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Abstract
Researchers want to know whether the change in an explanatory variable X affects 
the change in a response variable Y (i.e., X causes Y). In practice, there can be two 
causal paths from X to Y, the path through a mediating variable M (indirect effect) 
and the path not through M (direct effect). The parameter estimation and hypoth-
esis testing can be performed by a regression-based mediation model. It is already 
known that randomization of X is not enough for unbiased estimation, and the bias 
due to an unobserved variable has been discussed in literature but often overlooked. 
In this article, we first review the challenge under a simple mediation model, then 
we provide a formula for the exact bias due to an unobserved precursor variable 
W, the variable which potentially causes the changes in X, M, and/or Y. We present 
simulation studies to demonstrate the impact of an unobserved precursor variable on 
hypothesis testing for indirect effect and direct effect. The simulation results show 
that the inflation of type I error is serious particularly in a large sample study. To 
numerically demonstrate the formula of the exact bias, a popular data set published 
in a journal of statistics education is revisited, and we quantify why the conclusion 
of data analysis can be different before and after accounting for the precursor vari-
able. The result shall remind the importance of a precursor variable in mediation 
analysis.
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1 Introduction

In educational and behavioral research or related areas, researchers often want to 
answer a scientific question whether the change in X affects the change in Y (i.e., a 
causal relationship from X to Y). In this case, X is referred to as the explanatory variable 
(or independent variable), and Y is referred as the response variable (dependent varia-
ble or outcome variable). In this article, X is a Bernoulli random variable (one or zero), 
a discrete random variable, or a continuous random variable, and Y is a continuous ran-
dom variable. The causal relationship is often denoted by X → Y , and the direction 
of arrow matters. If a researcher controls the change in X, it is called an experimental 
study. Otherwise, it is called an observational study. Caveats and challenges of causal 
inference through an observational study have been widely discussed in various disci-
plinary areas (Glass et al. 2013; Kang 2014; Rohrer 2018; Adams et al. 2019).

In mediation analysis (Baron and Kenny 1986; Hayes 2013), suppose there are two 
causal paths from X to Y. The first path is X → M → Y , and M is referred to as the 
mediating variable (mediator or intermediate variable). The second path is X → Y  
not through M. This mediation model is graphically illustrated in Fig. 1, and it is the 
simplest mediation model presented by Hayes (2013) which is highly cited (more than 
22,000 as of now) by many researchers. The first path is often referred to as the indirect 
effect, and the second path is often referred to as the direct effect. Hayes (2013) pre-
sented more complex mediation models than the one shown in Fig. 1.

Since Hayes (2013) developed the PROCESS macro in the statistical software 
SPSS, many researchers in social science have applied to prove complex causal paths, 
and the mediation models are still popular (Caniëls 2019; Garcia et al. 2018; Seli et al. 
2017; Zhang et al. 2019; Emery et al. 2019; Zhu et al. 2019; Villaluz and Hechanova 
2018; Manuti and Giancaspro 2019). Some of these studies were observational, and 
some were experimental. For instance, Zhang et  al. (2019) asked subjects to report 
their values of two explanatory variables (workplace ostracism and leader-member 
exchange), and Seli et al. (2017) randomly assigned subjects to either an experimental 
group (manipulating motivation) or a control group (no motivation). The term “media-
tion” has an implicit direction of relationship, and many researchers used the mediation 
model (or a more complex mediation model) based on data collected in an observa-
tional study (i.e., no randomization of X). Even though many researchers have con-
ducted observational studies, the direction of a causal relationship has been justified by 
a common sense or an acceptable theory.

The purpose of this article is not to discourage the use of a mediation model. The 
purpose is to remind researchers the impact of an unobserved “precursor variable” 
(denoted by W in this article) on the probability of concluding the presence of an indi-
rect effect and/or a direct effect. We use the term “precursor variable” to refer that W 

Fig. 1  The simplest media-
tion model presented by Hayes 
(2013)
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precedes X, M, and Y in a causal relationship as shown in Fig. 2. The necessity of rand-
omization (i.e., controlling X) has been accepted in scientific communities since it was 
first advocated by Ronald A. Fisher (Fisher 1925; Hall 2007). However, it has been 
shown that the randomization does not completely remove bias in a certain mediation 
analysis. VanderWeele (2010) and Imai et al. (2010a, 2010b) presented bias formulas 
under regression models, and Hong et al. (2018) discussed various methods of sensitiv-
ity analysis (Hong et al. 2015, 2018; VanderWeele 2015).

In this article, we review the basic regression-based mediation models (Figs. 1, 2; 
Hayes 2013), thoroughly present formulas in terms of the regression parameters to 
quantify the bias in the estimation of indirect effect and direct effect in the absence 
of W, and use simulations to demonstrate its consequence (inflated Type I error 
rate). We assume that readers of this article have background knowledge of multi-
ple linear regression models and basic theorems in mathematical statistics including: 
Cov(X,X) = V(X) and

where an uppercase letter denotes a random variable and a lowercase letter denotes 
a constant real number. In Sect. 2, we consider a simple case when the causal rela-
tionship from X to Y does not involve a mediator M, and a formula will demonstrate 
that randomization of X is enough to remove bias in this simple case. In Sect. 3, we 
consider a case when the causal relationship involves a mediator M, and another 
formula will clearly demonstrate that randomization of X is not enough to remove 
bias in this more complicated case. In Sect. 4, we present simulation results which 
demonstrate seriously inflated Type I error rates even in an experimental study. In 
Sect. 5, a numerical example is provided based on the data collected in the United 
States and previously analyzed by Guber (1999).

2  Causal relationship without a mediator

Let X denote an explanatory variable of interest (observed), Y denote a response 
variable of interest (observed), and W denote an omitted (unobserved) precursor 
variable which may affect X and/or Y (see Fig. 3). Suppose a researcher assumes the 
simple linear model

Cov

(

n
∑

i=1

aiXi,

m
∑

j=1

biYi

)

=

n
∑

i=1

m
∑

j=1

aibiCov(Xi, Yi)

Fig. 2  The simplest media-
tion model presented by Hayes 
(2013) with a precursor variable 
W 
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and suppose the true relationship among the three random variables, W, X, and Y, is 
given by the two linear models

Figure 3 graphically illustrates this situation. If we let �2

W
= V(W) and �2

i
= V(�∗

i
) 

for i = 1, 2 , then the variances V(X) and V(Y) can be expressed in terms of �2

W
 , �2

1
 , 

�2

2
 , and the regression parameters.
Here our goal is to express b1 (the quantity estimated by the researcher) in terms of 

�1 , �2 , �1 , �W , and �1 . Under the simple linear model assumed by the researcher,

so the estimand b1 can be expressed as

Under the true relationship,

Therefore, the researcher eventually estimates a complex quantity

where V(W) = �2

W
 and V(X) = �2

1
�2

W
+ �2

1
 . The researcher can accomplish b1 = �1 by 

randomization of X (i.e., �1 = 0 ). When in an observational study (i.e,. �1 ≠ 0 ), the 
researcher can estimate b1 = �1 when �1 ≠ 0 , but this is out of researcher’s control.

Y = b0 + b1X + � ,

X = �0 + �1W + �∗
1
,

Y = �0 + �1X + �2W + �∗
2
.

Cov(X, Y) = Cov(X, b0 + b1X + �) = b1V(X) ,

b1 =
Cov(X, Y)

V(X)
.

Cov(X, Y) = Cov(X, �0 + �1X + �2W + �∗
2
)

= �1V(X) + �2Cov(X,W)

= �1V(X) + �2Cov(�0 + �1W + �∗
1
,W)

= �1V(X) + �2�1V(W) .

b1 =
�1V(X) + �2�1V(W)

V(X)
= �1 + �2�1

(

V(W)

V(X)

)

,

Fig. 3  The true relationship 
among W, X, and Y (top) and the 
assumed relationship without W 
(bottom)



1062 Journal of the Korean Statistical Society (2021) 50:1058–1076

1 3

3  Causal relationship with a mediator

Consider a more complex case when M is a mediating variable (observed) in the causal 
path from X to Y. Suppose a researcher assumes the mediation model (Hayes 2013) 
with the following two linear models:

Suppose the true relationship among the four random variables, W, X, M, and Y, is 
given by the three linear models

Figure 4 graphically illustrates this scenario. Let �2

W
= V(W) and �2

i
= V(�∗

i
).

Under the assumed model of Fig. 4 (bottom), a1b2 quantifies the indirect effect of 
X on Y (through M), and b1 quantifies the direct effect (not through M, but possibly 
through other mediators). Our goal is to express a1b2 and b1 in terms of the model 
parameters in the true relationship among W, X, M, and Y which are denoted by the 
Greek letters in Fig. 4 (top).

3.1  The impact of an unobserved precursor on indirect effect

For the indirect effect a1b2 , we first note that a1 and b2 quantify the relationships among 
X, M, and Y as follow:

(1)
M = a0 + a1X + �1 ,

Y = b0 + b1X + b2M + �2 .

(2)

X = �0 + �1W + �∗
1
,

M = �0 + �1X + �2W + �∗
2
,

Y = �0 + �1X + �2M + �3W + �∗
3
.

a1 =
Cov(X,M)

V(X)
,

b2 =
V(X)Cov(M, Y) − Cov(X, Y)Cov(X,M)

V(X)V(M) − [Cov(X,M)]2
.

Fig. 4  The true relationship 
among W, X, M, and Y (top) 
and the assumed relationship 
without W (bottom)
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Note that a1 and b2 can be expressed as

To this end, the researcher’s estimand a1b2 for the indirect effect becomes a very 
complex quantity

Appendix 1 provides a detail explanation of the derivation of Eq. (3).
There are two cases when a1b2 = �1�2 . The first case is when the precursor W 

does not affect the mediator M (i.e., �2 = 0 ). The second case is when W does not 
affect both explanatory variable X and response variable Y (i.e., �1 = �3 = 0 ). In 
either case, randomization of X (i.e., �1 = 0 ) is not sufficient to avoid the bias. In 
particular, when �1�2 = 0 is true with �1 ≠ 0 and �2 = 0 , researchers will estimate 
a1b2 ≠ 0 which leads to an inflated Type I error rate.

3.2  The impact on direct effect

For the direct effect b1 , it can be similarly shown that

In the true causal relationship, which starts from the precursor W, it can be shown 
that

Appendix 2 provides a detail explanation of the derivation of Eq. (4).
There are four cases when b1 = �1 . The first case is when W does not affect Y 

(i.e., �3 = 0 ). The second case is when �1 = �1 = 0 , and the third case is when 
�1 = �2 = 0 . The fourth case is �1�2

2
�2

W
= �1�2�

2

1
�2

W
 which is nearly uninterpret-

able. Again, in any of the four cases, the randomization of X (i.e., �1 = 0 ) does 
not guarantee b1 = �1 . In particular, when �1 = 0 is true, researchers will estimate 
b1 ≠ 0 which leads to an inflated type I error rate. Furthermore, if �1 = 0 and all 
�1 , �1 , �2 , and �3 have the same sign, depending on their magnitudes (and mag-
nitudes of �W and �2 ), b1 and �1 may result in opposite signs which leads to an 
awkward conclusion.

a1 = �1 + �2�1

(

�2

W

�2
1
�2

W
+ �2

1

)

,

b2 = �2 + �2�3

(

�2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2
W
+ �2

1
)�2

2

)

.

(3)a1b2 =

(

(�1 + �2�1)�
2

W

�2
1
�2

W
+ �2

1

)(

(�2 + �2�3)�
2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2
W
+ �2

1
)�2

2

)

.

b1 =
V(M)Cov(X, Y) − Cov(M, Y)Cov(X,M)

V(X)V(M) − [Cov(X,M)]2
.

(4)b1 = �1 + �3

(

�1�
2

2
�2

W
− �1�2�

2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

)

.
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4  Simulation study

4.1  Simulation designs

To demonstrate the danger of mediation analysis due to an omitted precursor W 
even with manipulation of X (i.e., �1 = 0 ), a simulation study was conducted. 
For all simulation scenarios, we fixed �1 = 0 , �2 = 0 , �W = 5 , �1 = 1 , �2 = 5 , and 
�3 = 0.5 and varied �1 = 0, 0.5, 1 , �2 = −1,−0.5, 0 , and �3 = −0.5, 0, 0.5 to create 
twenty-seven scenarios such that �1 = 0 (no direct effect) and �1�2 = 0 (no indi-
rect effect). For each scenario, we considered sample sizes n = 50, 100, 500, 1000 , 
and we estimated (1) the probability of concluding the presence of indirect effect 
(i.e., a1b2 ≠ 0 ) and (2) the probability of concluding the presence of direct effect 
(i.e., b1 ≠ 0 ) based on bias-adjusted 95% confidence intervals (CIs) with 2000 
bootstrap samples. The nonparametric method is known to be robust for the medi-
ation analysis, so it is recommended for mediation analysis in practice (Hayes 
2009; Preacher and Hayes 2008; Hair et al. 2014). Each scenario was replicated 
1000 times for estimating the probability of concluding a1b2 ≠ 0 and the proba-
bility of concluding b1 ≠ 0 . In other words, out of 1000 replications per scenario, 
the proportion of times that a 95% CI for a1b2 excludes zero and the proportion of 
times that a 95% CI for b1 excludes zero are calculated.

4.2  Simulation results

The simulation results are summarized in Table 1. In seven scenarios (10, 12, 15, 
19, 21, 22, and 24), the probability of concluding b1 ≠ 0 and the probability of 
concluding a1b2 ≠ 0 were substantially greater than 0.05 when n = 50 , and the 
probabilities increased as n increased. The bias-adjusted method accurately esti-
mated b1 and a1b2 according to equations (4) and (3) (see Table 2), so there was 
a higher chance of eliminating b1 = 0 and a1b2 = 0 as n increased (i.e., shorter 
CIs around the true values of b1 and a1b2 ). For the other twenty scenarios, where 
b1 = 0 and a1b2 = 0 according to Eqs.  (4) and (3), the probabilities of conclud-
ing b1 ≠ 0 and a1b2 ≠ 0 were close to 0.05. In some of the twenty scenarios, the 
probabilities slightly exceeded 0.05 when n = 50 , and these results imply that the 
bootstrap method may require a larger sample size than n = 50 in some cases in 
order to properly estimate the uncertainty in the interval estimation. 

5  Example

Guber (1999) discussed the impact of omitting a (confounding) variable in the 
association between public school expenditures and academic performance 
(measured by the average SAT score). In the data, an individual is a state (not a 
student), and the data consist of all 50 states in the United States.
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In this section, to demonstrate the role of a potential precursor variable, we turn 
our focus on the association between the state average annual salary of teachers in 
public schools (denoted X; in thousands of US dollars) and the state average SAT 
score (denoted Y). If we consider the simple linear regression Y = c0 + c1X + � , 
the estimated slope is ĉ1 = −5.5396 . This result suggests a higher average annual 
salary is associated with a lower average SAT performance ( p = 0.001).

An important (potential mediating) variable may be the percentage (%) of students 
taking the SAT in each state (denoted by M). Suppose we model M = a0 + a1X + �1 
and Y = b0 + b1X + b2M + �2 as shown in Eq. (1). The estimated regression param-
eters are â1 = 2.7783 , b̂1 = 2.1804 , and b̂2 = −2.7787 . Conditioning on the potential 
mediating variable (% SAT takers), it appears that a higher average annual salary is 
associated with a higher average SAT performance ( p = 0.039 ). The opposite signs 
between ĉ1 = −5.54 and b̂1 = 2.18 are due to the fact ĉ1 = b̂1 + â1b̂2 , where â1 > 0 
and b̂2 < 0 . More SAT takers tend to lower the state average SAT score (Guber 
1999).

Given the adjusted estimate b̂1 = 2.18 with the small p value ( p = 0.039 ), can we 
conclude that the state average annual salary and the state average SAT performance 
are positively associated? Let us consider a potential precursor variable, the state 
expenditure per students in public schools (denoted W; in thousands of US dollars), 
as W may affect X, M, and Y. Using the three regression models presented in Eq. (2), 
we can estimate the regression parameters as shown at the bottom of Fig.  5 with 
�̂�2

W
= 1.8201 , �̂�2

1
= 8.4214 , and �̂�2

2
= 425.7959 . Note that 𝛽1 = −0.31 with p = 0.853 

suggest no strong evidence for the positive association. The opposite signs between 
b̂1 = 2.18 and 𝛽1 = −0.31 can be explained by Eq. (4) with the estimated regression 
parameters,

The relatively big positive estimates 𝛽3 = 13.33 , �̂�1 = 3.79 , and �̂�2

2
= 425.8 could 

alter from the negative 𝛽1 = −0.31 (or nearly zero) to positive b̂1 = 2.18 (with the 
small p-value) by omitting the precursor variable (state expenditure) which might 
affect the whole mechanism among the state average annual salary of teachers, the 
% students taking SAT, and the state SAT performance. The estimated indirect asso-
ciation �̂�1𝛽2 = −5.32 further suggests that a higher state average salary of teachers 
does not help improving the average SAT performance.

6  Discussion

The primary focus of the simulation study was an inflated Type I error rate (i.e., 
a higher chance of falsely claiming direct and/or indirect effect) in a mediation 
analysis due to an unobserved precursor variable. Though the example in Sect. 5 
was an observational study, the message was similar. Even for an experimental 
study, the simulation results alert researchers about the inflated Type I error rate 

b̂1 = 𝛽1 + 𝛽3

(

�̂�1�̂�
2

2
�̂�2

W
− �̂�1�̂�2�̂�

2

1
�̂�2

W

�̂�2

2
�̂�2

1
�̂�2

W
+ (�̂�2

1
�̂�2

W
+ �̂�2

1
)�̂�2

2

)

.
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(worse when n is larger), and the expressions (Eqs. (3) and (4)) explain why the 
bias exists even after randomization of X (i.e., forcing �1 = 0 ) in the presence of 
a mediator (Fig. 4). The uncomfortable fact is that an experimental design, which 
can change V(X) = �2

1
�2

W
+ �2

1
= �2

1
 , cannot fix the bias in particular null cases. 

For instance, if �1 ≠ 0 and �2 = 0 (i.e., zero indirect effect), according to Eq. (3),

which is independent of V(X) = �2

1
 . For another instance, if �1 = 0 (i.e., zero direct 

effect), according to equation (4),

which is independent of V(X) = �2

1
 again.

In this article, we focused on one precursor variable. In practice, there can be 
two or more precursor variables. The take-home messages are clear for reducing 
bias in the estimation of �1�2 (indirect effect) and �1 (direct effect). First, rand-
omize X (i.e., �1 = 0 ) if possible. Second, during data collection, researchers are 
suggested to record variables which are potentially related to M and Y and adjust 
them in the regression analysis. A large sample size can tolerate a mild degree 
of over-fitting due to many W’s adjusted in the model. The adjustment will help 
researchers estimate �1�2 and �1 with a small bias and perform hypothesis testing 
with a reduced inflation of Type I error rate.

a1b2 = �1�2�3

(

�2

1
�2

W

�2

2
�2

1
�2

W
+ �2

1
�2

2

)

= �1�2�3

(

�2

W

�2

2
�2

W
+ �2

2

)

b1 = �3

(

�1�
2

2
�2

W
− �1�2�

2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

)

= −�3

(

�1�2�
2

W

�2

2
�2

W
+ �2

2

)

Fig. 5  Changing the direction and magnitude of association between the state average salary (explana-
tory) and the state average SAT score (response) by including % SAT takers (mediator) and by including 
state expenditure (precursor) in the analysis. (This is a state-level association, not student-level.)
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Appendix 1: Bias in the estimation of indirect effect

Under the assumed model M = a0 + a1X + �1 , the covariance between X and M is 
given by

so,

The assumed model Y = b0 + b1X + b2M + �2 can be written as 
Y − b1X = b0 + b2M + �2 , so

Similarly, it can be written as Y − b2M = b0 + b1X + �2 , so

Therefore, Eq. (6) can be written as

By solving for b2,

Now consider the three true models:

From the true relationships among W, X, M, and Y, we have

and

Cov(X,M) = Cov(X, a1X) = a1V(X)

(5)a1 =
Cov(X,M)

V(X)
.

(6)b2 =
Cov(M, Y − b1X)

V(M)
=

Cov(Y ,M) − b1Cov(X,M)

V(M)
.

b1 =
Cov(X, Y − b2M)

V(X)
=

Cov(X, Y) − b2Cov(X,M)

V(X)
.

b2 =

Cov(Y ,M) −

(

Cov(X,Y)−b2Cov(X,M)

V(X)

)

Cov(X,M)

V(M)

=
V(X)Cov(Y ,M) − Cov(X, Y)Cov(X,M) + b2[Cov(X,M)]2

V(X)V(M)
.

(7)b2 =
V(X)Cov(Y ,M) − Cov(X, Y)Cov(X,M)

V(X)V(M) − [Cov(X,M)]2
.

X = �0 + �1W + �∗
1
,

M = �0 + �1X + �2W + �∗
2
,

Y = �0 + �1X + �2M + �3W + �∗
3
.

(8)V(X) = V(�1W + �∗
1
) = �2

1
�2

W
+ �2

1
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Therefore, Eq. (5) can be expressed as the true model parameters as

To express b2 in Eq. (7) in terms of the true model parameters, we need to rewrite 
V(M), Cov(Y, M), and Cov(X, Y) as follows. For V(M), we first express

so

For Cov(Y, M), note that

where we previously wrote

Further note that Cov(X,W) = Cov(�1W,W) = �1�
2

W
 , and

Therefore,

For Cov(X, Y), we can replace our previous results as

(9)

Cov(X,M) = Cov(X, �1X + �2W)

= �1V(X) + �2Cov(X,W)

= �1(�
2

1
�2

W
+ �2

1
) + �2�1�

2

W
.

a1 = �1 +
�2�1�

2

W

�2
1
�2

W
+ �2

1

.

M = �0 + �1(�0 + �1W + �∗
1
) + �2W + �∗

2

= (�0 + �1�0) + (�1�1 + �2)W + �1�
∗

1
+ �∗

2
,

(10)V(M) = (�1�1 + �2)�
2

W
+ �2

1
�2

1
+ �2

2
.

Cov(Y ,M) = Cov(M, Y)

= Cov(M, �1X + �2M + �3W)

= �1Cov(M,X) + �2V(M) + �3Cov(M,W) ,

Cov(X,M) = �1�
2

1
+ (�1�1 + �2)�1�

2

W
,

V(M) = (�1�1 + �2)�
2

W
+ �2

1
�2

1
+ �2

2
.

Cov(M,W) = Cov(�1X + �2W,W)

= �1Cov(X,W) + �2�
2

W

= �1�1�
2

W
+ �2�

2

W

= (�1�1 + �2)�
2

W
.

(11)

Cov(Y ,M) = �1[�1�
2

1
+ (�1�1 + �2)�1�

2

W
]

+ �2[(�1�1 + �2)�
2

W
+ �2

1
�2

1
+ �2

2
]

+ �3[(�1�1 + �2)�
2

W
] .
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After some algebraic work, it can be shown that the denominator of b2 in Eq. (7) can 
be simplified as

and the numerator of b2 in Eq. (7) can be expressed as

To this end, we can express b2 in Eq. (7) as

which simplifies as

Therefore, due to an unobserved precursor variable W, researchers would estimate 
a1b2 which is equal to

which is not equal to �1�2 in general.

Appendix 2: Bias in the estimation of direct effect

From Eqs. (6) and (7),

(12)

Cov(X, Y) = Cov(X, �1X + �2M + �3W)

= �1V(X) + �2Cov(X,M) + �3Cov(X,W)

= �1(�
2

1
�2

W
+ �2

1
) + �2[�1�

2

1
+ (�1�1 + �2)�1�

2

W
]

+ �3�1�
2

W
.

V(X)V(M) − [Cov(X,M)]2 = �2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2
,

V(X)Cov(Y ,M) − Cov(X, Y)Cov(X,M) = �2[�2�
2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2
]

+ �3�2�
2

1
�2

W
.

b2 =
�2[�2�

2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2
] + �3�2�

2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

b2 = �2 + �3

(

�2�
2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

)

.

a1b2 =

[

�1 + �2�1

�2

W

�2
1
�2

W
+ �2

1

][

�2 + �2�3

(

�2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

)]

.
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which can be expressed as

Recall Eqs.  (10), (8), (12), (11), and (9) for each term of b1 . After some algebraic 
work, the numerator of b1 can be simplified as

and the denominator of b1 can be simplified as

To this end, we can express b1 as

which simplifies as

and it is not equal to �1 in general.
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b1 =
Cov(X, Y) − b2Cov(X,M)

V(X)

=

Cov(X, Y) −
(

Cov(Y ,M)−b1Cov(X,M)

V(M)

)

Cov(X,M)

V(X)

=
V(M)Cov(X, Y) − Cov(Y ,M)Cov(X,M) + b1[Cov(X,M)]2

V(X)V(M)
,

b1 =
V(M)Cov(X, Y) − Cov(Y ,M)Cov(X,M)

V(X)V(M) − [Cov(X,M)]2
.

V(M)Cov(X, Y) − Cov(Y ,M)Cov(X,M) = �1[�
2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2
]

+ �3(�1�
2

2
�2

W
− �1�2�

2

1
�2

W
) ,

V(X)V(M) − [Cov(X,M)]2 = �2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2
,

b1 =
�1(�

2

1
�2

2
�2

W
+ �2

2
�2

1
�2

W
+ �2

1
�2

2
) + �3(�1�

2

2
�2

W
− �1�2�

2

1
�2

W
)

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

b1 = �1 + �3

(

�1�
2

2
�2

W
− �1�2�

2

1
�2

W

�2

2
�2

1
�2

W
+ (�2

1
�2

W
+ �2

1
)�2

2

)
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