pre-score and post-score by group. Note that the pre-score is lower in
Group 1 by 20 points on average when compared to Group 0 (i.e., κ̂1 = −20).

Table 2. Hypothetical data of a pre-post study (Scenario 2)

ID Group Pre Post Difference
1 0 40 45 5
2 0 50 50 0
3 0 60 55 -5
4 0 70 60 -10
5 0 80 65 -15
6 1 20 35 15
7 1 30 40 10
8 1 40 45 5
9 1 50 50 0
10 1 60 55 -5

From the data, the OLSE provides γ̂1 = 0 and γ̂2 = 0.5. In this scenario, the ANCOVA model cannot reject the null
hypothesis because γ̂1 = 0. From Equation (4), for the two-sample t-test, we estimate β̂1 = 0 + (0.5 − 1) (−20) = +10
which can lead to the rejection of β1 = 0 in favor of β1 > 0 (i.e., greater benefit from the new teaching method). This
is another example of Lord’s Paradox when the two-sample t-test can reject the null hypothesis even though the new
teaching method seems ineffective conditioning on the pre-score.

4
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Hypothetical Data (Scenario 2)
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Figure 2. Hypothetical data of a pre-post study (Scenario 2)

4.3 Scenario 3 (Same Average Baseline Score between the Two Groups)

Suppose students are randomized (or controlled to match the average pre-score between the two groups) so that κ1 = 0.
In this case, the result from Equation (4) leads to β1 = γ1. As shown in Table 3 and Figure 3, we have κ̂1 = 0, so
β̂1 = γ̂1 = 10, but the strength of statistical evidence for the alternative hypothesis is stronger in the ANCOVA model than
in the two-sample t-test because the standard error is lower in the ANCOVA model. Though the ANCOVA model leads
to nearly zero p-value, the two-sample t-test results in a p-value close to 0.05 (for the right-tail H1: β1 > 0). In practice,
when students are randomized, the ANCOVA model should have higher statistical power than the two-sample t-test. It is
because, while the OLSE is unbiased for both β1 and γ1, the variance of Yi − γ2Zi is lower than the variance of Yi − Zi

conditioning on Xi as discussed in Appendix 1.

Table 3. Hypothetical data of a pre-post study (Scenario 3)

ID Group Pre Post Difference
1 0 30 40 10
2 0 40 45 5
3 0 50 50 0
4 0 60 55 -5
5 0 70 60 -10
6 1 30 50 20
7 1 40 55 15
8 1 50 60 10
9 1 60 65 5
10 1 70 70 0
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Hypothetical Data (Scenario 3)
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Figure 3. Hypothetical data of a pre-post study (Scenario 3)

5. Examples

In this section, we provide two practical examples. The example in Section 5.1 is to compare the effect of two programs
on self-esteem score, and the example in Section 5.2 is to compare the effect of two teaching methods on test score.

5.1 Effect of Exercise on Self-Esteem

This example is from the data in R with car package (R Core Team, 2016; Fox & Weisberg, 2011). The data can be seen
using the code below.

> library(car)

> WeightLoss

It has three groups, but we focus on two of the three groups. Twelve subjects (n0 = 12) were treated by a diet program
for three months, and this group is referred to as Group 0. Ten subjects (n1 = 10) were treated by an exercise program in
addition to the diet program for three months, and this group is referred to as Group 1. From the data presented in Table
4, we can estimate the average self-esteem score 14.8333 for Group 0 and 15.2 for Group 1 at Month 1, so κ̂1 = 0.3667.

To formulate hypothesis testing in terms of the expected change in self-esteem (comparing Month 3 to Month 1), the
two-sample t-test can be used with H0: β1 = 0 versus H1: β1 > 0, assuming diet and exercise would be more beneficial
than diet only, at significance level α = 0.05. Using the two-sample t-test, we have a lack of evidence to reject H0: β1 = 0
with observed statistics β̂1 = 1.0667, ŝe = 0.6568, T = 1.624, and p-value = 0.060.

To formulate hypothesis testing in terms of the expected self-esteem score at Month 3 given the score at Month 1, the
ANCOVA model can be used with H0: γ1 = 0 versus H1: γ1 > 0 at α = 0.05. Using the ANCOVA model, we have a
statistically significance result to conclude H1: γ1 > 0 with observed statistics γ̂1 = 1.1764, ŝe = 0.6253, T = 1.881, and
p-value = 0.038.

In the left panel of Figure 4, the vertical distance between the two parallel lines is γ̂1 = 1.1764. In the right panel, the
vertical distance between the two horizontal lines is β̂1 = 1.0667. Note that γ̂2 = 0.7006 in the ANCOVA model, and the
estimated parameter in the two-sample t-test is slightly attenuated toward the null value β1 = 0 because

β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 1.1764 − (0.2994)(0.3667) = 1.0667

from Equation (4).

5.2 Comparing Two Teaching Methods

In a mathematics course, two teaching methods were compared for students’ learning on set theory, and the learning was
quantified by test scores. The first teaching method was based on a traditional lecture (Group 0), and the second teaching
method was based on an active-based learning (Group 1). Each of twenty students was randomized into Group 0 or Group
1 by researchers (n0 = n1 = 10), and each student took a pre-test and a post-test on conceptual thinking.

The left panel of Figure 5 shows the pre-score on x-axis and the post-score on y-axis by group. Random numbers were

6



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

Table 4. Self-esteem data for comparing diet group (Group 0) and diet + exercise group (Group 1)

ID Group (Xi) Month 1 (Zi) Month 3 (Yi) Change (Di)
1 0 12 14 +2
2 0 13 15 +2
3 0 17 18 +1
4 0 16 18 +2
5 0 16 15 –1
6 0 13 18 +5
7 0 12 14 +2
8 0 12 11 –1
9 0 17 19 +2
10 0 19 19 +0
11 0 15 15 +0
12 0 16 18 +2
13 1 15 19 +4
14 1 16 18 +2
15 1 13 17 +4
16 1 16 17 +1
17 1 13 16 +3
18 1 15 18 +3
19 1 15 18 +3
20 1 16 17 +1
21 1 16 19 +3
22 1 17 17 +0

ANCOVA
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Figure 4. Data comparing diet group (Group 0) and diet + exercise group (Group 1)

generated by N(0, η2) with η = 0.1, and they were added to original data points for illustration purpose because it was
difficult to show all twenty data points without the random noise. Under the ANCOVA model, we estimated γ̂1 = 1.0283
(with standard error ŝe = 0.3422) and γ̂2 = 0.2052. For the hypothesis testing H0: γ1 = 0 and H1: γ1 > 0 at significance
level α = 0.05, we could reject H0 in favor of H1 with T = 1.0283/0.3422 = 3.00 and p-value 0.004.

The right panel of Figure 5 shows the difference in scores (post-score minus pre-score) by group, and the horizontal lines
indicate the estimated average difference for each group. Despite the significant result from ANCOVA, the two boxplots
look very similar except for one data point in Group 1. Even though the students were randomized, the difference in
estimated average pre-score was κ̂1 = 4.5209 − 3.8075 = 0.7134 (comparing Group 1 to Group 0). From Equation (4),
we can estimate β̂1 = γ̂1 + (γ̂2 − 1) κ̂1 = 1.0283 − (0.7948)(0.7134) = 0.4613. For the two-sample t-test, the estimated
parameter β̂1 = 0.4613 was attenuated toward the null value β1 = 0, the estimated standard error was ŝe = 0.5948, and
the resulting test statistic was T = 0.4613/0.5948 = 0.776 with p-value 0.224. Therefore, we could not reject H0 in the
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two-sample t-test at α = 0.05.

ANCOVA
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Figure 5. Data comparing traditional lecture (Group 0) and active-based learning (Group 1)

6. Discussion

Lord’s Paradox has been known for a long time, and it has been explained graphically in literature, but it has received less
attention analytically. Using the covariance of linearly combined random variables, we can show that the parameter β1 in
the two-sample t-test and the parameter γ1 in the ANCOVA model are different by the magnitude of (γ2 − 1) κ1, where
κ1 is the difference in the average baseline score, comparing Group 1 (treatment) to Group 0 (control). In practice, it is
difficult to have (γ2 − 1) κ1 = 0 in observational studies. This article can be summarized by the three scenarios in terms of
the educational research scenarios presented in Section 4.

• When students with high baseline scores belong to the treatment group, which means κ1 > 0, we have β1 < γ1. In
an extreme case, we may have the opposite signs γ1 > 0 and β1 < 0.

• When students with low baseline scores belong to the treatment group, which means κ1 < 0, we have β1 > γ1.
When the treatment has no effect at all (i.e., H0: γ1 = 0 is true), there is a good chance of rejecting H0: β1 = 0 in
favor of H1: β1 > 0 under the two-sample t-test with a large sample size.

• When students are randomized so that the average baseline score is same in the two groups, which means κ1 = 0,
we have β1 = γ1. In most practical situations, where pre- and post-scores are positively correlated in both groups,
statistical power to conclude H1: γ1 > 0 in the ANCOVA model is greater than statistical power to conclude H1:
β1 > 0 in the two-sample t-test as heuristically explained in Appendix 1.

The proposition in Section 3.1 is mentioned in most introductory statistical theory courses, and students can have deeper
understanding of the two-sample t-test and the ANCOVA model through the examples.

In observational studies, we sometimes consider the propensity score, the conditional probability of assignment to a
particular group (i.e., control or treatment) as a function of other variables, say (W1, . . . ,Wk) (Rosebaum & Rubin, 1983).
The association between (W1, . . . ,Wk) and Xi does not necessarily imply the association between (W1, . . . ,Wk) and Yi. In
general, the difference between β1 in the two-sample t-test and γ1 in the multiple linear regression Yi = γ0 + γ1Xi + γ2Zi +∑k

j=1 α jW j,i + δi can be quantified as β1 − γ1 = (γ2 − 1) κ1 +
∑k

j=1 α jν j, where ν j ≡ E(W j,i | Xi = 1) − E(W j,i | Xi = 0).
See Appendix 2 for detail. If W j,i is not associated with Yi given all other covariates (i.e., α j = 0), it does not contribute
to the difference between β1 and γ1. The same argument holds for the use of a scalar propensity score, say S i. The role of
propensity score depends on the linear relationship between S i and Yi and E(S i | Xi = 1) − E(S i | Xi = 0). Without any
association between S i and Yi, the propensity score does not play any role in the difference between β1 and γ1.

8



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

References

Barnett, A. G., van der Pols, J. C., & Dobson, A. J. (2005). Regression to the mean: what it is and how to deal with it.
International Journal of Epidemiology, 34, 215-220. https://doi.org/10.1093/ije/dyh299

Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd edition). Thousand Oaks, CA: Sage.

Glymour, M. M., Weuve, J., Berkman, L. F., Kawachi, I., & Robins, J. M. (2005). When is baseline adjustment useful
in analyses of change? An example with education and cognitive change. American Journal of Epidemilogy, 162,
267-278. https://doi.org/10.1093/aje/kwi187

Holland, P., & Rubin, D. (1983). On Lord’s Paradox. In Principals of Modern Psychological Measurement (H. Wainer
and S. Messick, eds.). Hillsdale, NJ: Erlbaum.

Lord, F. M. (1967). A paradox in the interpretation of group comparisons. Psychological Bulletin, 68, 304-305.
http://dx.doi.org/10.1037/h0025105

Lord, F. M. (1969). Statistical adjustments when comparing preexisting groups. Psychological Bulletin, 72, 337-338.
http://dx.doi.org/10.1037/h0028108

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analysing data: A model comparison perspective
(2nd edition). Mahwah, NJ: Erlbaum.

Pearl, J. (2016). Lord’s Paradox revisited C (Oh Lord! Kumbaya!). Journal of Causal Inference, 4(2).
https://doi.org/10.1515/jci-2016-0021

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL https://www.R-project.org/.

Rosebaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal
effects. Biometrika, 70(1), 41-55. https://doi.org/10.1093/biomet/70.1.41

Ross, S. (2008). A first course in probability (8th edition). Upper Saddle River, NJ: Prentice Hall.

Stigler, S. (1997). Regression toward the mean, historically considered. Statistical Methods in Medical Research, 6,
103-114. https://doi.org/10.1177/096228029700600202

Tu, Y., Gunnell, D., & Gilthorpe, M. S. (2008). Simpson’s paradox, Lord’s Paradox, and suppression effects are the same
phenomenon – the reversal paradox. Emerging Themes in Epidemiology, 5(2).
https://doi.org/10.1186/1742-7622-5-2

Wackerly, D. D., Mendenhall, W., & Scheaffer, R. L. (2008). Mathematical statistics with applications (7th edition).
Belmont, London: Thomson Brooks/Cole.

Wainer, H., & Brown, L. M. (2006). Three statistical paradoxes in the interpretation of group differences: illustrated with
medical school admission and licensing data. Handbook of Statistics, 26, 893-918. https://doi.org/10.1016/S0169-
7161(06)26028-0

Wright, D. B. (2003). Making friends with your data: Improving how statistics are conducted and reported. British
Journal of Educational Psychology, 73, 123-136. https://doi.org/10.1348/000709903762869950

Wright, D. B. (2006). Comparing groups in a before-after design: when t test and ANCOVA produce different results.
British Journal of Educational Psychology, 76, 663-675. https://doi.org/10.1348/000709905X52210

Appendix 1

In some sense, the two-sample t-test and the ANCOVA model have a common structure:

Di = β0 + β1 Xi + ϵi ,

D∗i = γ0 + γ1 Xi + δi ,

where Di = Yi − Zi in the two-sample t-test and D∗i = Yi − γ2Zi in the ANCOVA model. In hypothesis testing, when
β1 = γ1, we can gain statistical power by having a smaller standard error (SE), and a lower SE can be achieved by a
smaller variance of the dependent variable, Di and D∗i , given Xi. Assume subjects are randomized so that Xi and Zi are

9



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

uncorrelated. Using the proposition in Section 3.1, we can express V(D∗i ) as

V(D∗i ) = V(Yi − γ2Zi)

= V(Yi) + γ2
2 V(Zi) − 2γ2 Cov(Yi,Zi)

= [V(Yi) + V(Zi) − 2 Cov(Yi,Zi)] +
[
γ2

2 V(Zi) − 2γ2 Cov(Yi,Zi) − V(Zi) + 2 Cov(Yi,Zi)
]

= V(Di) −
[
(1 − γ2

2) V(Zi) − 2(1 − γ2) Cov(Yi, Zi)
]
,

where
Cov(Yi,Zi) = Cov(γ0 + γ1Xi + γ2Zi + δi,Zi)

= γ1 Cov(Xi,Zi) + γ2 V(Zi)
= γ2 V(Zi)

because Cov(Xi, Zi) = 0 by the randomization. Therefore, we can simplify

V(D∗i ) = V(Di) −
[
(1 − γ2

2) V(Zi) − 2(1 − γ2) γ2 V(Zi)
]

= V(Di) − (1 − γ2) V(Zi)
[
(1 + γ2) − 2γ2

]
= V(Di) − (1 − γ2)2 V(Zi) .

To this end, we have V(D∗i ) < V(Di).

Appendix 2

In the two-sample T-test, the parameter of interest is

β1 =
Cov(Xi,Di)

V(Xi)
= E(Di | Xi = 1) − E(Di | Xi = 0) , (5)

where Di = Yi − Zi. If the multiple linear regression model is given by

Yi = γ0 + γ1Xi + γ2Zi +

k∑
j=1

α jW j,i + δi ,

we can write

Di = γ0 + γ1Xi + (γ2 − 1) Zi +

k∑
j=1

α jW j,i + δi .

Then the parameter of interest in the two-sample t-test is

β1 =
γ1V(Xi) + (γ2 − 1) Cov(Xi,Zi) +

∑k
j=1 α j Cov(Xi,W j,i)

V(Xi)

= γ1 + (γ2 − 1)
Cov(Xi,Zi)

V(Xi)
+

k∑
j=1

α j
Cov(Xi,W j,i)

V(Xi)
.

Since Xi is a Bernoulli random variable, as in Equation (5),

κ1 ≡
Cov(Xi,Zi)

V(Xi)
= E(Zi | Xi = 1) − E(Zi | Xi = 0) ,

ν j ≡
Cov(Xi,W j,i)

V(Xi)
= E(W j,i | Xi = 1) − E(W j,i | Xi = 0)

for j = 1, . . . , k. Therefore,

β1 = γ1 + (γ2 − 1) κ1 +
k∑

j=1

α jν j .
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