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ABSTRACT 

Population density and spatial distribution of abyssal epibenthic  

holothurians using fine scale time series imagery (2007-2017) 

by 

Larissa Lemon 

Master of Science in Applied Marine and Watershed Science 

California State University Monterey Bay, 2018 

 

Holothurians are one of the most abundant megafauna observed in abyssal deep-sea 

communities and are important in the distribution of nutrients in the deep-sea. Despite their 

abundance and importance, there is little known about their natural history and population 

dynamics. These taxa respond to fluctuations in organic carbon supply, which originates as 

surface primary production and sinks through the water column. Previous studies have 

estimated population density and spatial ecology based on seasonal or monthly observations, 

that cannot detect fine-scale temporal changes. This study examines the rapid changes in 

population of 16 holothurian species observed at Station M, a long-term time series site 

Station M in the northeast Pacific, over a ten year period (2007 - 2017) using hourly time-

lapse imagery and periodic videographic surveys conducted with a remotely operated vehicle 

(ROV).  Holothurian density, mainly driven by the dominance of Peniagone sp. A, peaked 

from November 2013 to January 2014.  Lags between changes in mass flux and rapid 

holothurian community responses were recorded, with Peniagone sp. A and Peniagone vitrea 

showing the strongest correlation to in situ measured mass flux (r = 0.40, p=0.015; r=0.41, 

p<0.0001) with a lag of 149 and 100 weeks, respectively. Spatial distribution of holothurians 

did not differ with changes in density. Similar population density and spatial distances of 

holothurians were found in continuous time-lapse and seasonal ROV imagery. The results 

demonstrate the advantage of using high temporal resolution imagery with long-term 

presence on the sea floor coupled with periodic videographic surveys to characterize the 

ecology of deep-sea benthic communities. These foundational community and population 

data will be vital in quantifying any future changes associated with climate change and 

increased extractive activities on the seafloor.  
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CHAPTER 1 

POPULATION DENSITY AND SPATIAL 

DISTRIBUTION OF ABYSSAL 

HOLOTHURIANS 

INTRODUCTION 

The vast expanse of the deep-sea has largely been unexplored, spatially and 

temporally. However, there are some notable deep-sea locations worldwide that have 

been examined over long periods of time (Smith et al. 2017, Billet et al. 2001). For 

instance, there have been significant changes found in both density and species 

dominance among holothurians in two long time-series abyssal sites in the Northeast 

Atlantic (Porcupine Abyssal Plain, or PAP), and the Northeast Pacific (Sta. M) (Wigham 

et al. 2003; Ruhl 2007). In addition to population densities and dominance, data on the 

downward flux of particulate carbon onto the seafloor were also collected (Smith and 

Kaufmann 1999; Lampitt et al. 2001). The PAP site saw a large increase of the 

holothurian Amperina rosea, a species that had previously been rarely observed at the site 

(Billet et al. 2001). Analysis of specimens collected indicated that the holothurians were 

feeding on fresh detritus located on the seafloor (Iken et al. 2001). At Sta. M, long-term 

changes in population density and body size have been observed throughout the 29-year 

time series (Ruhl 2007; Huffard et al. 2016).  These demographics  appear to be related to 

the changes in flux of particulate organic carbon (POC) from the overlaying surface 

waters (Ruhl and Smith 2004). It has also been suggested that not only the variability of 

food supply, but also the quality of that food, has impacts on the persistent changes in 

deep sea communities (Kiriakoulakis et al. 2001).  Obtaining knowledge of how these 

communities react in response to rapid changes in their environment will foster more 

accurate predictions relative to how deep-sea communities respond to new anthropogenic 

pressures facing the ocean such as climate change and resource extraction.  

Holothurians are the most abundant mobile epibenthic megafauna found on the 

deep-sea floor (Ruhl 2007). In the context of deep sea ecology, epibenthic megafauna are 

defined as organisms in the deep that live on or just above the surface sediments of the 

sea floor and are able to be detected in photographic imagery ~>1cm (Grassel et al. 1975; 
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Rex 1981). Due to their role in distributing carbon in deep-sea ecosystems, holothurian 

abundance and distribution can significantly impact the food availability (particulate 

organic carbon or POC flux) and energy flow for other benthic assemblages (Smith 1992; 

Lauerman et al. 1996; Costa et al. 2014). As described previously, holothurians have 

shown distinct responses to shifts in food supply and primary production (Johnson et al. 

2007; Smith et al. 2009). 

Recent surveys at Sta. M have suggested that deep-sea populations change more 

rapidly than an annual sampling rate would detect. Populations can respond to rapidly 

changing quantity and quality of food sources from the surface can occur in a matter of 

months rather than years (Smith et al. 2006; Ruhl 2007; Johnson et al. 2007; Huffard et 

al. 2016).  Finer scale measurements (hourly, daily, or weekly) will be better able to 

detect the speed at which these populations can respond to changes in their environment, 

including large injections of food from surface waters into the ecosystem. 

  The characterization of these deep-sea communities has traditionally come from 

benthic trawl surveys and video transects (Billet et al. 2010, Ruhl 2007). However, these 

techniques often only explore abundances and distribution over short periods of time: 

often just once or twice a year, over a period of a few days. The large gaps in time and 

uneven sampling rates in seasonal sampling makes lag and correlation analysis and not 

possible. Also, trawl samples from the deep may not always have an accurate account of 

the number of individuals or even particular species due to evisceration from hauling gear 

up to the surface, leading researchers to use biomass as a proxy for density (Billet et al. 

2010).  The overall lack of knowledge of deep-sea communities makes even those 

measurements invaluable, but having accurate density and identification may lead to 

better predictions of how communities are changing.  

Previous studies at Sta. M have observed the community structure, abundance, 

and distribution of organisms using seasonal remotely operated vehicles (ROV) and 

camera sled videographic transects (Lauerman et al. 1996; Ruhl 2007; Kuhnz et al. 2014; 

Huffard et al. 2016).  This site is unique in that it also has a long data set of carbon influx 

to the seafloor as well as corresponding time-lapse imagery dating back to 1989. While 

the detailed carbon flux data have been utilized in previous analyses of population 

response with videographic transects , the time-lapse imagery itself has not been used to 
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determine population densities.  The combination of  these data sets will allow for 

stronger analysis of correlations between populations and environmental factors.  

Previously, it has been assumed that despite short term seasonal changes, benthic 

populations remain essentially unchanged over periods of decades, and perhaps longer 

(Billet et al. 2001), but long time series data may allow detection of potential true decadal 

shifts should they exist in populations.  

The amount of nutrients reaching the sea floor has increased at Sta. M in recent 

years (Smith et al. 2013; Huffard et al. 2016). With the increase to the food supply, there 

has been an overall increase in holothurian densities observed in seasonal ROV transects 

(Huffard et al. 2016).  Due to the known links between holothurian populations and food 

supply (particulate carbon), the present study sought to detect rapid changes in the deep-

sea community using hourly time-lapse imagery over the last 10 years (2007-2017). It 

was hypothesized that the recent influx of carbon would produce a bimodal response, an 

initial behavioral response to the influx, and a later reproductive response as the species 

are able to utilize the nutrients for growth and reproduction.   

With the availability of the fine-scale resolution time-lapse imagery, I compared 

the spatial patterns of holothurian populations to determine if distribution changed in 

varying levels of density. Spatial patterns of individual organisms were measured using 

nearest neighbor distance as an indication of distribution (Clark and Evans 1954; Altman 

1992; Boiman et al. 2008). 

The primary questions addressed were: 1) How has the density of holothurian 

populations changed over a 10-year time series (2007-2017) using fine scale hourly time-

lapse imagery? 2) What, if any, relationships do the holothurian species have to the mass 

flux of particulate carbon reaching the seafloor? 3) Does the organismal density influence 

the spatial distribution of holothurians? 4) Are there differences in holothurian species 

density and distribution between continuous time-lapse imagery and seasonal ROV 

imagery? Hypotheses were generated to reflect these larger questions. 

Specific hypotheses tested: 

 1. Holothurian species density changed over time, with increases   

   occurring after large inputs of carbon. 
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 2. Individual species would demonstrate positive cross correlation with a  

   lag from mass flux. 

 3. Density influences the distribution categorization (clustered, random, or 

   dispersed) of holothurians on the sea floor. 

 4. There are differences at the same station over the same period of time  

   between continuous time-lapse imagery and seasonal ROV transect 

   imagery. 

 

METHODS 

STUDY AREA 

 This study was conducted using imagery from a long time-series abyssal site (Sta. 

M: 34º 50'N, 123º 00'W; ~4000 m depth) in the northeast Pacific Ocean maintained by 

the Monterey Bay Aquarium Research Institute. Biological and oceanographic data have 

been monitored at this site consistently since 1989. Sta. M is characterized by silty-clay 

sediments and low topographic relief (Smith et al. 1993, Smith et al. 1994).  The majority 

Station M epibenthic megafuana observed are echinoderms, xenophyophores, and 

sponges (Kuhnz et al. 2014).  In 2009, Station M community structure shifted from a 

sessile sponge-dominated community to a holothurian-dominated community (Kuhn et al. 

2014).  Previous studies at this site have shown holothurians to represent 73% to 99% of 

the megafuana observed (Ruhl 2007; Kuhnz et al. 2014). Moored sediment traps 

collected sinking particulate matter to estimate the amount of food reaching the sea floor 

from the surface with 10-day resolution (Smith et al. 1994; Smith and Druffel 1998; Ruhl 

and Smith 2004).  A time-lapse camera monitored fine-scale changes in seafloor 

conditions and megafauna (at the base of the sediment trap mooring).  
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Figure 1. Map of study area at Station M. All points designate individual time lapse 

deployments (1989 to 2017). Triangles represent those deployments from 2007 to 2017 examined 

in this study. 

TIME-LAPSE CAMERA  IMAGERY 

The time lapse camera was deployed for long periods (up to a year at a time) since 

1989.  Mounted on a titanium frame at an angle of 31º in the horizontal plane and 35º in 

the vertical plane, the camera takes one still image of the seafloor every hour for the 

length of deployment. (Smith et al. 1993; Sherman and Smith 2009). The camera sits on 

the frame so the lens is approximately 2 m above the seafloor.  Two strobes are mounted 

on either side of the camera housing to illuminate approximately 20 m² of the seafloor. 
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The field of view begins at 1.8 m in front of the camera and extends to 6.5 m from the 

base of the tripod frame. The deployments in this study used high-resolution (3 x 5 mm) 

digital imagery.  

REMOTELY OPERATED VEHICLE IMAGERY 

ROV surveys were conducted coincident in time (2007 - 2017, Table 1) with 

autonomous mooring deployments at Sta. M. The ROV Doc Ricketts was equipped with 

Ikegama high-definition cameras with HA10Xt.2 Fujinon lenses to capture forward-

oblique imagery for use in transects. Six 17,000 Lumen LED lights in addition to four 

250 watt incandescent lights provided consistent illumination of the seafloor.  Paired 

lasers spaced 29 cm apart served as reference points within the area imaged to determine 

the field of view for the transect. The ROV was flown at a mean altitude of 1.5 meters 

above the substrate. Cameras were adjusted to have an approximate field of view of one 

meter wide, and approximately 2.7 m ahead of the ROV. The ROV flew at a targeted 

speed of 0.1 m s
-1

. 

 

Table 1. Time lapse and ROV deployment dates and duration of observations (days). 

 

 

Deplyment ID Deployed Date Recovery Date # Days
Corresponding 

ROV Date

52 6/6/2007 9/19/2007 103 6/7/2007

53 9/21/2007

54 2/25/2009

55 11/4/2009 5/12/2010 188

56 5/14/2010 11/6/2010 172

57 11/7/2010 5/23/2011 196 5/24/2011

58 5/24/2011 11/18/2011 174 11/17/2011

59 11/20/2011 6/12/2012 202 6/12/2012

60 6/13/2012 11/15/2012 152 11/16/2012

61 6/17/2013

62 6/16/2013 4/5/2014 289 4/5/2014

63 4/7/2014 10/13/2014 186 10/13/2014

64 10/14/2014 6/21/2015 247 6/18/2015

65 6/22/2015 11/7/2015 135 11/7/2015

66 11/8/2015 6/14/2016 216 11/11/2016

67 11/9/2016 3/24/2017 135 3/25/2017

68 3/24/2017 11/14/2017 230 11/13/2017
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MASS FLUX  

The amount of particulate matter sinking to the seafloor from surface waters is 

called mass flux. Data on particle flux were collected using sediment traps moored at 

50 m and 600 m above the seafloor with a sampling resolution of 10 - 17 days (Baldwin 

et al. 1998). Particulate matter was collected in plastic collection cups and examined 

immediately after recovery when zooplanktonic swimmers were removed from the 

sample.  

Samples were thawed and processed in the lab using methods described in 

Baldwin et al. (1998). Samples were freeze-dried, weighed and analyzed for total 

particulate mass (mg/m
2
/day). The samples were then corrected for salt content using 

AgNO3 titration (Strickland and Parsons 1972).   

DATA  EXTRACTION FROM IMAGERY: POPULATION DENSITY 

MBARI's open source Video Annotation Reference System (VARS) was used to 

make annotations to both video and still imagery (Schlining and Stout 2006).  The 

software allows measurements of animals, area, and length to be made that take into 

account the tilt and height of the camera.  To ensure confidence in the identification of 

animals to species level, the lower half of the frame was used to calculate population 

density because lighting levels were more consistent in this area (5.75m
2
). The 

holothurian abundance in this area was recorded once per day of deployment throughout 

the ten-year time period assessed in this study.  The same hour (12:00) was used for all 

annotations to limit the influence of any diurnal patterns that may exist. If the images 

began after the pre-determined time, the closest timecode was used for that day's 

measurement. Likewise, the same method was used for days that ended before the 1200 

time. These values were compared qualitatively to population density measures from 

ROV transects in Sta. M publications (Kuhnz et al. 2014).  All density measures were 

given in number of individuals per m
2
.  

DATA  EXTRACTION FROM IMAGERY: SPATIAL PATTERNS 

 Using the population density means from each time-lapse camera deployment 

and a list of available ROV transects, three significantly different deployments were 

selected to determine the spatial distributions of holothurians in relation to small-scale 
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density (high, medium, and low). The distances between individuals in images were 

measured using the distance tool in VARS, which accounts for the oblique angle of the 

camera.  The area used for spatial distance measurements in the time-lapse imagery was 

expanded due to a larger illuminated area the three particular deployments selected, 

allowing for 75% of the total image to be used (16.1975 m
2
).  Within each deployment's 

image series, 400 randomly selected frames were used to measure the distances between 

individuals. Time-lapse frames that fell within one week after the transect date were used 

for comparison to the ROV transect imagery. 

For the ROV transects corresponding to the time-lapse camera deployment date, a 

subsample of 200 m was taken for distance analysis. The width of the frame as well as 

the coordinates of each holothurian within the frame were recorded in VARS. This 

approach allowed for the relative location of each individual along the transect to be 

annotated. Although geographic latitude and longitude coordinates were obtained, the 

resolution of the distances between these organisms (millimeters) was smaller than the 

resolution of the navigation data (meters), thus relative location along the transect was 

used for analysis (Norcross and Meuter 1999). Compilation of the coordinates by time 

(milliseconds) via the timecode recorded on the ROV was used to show relative 

distribution of holothurians in the ROV transects.  

CROSS CORRELATION ANALYSIS 

Cross correlation functions were applied using the ranked population density and 

mass flux data.  Calculations were conducted using R Statistical Software (R Core Team 

2013; R Studio 2015; package = ccf( )) to identify (in terms of lag) the first positive 

correlation peak, as well as, the highest cross correlation peak up to a maximum lag of 

260 weeks (R codes in Appendix D). This maximum lag (260 weeks or 5 years) was 

chosen based on limited research of various shallow-water holothurian species living 4 to 

12 years (Ebert 1978; Michio et al. 2003). 

Cross correlation analysis was limited to six individual species that had at least 

one percent of the observations made from the time-lapse imagery. Analysis was also 

done on the total holothurian population density.  Shapiro-Wilk test (package = 

shapiro.test ( )) was used to determine if the data were normally distributed. The data 

were transformed into ranks to account after the data was found to not be normally 
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distributed. Results from the cross correlation were used to identify the lag time at which 

initial and maximum peaks of positive correlation occurred between population density 

and mass flux (Appendix B). Once the lags of the data were determined for each species, 

effective sample sizes (N*), corrected correlation coefficients (r) and p-values were 

calculated using methods addressing effective sample sizes and autocorrelation described 

in Pyper and Peterman (1998).  

NEAREST NEIGHBOR INDICES  

  Using the previously described spatial data collected in both time-lapse and ROV 

imagery, the nearest neighbor distances were calculated into the nearest neighbor index 

(NNI). This measurement allows for the calculation of the mean nearest neighbor ratio: 

  

    
          

          
 

 

 

where           is the observed mean distance between each organism and its nearest 

neighbor: 

 

          
   
 
   

 
 

 

 and           is the expected mean distance for a given a random distribution pattern: 

 

          
   

 
 

    

 

 

The    is the distance between each individual (i) and its nearest neighbor while the n 

corresponds to the total number of individuals.  The area corresponds to the total area 

surveyed. Categorizations of distribution (clustered, random, or dispersed) are assigned 

based on the calculations. Subsequent z-scores (standard normal variate) are also 
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calculated to asses 95% confidence intervals of the NNI being the correct categorization. 

A negative z-score indicates clustering while a positive score indicates dispersion or 

evenness (Boots et al. 1988).  

  
                      

  
 

 

 

 Lastly, a Mann Whitney U test was conducted to see if there were differences 

between the nearest neighbor distances observed in the ROV and time-lapse imagery. 

Summary statistics and Mann Whitney calculations were conducted using R Statistical 

Software (R Core Team 2013; R Studio 2015; package = wilcox.test( )). 

RESULTS 

POPULATION DENSITY 

This study examined approximately 280 m
2
 of seafloor from 2007 to 2017 using 

time-lapse images. Population density was annotated for 2623 days. Overall, 8296 

individual holothurians representing 16 species (Table 2) were observed in the time-lapse 

imagery. Due to difficulties in confidently distinguishing between some small Peniagone 

species, indistinguishable individuals were binned together into a group called Peniagone 

for analysis. Also, Psychropotes depressa and Psychropotes longicauda were observed in 

such low numbers that observations were combined into a Psychropotes spp. category for 

analysis.  

Three species accounted for over 91% of the observations made in the time-lapse 

imagery: Peniagone sp. A (72.13%; 5984 individuals); Scotoplanes globosa (16.51%; 

1370 individuals); and Peniagone vitrea (2.63%; 218 individuals). Number of individuals 

and percentages of the observations can be seen in Table 3. 
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Table 2. Observed holothurian species list. Asterisk (*) indicates species that have been 

identified as undescribed, but not yet named. 

 

 

 

 

 

 

 

Class Holothuroidea

Holothuroidea sp. 4*

Order Aspidochirotida

Family Synallactidae

Paelopatides confundens

Pseudostichopus mollis

Synallactidae gen.*

Order Dendrochirotida

Family Cucumariidae

Abyssocucumis abyssorum

Order Elasipodida

Family Deimatidae

Oneirophanta mutabilis

Family Elpidiidae

Elpidia sp. A*

Peniagone gracilis

Peniagone papillata

Peniagone sp. 1*

Peniagone sp. 2*

Peniagone  sp. A*

Peniagone vitrea

Scotoplanes globosa

Family Psychropotidae

Psychropotes depressa

Psychropotes longicauda

Species List 
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Table 3. Holothurians observed in the time-lapse imagery. Species that had at least one 

percent of the observations were used in the cross correlation analysis. 

 

 

The population densities of all holothurian species' were variable over the ten-

year period studied here.  The 10-year mean density of holothurians was 0.56 

individuals/m
2
. The highest densities observed were between                   = 2.02 

individuals/m
2
) and December 2013     = 2.00 individuals/m

2
) (Figure 2A). The weekly 

density peaked at 2.36 individuals/m
2
 in January 2014, attributable largely to the 

abundance of P. sp. A. There were also years that were characterized by low density. The 

lowest observed density occurred in June of 2007     = 0.06 individuals/m
2
) when no 

holothurians were observed for two consecutive weeks. Individual species density in 

comparison to the total holothurian density is detailed in Appendix A. The densities 

observed from previous ROV transects followed similar trend lines as the time-lapse 

imagery. However, four transects showed much higher density than time-lapse imagery.   

Mean densities for each species and deployment provided information about how 

these populations shifted over time (Appendix A, Table A-1).  Ten of the 15 species 

Species # Individuals Observed % Observations

Peniagone  sp. A 5984 72.13%

Scotoplanes globosa 1370 16.51%

Peniagone vitrea 218 2.63%

Synallactidae gen.* 125 1.51%

Abyssocucumis abyssorum 116 1.40%

Peniagone  sp. 101 1.22%

Elpidia sp. A 100 1.21%

Oneirophanta mutabilis 52 0.63%

Pseudostichopus mollis 45 0.54%

Paelopatides confundens 44 0.53%

Peniagone papillata 41 0.49%

Peniagone sp. 1 29 0.35%

Peniagone sp. 2 29 0.35%

Holothuroidea sp. 4 25 0.30%

Psychropotes spp. 17 0.20%

Total: 8296
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categories had density peaks in a 2-year period between June 2012 and October 2014. 

Peniagone  sp. A was the most abundant species observed until November 2016 to 

November 2017 when S. globosa became more abundant. 

The ten-year mean of the mass flux sinking to the seafloor was 135.49 mg/m
2
/day 

(Figure 2B). Mass flux was collected for 292 of the 383 weeks observed. The mass flux 

had multiple periods of time when detritus was higher than the ten-year average. The 

largest period of mass flux occurred in June 2011     = 543.86 mg/ m
2
/day), peaking at 

770.61 mg/ m
2
/day for a single collection cup (10 days).  The lowest periods of mass flux 

occurred between November 2015 and February 2016 with a range of  23.46 to 34.84 mg/ 

m
2
/day.  

 

Figure 2.  Weekly holothurian population density and mean mass flux for 2007-2017.  

ROV population density data are represented by points while the weekly density averages 

are denoted by the line. Gray areas denote deployments used for high (62), medium (60), 

and low (68) density spatial distribution analysis. 



 

 

24 

CROSS CORRELATION ANALYSIS 

The correlation describes the strength of the relationship of population density to 

mass flux. Although most of the species examined had a p-value significance coinciding 

with at least one peak, the correlation values were not strong (Table 4). For example, 

Abyssocucumis abyssorum showed a significant initial response to the mass flux reaching 

the seafloor with a lag of -48 weeks, the relationship was only 10% correlated (r=0.10, 

p-value = 0.009). Peniagone sp. A and P. vitrea  had the strongest correlation with mass 

flux (r = 0.40, p-value = 0.015; and 0.41, p-value < 0.0001 respectively) with lags of -103 

and -100 weeks. Scotoplanes globosa was the only species without a significant 

correlation with mass flux. 

 

Table 4. Cross correlation of holothurian small scale density and mass flux at Station M. 

Effective sample size (N*), correlation coefficients (r), and p-values were corrected for 

autocorrelation according to Pypers and Peterson (1998). 

 

 

Species Peak
Lag                    

(in weeks)

Sample Size 

(N)

Effective Sample 

Size (N*)
Correlation (r ) p-value

Initial -103 364 33.1 0.33 0.057

Max -149 332 37.9 0.40 0.015*

Initial -176 293 37.6 0.12 0.471

Max -203 324 234.7 0.13 0.53

Initial -57 352 103.1 0.21 0.034*

Max -100 382 103.9 0.41 0.00002***

Initial -141 256 76.7 0.16 0.173

Max -210 313 111.5 0.28 0.003**

Initial -48 338 156 0.10 0.009**

Max -146 303 144.7 0.22 0.207

Initial -25 363 87.1 0.20 0.06

Max -82 376 85.4 0.23 0.033*

Initial -103 312 26.6 0.24 0.237

Max -149 322 35.2 0.4 0.017*

Synallactidae sp.

Abyssocucumis abyssorum

Elpidia sp. A

All Holothurians

Peniagone sp. A

Scotoplanes globosa

Peniagone vitrea
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SPATIAL DISTRIBUTIONS  

The three significantly different deployments selected based on population 

density means and Kruskal-Wallis test (p-value < 0.0001; Figure 3). The ROV transects 

were subsampled, accounting for a combined 600 m
2
 used for spatial distribution 

comparisons.  There were 14 holothurian species and 815 individuals observed in the 

ROV transects. Relative locations of holothurians were plotted for each transect (Figure 

4).  The high density transect (ROVhigh) had 411 individuals, dominated by Peniagone sp. 

A (N=154) and Elpidia sp. A (N=132), and a substantial number of Scotoplanes globosa 

(N=75) (Fig. 4A). The medium density transect (ROVmed) was also mostly comprised by 

E. sp. A (N=156) and P. sp. A (N=118) (Fig. 4B). Lastly, the low density transect 

(ROVlow) observed 47 individuals observed. Scotoplanes globosa was the most abundant 

species (N=17) followed closely by P. sp. A (N=12) (Fig. 4C). 

 

 

Figure 3. Box plots of population density designated by time lapse camera deployment. 

The gray deployments were those selected for spatial distance analysis: high density (62), 

medium density (60), and low density (68). 
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Figure 4. Relative distribution of holothurians in "high," "medium," and "low" density ROV 

transects. (A) coincides with time-lapse deployment  in June 2013, representing high density 

(N=411); (B) corresponds to a deployment  in June 2012, representing medium density of 

holothurians (N=357).  (C) pairs with a deployment  in November 2017 and is considered to be  

low density (N=47). Nearest Neighbor Index was calculated for all of these transects. 
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The time-lapse imagery showed 45 frames that fell within the one week time 

parameter of the ROV transects. The high density time period (TLhigh) had 24 frames, in 

which 270 individuals were observed. Although the top three species were the same as in 

the ROVhigh transect of, the proportion of individuals was different (Peniagone. sp. 

A=220; Elpidia sp. A=13; Scotoplanes globosa = 17). Elpidia sp. A was observed 

significantly less in the time-series images. Even taking into account the differences in 

sampling area, the density of the E. sp A was lower (0.08 individuals/m
2
 compared to 

0.78 individuals/m
2
 in the ROV). Eleven frames were examined in the medium density 

time period (TLmed). There were 25 individuals with all but three being P. sp. A and no E. 

sp. A observed, a change from the composition observed in the ROVmed transect. The low 

density time-lapse imagery (TLlow) used 10 frames, and found 14 individuals. 

Scotopolanes globosa was the dominant species (N=10). Full comparisons of species 

presence in all samples (time-lapse and ROV) used for spatial pattern analysis can be 

seen in Appendix C.  

The nearest neighbor index for time-lapse and ROV imagery were similar. All 

time-lapse measurements resulted in a dispersed distribution patterns. Likewise, ROV 

nearest neighbor index calculations reflected the same, with one transect (ROVmed) 

getting categorized as random rather than dispersed (Table 5). The mean nearest neighbor 

distances observed in the time-lapse were slightly farther in distance than those calculated 

with the ROV transects for all density categories.  For example, in the high density ROV 

imagery, the average nearest neighbor distance was 0.40m ± 0.28. The same time period 

observed 0.71m ± 0.53 in the time-lapse imagery.  The same was true in the medium and 

low density periods as well (TLmed:    = 1.07m ± 0.71; ROVmed:    = 0.41m ± 0.33 and 

TLlow:    = 2.73m ± 0.75; ROVlow:    = 1.83m ± 1.78, respectively). These nearest 

neighbor distances were significantly different in all density levels (Table 6). 
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Table 5. Spatial pattern and nearest neighbor indices for ROV and Time-lapse imagery.  

 

 

 

Table 6. Nearest neighbor distance summary statistics and Mann-Whitney-Wilcoxon 

results. Mean nearest neighbor distances and standard deviation (SD) shown. Mann-

Whitney-Wilcoxon results show significant differnces between measured NN distances in 

imagery methods 

 

 

 

Method Date(s)
# 

Samples

# 

Individuals
NNI Z-score Distribution

Time-lapse 6/16/2013 - 6/22/2013 24 270 1.234 4.595 dispersed

ROV 6/16/2013 1 411 1.151 3.748 dispersed

Time-lapse 6/12/2012 - 6/19/2012 11 25 1.373 2.251 dispersed

ROV 6/12/2012 1 356 0.407 1.880 random

Time-lapse 11/10/2017- 11/17/2017 10 14 1.917 6.484 dispersed

ROV 11/14/2017 1 47 1.771 3.067 dispersed
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Method
x ̅ 

NN Distances
SD W p-value

Time-lapse 0.71 0.53

ROV 0.40 0.28

Time-lapse 1.07 0.71

ROV 0.41 0.33

Time-lapse 2.73 0.75

ROV 1.83 1.78
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1757 <0.00001***

35274 <0.00001***

146 <0.0001**
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DISCUSSION 

The composition and population density of the holothurian community in the 

deep-sea was shown to be variable over the ten-year period examined in this study. The 

progression of measurements over multiple deployments (13 in the ten-year period) at 

Station M suggests these data show a population response rather than an opportunistic 

response to patchy detritus.  The dominance of deposit-feeding holothurians in the deep-

sea epibenthic community is similar to the diverse assemblages of deposit-feeders found 

in shallow-water soft-bottomed habitats (Thrush 1991, Morrisey 1992; Kelaher and 

Levinton 2003).  As in the shallow-water communities, the deep-sea community responds 

to changes in the amount of detritus reaching the seafloor (Rhoads et al. 1978; Thrush 

1996; Ruhl and Smith 2004).  

The observed holothurian density was relatively low from 2007 through 2011, 

before increasing.  Although the population density increased after a large influx of 

nutrients in June 2011, there were other influxes that didn't appear to have the same 

response in the population growth. There is evidence that the quality of detritus is 

important to the response of holothurian species. Abyssocucunis abyssorum and 

Scotoplanes globosa selectively feed on fresh detritus whereas some Elpidia sp. are less 

selective in their feeding preferences (Lauerman et al. 1997; Miller et al. 2000; Jamieson 

et al. 2011). The breadth of this research on deep-sea holothurians compared to shallow-

water species is limited due to difficulties in collecting and maintaining individuals in a 

controlled lab setting.   

The increased population density was largely attributed to a single species, 

Peniagone sp A.  There may be multiple factors that explain why this species responded 

to the June 2011 flux event. First, Peniagone sp A has been observed swimming 

(personal observation), suggesting immigration and recruitment to areas with the richest 

nutrients is possible (Gebruk 1995). Other species in the genus Peniagone have also been 

observed swimming in the water column (personal observations; Kaufman and Smith 

1997; Ruhl 2007).  Huffard et al. (2016) saw evidence of potential immigration and 

juvenile recruitment based on body length of holothurians at Station M within the time 

period of this study. Another possible factor of response could be their ability to detect 

the nutrients. There is some evidence of holothurians having a network of nerves and 
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sensory buds on the skin to detect chemical stimuli (Lambert 1997).  Holothuria forskali, 

a shallow-water holothurian, has sensory organs on their buccal tentacles (feeding 

tentacles) to facilitate detection of rich sediment patches through the chemosensative 

abilities of their apical buds (Massin 1982; Boulard et al 1982).  

The rapid increase and subsequent decline of Peniaogone sp. A is a phenomenon 

that has been observed in other holothurian species (Bett et al. 2001; Billet et al. 2001; 

Smith et al. 2009). Amperima rosea and Ellipinion molle densities at the deep-sea site in 

the northeastern Atlantic (Porcupine Abyssal Plain, PAP) increased by orders of 

magnitude in an event that lasted approximately 3 years (Billet et al. 2001; Rodrigues et 

al. 2001). The rates of change for the holothurian density in this study varies from 

previous studies at this site (Huffard et al. 2016). It is hypothesized that this style of 

boom-bust population variation is part of the evolutionary life history characteristics of 

many echinoderms (Uthicke et al. 2009). Unfortunately, there is very little known about 

life history, fecundity and longevity of many of these deep-sea species due to difficulties 

in collecting intact specimens. It is difficult to predict how populations will respond to 

changes in their environment without knowing reproductive behaviors, maturity, and 

lifespan of these organisms. 

There is additional evidence that suggest some species of epibenthic fauna, 

including holothurians, exhibit cyclical pattern in density on a decadal scale at Station M 

(Kuhnz et al. 2014). In previous studies looking at data from 1989 to 2012, Elpidia sp. A 

was the dominant organism in the community for a decade, yet became nearly 

undetectable for over a decade after that (Kuhnz et al. 2014). If this type of time cycle is 

happening, the importance of long-term time series data becomes an essential aspect of 

understanding deep-sea community structure and population dynamics.  

MECHANISMS FOR LAGGED RESPONSES TO MASS FLUX  

The recruitment, behavior, and migration of holothurians may have an important 

impact on the response time of a species to influx of nutrients onto the seafloor. 

Elpidia sp A. had the fastest initial response to mass flux (25 weeks), followed by 

Abyssocucumis abyssorum (48 weeks). These two species exhibit a run and mill pattern 

of activity wherein they quickly move across large distances in a short amount of time 

(Kaufmann and Smith 1997). Then, they meander around a particular area for a prolonged 
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period of time at slower speeds (Kaufmann and Smith 1997; Jamieson et al. 2011).  This 

patterned activity may allow them to find detritus on the seafloor quicker than other 

species, which is indicated by having the least amount of lag response to the mass flux. 

These species have also been observed burrowing into the sediment at Station M (Ken 

Smith, personal communication), which leads to other possibilities as to their relatively 

rapid response to mass flux.  There is some evidence that holothurians are able to shift 

their diet based on availability of nutrients (Piersma and Dent 2003). By burrowing into 

the sediment, these holothurians may be able to opportunistically feed on other nutrient 

layers of detritus stratified within the sediment (Shirayama 1984). Lastly, there is 

evidence of holothurians entering into a dormancy state when subjected to environmental 

stressors, including low food supply (Cáceres 1997; Klanian 2013). If this is the case for  

Elpidia sp. A and A. abyssorum then they might remain buried and emerge to become 

more active once there is detection of an increased food supply.  

Peniagone vitrea and P. sp A showed the strongest correlation (0.41 and 0.40, 

respectively) to the mass flux.  All known swimming holothurians are planktonic in 

nature, using currents to carry them long distances (Roberts et al. 2000; Rogacheva et al. 

2012).  The conditions of the deep-sea (generally low food supply punctuated by large 

episodic influxes and patchy distribution of those nutrients) force some deposit-feeders to 

adapt with a more mobile strategy of foraging (Rogacheva et al. 2012). However, they 

are able to control when they land on the seafloor by ingesting marine snow in the water 

column and collecting detritus just off the seafloor with their tentacles to use as ballast in 

their body (Pawson 1986; Miller & Pawson 1990). This behavior may allow these species 

to cover a large expanse of habitat, but not control the exact direction in which the 

holothurians are moving. Once these species sense the detritus, they might make an 

active decision to land. This could explain why it has a strong correlation to mass flux, 

but takes 100 to 150 weeks to find those nutrients. 

DENSITY AND  COMPETITION  

Density did not appear to have an impact on the distribution of holothurians at 

Station M. The lack of influence of density on distribution suggests there is resource 

partitioning occurring among deep-sea holothurians, like that observed in tropical 

holothurians (Roberts 1979). The high diversity of holothurians in the deep sea may be 
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attributed to the  wide variety of feeding and digestive strategies these species employ 

(Roberts et al. 2000). By having different feeding behaviors and tentacle morphology, the 

holothurians might not be consuming, and therefore competing for, the same particles of 

detritus reaching the seafloor.   

Holothurians utilize tentacles to transfer food particles to their pharynx (Lawrence 

1987;  Roberts et al. 2000). There are five different morphological groups of tentacles in 

holothurians, but even tentacles of the same group may be used differently depending on 

the feeding behavior of the species (Massin 1982). Elasipodidae (exclusively deep-sea 

holothurians) have  three morphological tentacle types: peltate, digitate, and dendric 

(Hansen 1975; Gebruk 1995). Within those groups, there is further specialization of those 

tentacles based on branching structures and nodules (Bouland et al. 1982; Roberts et al. 

2000).  Oneirophanta mutabilis and Psychropotes longicauda, two species found at 

Station M, also have bacteria on their feeding tentacles that may break down detritus 

before ingestion (Moore 1994; Roberts et al. 2000).  The utilization of these 

morphologies strategies allow for high diversity of holothurians in the deep-sea, without 

altering the distribution patterns observed. 

TECHNOLOGY COMPARISONS  

This study highlights differences in technologies used to study deep-sea 

megafauna, community composition, population density and movements (Smith et. al 

1993; Billet et al. 2001; Ruhl 2007). There are inherit advantages and disadvantages to 

both the time-lapse camera tripod technology, seasonal ROV methods, and even trawl 

sampling.  

 Trawls have historically been quite useful in determining large-scale and long-

term patterns of fish and invertebrate ecology (Billet et al. 2010). However, using trawls 

does not detect fine-scale spatial distribution of the organisms along the seafloor. This 

sampling method also tends to result in damaged specimens, which are difficult to 

identify and examine. Comparisons between time-lapse imagery and trawls indicates that 

trawls vastly underrepresent smaller individuals and species (Bett et al. 2001).  

ROVs are able to sample relatively large areas, much like a trawl, but with 

capabilities to observe the exact distribution of megafauna. This technology requires 

personnel, ship time, and can be dependent upon environmental conditions that can limit 
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sampling periods. This makes rapid changes in communities difficult to detect. Also, 

there is some evidence that the operation of the ROV itself may impact the behavior of 

organisms, increasing the error of density measurements (Stoner et al. 2008).  

The time-lapse camera provides details about the fine scale resolution of 

population shifts that cannot be detected in seasonal sampling.  However, the larger field 

of view for the time-lapse camera may show bias against some species.  For example, 

156 Elpidia sp. A individuals were observed in a single ROV transect, yet the same time 

period in the time-lapse imagery only had 13 observations.  The bias stems from the 

difficulty detecting the small, cryptic Elpidia in the time-lapse imagery. Previous studies 

have found Elpidia to range from 0.5 to 6.9 cm at Station M (Huffard et al. 2016). The 

time-lapse is only able to detect larger individuals.  This may be true of other species, as 

well as juveniles of the holothurians we currently observe. Much like the ROV, the 

presence of a large piece of equipment on the deep-sea seafloor may create a reef effect 

much like oil platforms have shown to impact invertebrate assemblages in shallow-water 

environments (Page et al. 1999; Bram et al. 2005). Vardaro et al. 2007 addresses this 

concept with the time-lapse camera at Station M. They found no evidence that epibenthic 

megafauna was impacted by the equipment thus population data were not impacted by 

aggregation responses to the camera.  

CONCLUSIONS 

The data examined here provides the first fine-scale resolution of the fluctuations 

in holothurian populations and movements. The deep-sea is often viewed as a stable, 

unchanging environment, but there can be rapid changes in populations due to outside 

environmental factors. Holothurian density has changed over the ten-year period from 

2007 to 2017 with individual species showing more correlation with mass flux than 

others. Despite the differences in density, the spatial distribution patterns observed do not 

seem to change.  

The influence of food supply is not the only potential force impacting deep -sea 

communities. There are external anthropogenic pressures that continue to face the oceans 

including resource extraction and climate change. More research is needed to determine 

how these populations and communities will react or adapt to those oncoming pressures.  
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The fine scale resolution of the time-lapse camera also gives researchers the 

ability to look into behaviors that holothurians exhibit in the deep-sea. In examining 

hourly images from Station M, I have observed both swimming and standing behaviors in 

holothurians.  Although it may be difficult to attribute reasons for swimming, this dataset 

could indicate occurrences of swimming, adding to the natural history of these organism.  

Standing behaviors observed may provide important information on reproductive 

behaviors, a topic that is lacking for most deep-sea species. There may be more behaviors 

the time-lapse camera can detect to contribute to the limited knowledge of deep-sea 

communities. 
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CHAPTER 2 

BROADER IMPLICATIONS OF DEEP-SEA 

RESEARCH 

RESOURCE EXTRACTION 

 The mobile epibenthic megafuana, especially holothurians, are very important in 

the distribution of carbon and energy to many assemblages in the deep-sea (Smith 1993; 

Lauerman et al. 1996; Costa et al. 2014). The prevalence of this taxa across abyssal 

depths has made an indicator of how deep-sea communities change in response to 

changes in environment whether through food supply, physical disturbance or climate 

change (Thiel et al 1992; Bluhm et al. 1995; Ruhl and Smith 2004; Sweetman and Witte 

2008; Smith et al. 2009). However, there are still large gaps in knowledge regarding 

population density, community structure, distribution, and life history of deep-sea 

organisms. The fine scale resolution of population dynamics is a step towards filling 

those gaps.  This is becoming more important as technology and innovation drives 

humans to expand resource extraction to the deep-sea.  

 As coastal fisheries decline and technology improves, commercial fisheries are 

able to expand farther into deep waters (Koslow et al. 2000; Morato et al. 2006; Pitcher et 

al. 2010). Some estimates of global catch have estimated the catch of known deep water 

taxa to have increased six-fold over the last 50 years, with no sign of stopping (FAO 

2017). In recent years, these increases have been facilitated by better and more accurate 

equipment (Pauly et al. 2003). Unfortunately, many deep-sea fish have less resilience 

than shallow-water and coastal counterparts (Baker et al. 2009). In addition to impacting 

fish  populations, these fisheries are having an impact on the benthic community due to 

contact from trawl and long-line gears (Auster et al. 1999; Clark et al. 2016).  

 Another resource the deep-sea has long shown potential for is the mining of 

manganese nodules, manganese crust, and poly-metallic sulphides (Boschen et al. 2016; 

Scott 2001). Previous, failed attempts at these mining operations in the 1970s and 1980s 

put a halt to the active pursuit of mining in deep-sea basins (Scott 2001).  The advent of 

new technologies and high prices of metals has leaded to resurgence by the mining 

industry to exploit these resources (Halfar and Fujita 2007). While the extraction of these 

minerals is not economically viable at present, many nations are depending on their 
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potential value in the future.  Since most of these operations are outside exclusive 

economic zones, and internal body set up by the United Nations, the International Seabed 

Authority (ISA), has been given the task of regulating exploration and exploitation of no-

living resources in international waters (Lodge et al. 2014). Currently, the ISA has 

approved 29 contractors with 15 year contracts locations all around the globe (ISA 2017). 

For example, India was granted an exclusive rights in 2017 for nodules found in a 75000 

km
2
 area that is thought to be able to yield 380 million tonnes of resources (nickel, 

copper, cobalt, and manganese) (ISA 2017). The environmental risks associated with 

these operations include large benthic disturbances, subsequent sediment plumes, and 

potential toxic waters in overlaying waters (Glover and Smith 2003; Halfar and Fujita 

2007; Van Dover 2011).   

 Perhaps the largest impact in terms of resource extraction is the expansion of oil 

and gas into deeper water. Many oil companies began exploratory drilling sites in 

deepwater (125 to 1500 m deep) and ultra-deepwater (>1500 m deep) during the 1990s.  

These sites have propagated since then. According to the U.S. Environmental Protection 

Agency (EPA), the amount of deepwater and ultra-deepwater production has overtaken 

the shallow-water production of oil for the United States and other countries mining in 

deep waters (EPA 2016). The incentive to increase production into these deepwater areas, 

despite the increased risk and cost is due to higher prices for oil and government 

subsidies.  The production in these deepwater and ultra deepewater regions is used to 

offset the decline in shallow-water reserves and maintaining the domestic oil industry in 

this country (U.S. MMS 2009). Both the number of platforms, as well as the number of 

barrels extracted has increased every year since 2006 (EPA 2016).  

CLIMATE CHANGE 

 Anthropogenic climate change is a major source of change in the environment, 

particularly with regards to the ramifications of increased oceanic temperatures (Barnett 

et al. 2005; Levitus et al. 2009; Hoegh-Guldberg and Bruno 2010). Reductions in primary 

production and shifts in phytoplankton populations are correlated with increases in sea 

surface temperatures (Gregg et al. 2003; Taucher and Oschlies 2011). Changes from 

global climate change have the potential of disrupting deep-sea communities due to the 
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strong reliance of surface primary production for food supply (Ruhl and Smith 2004). 

Current domestic and international policies regarding climate change have focused on 

reducing carbon dioxide emissions from fossil fuel usage (Bierbaum et al. 2013; IPCC 

2014). The international consensus is to attempt to keep the global temperature from 

rising an additional 2ºC (IPCC 2014). Researchers have already found rising sea surface 

temperatures have expanded low chlorophyll waters, impacting the food supply for deep-

sea communities (Polvino et al. 2008). These trends indicate additional increases in 

temperature may continue the expansion of low chlorophyll waters.  

 This study and other time-series research has provided evidence showing notable 

changes in deep-sea communities. It is less clear how often these shifts and population 

boom events occur. It is clear that holothurians can respond to changes in food supply 

faster than a yearly scale, a typical sampling scale.  A single species can increase by two 

orders of magnitudes in a six-month period (Bett et al. 2001). This study shows how a 

large increase in population can last a few years depending on food supply and most 

likely, immigration and recruitment events. To gain a better understanding of climate 

change on population dynamics of the deep-sea communities, long-term time series are 

extremely important. 
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APPENDIX A 

SUPPLEMENTAL POPULATION DENSITY GRAPHS 

BY SPECIES 

 

Figure A-1. Weekly population density of Peniagone sp. A (individuals/ m2) for time period 

between 2007 to 2017 in comparison to the total abundance of all species.  NOTE: Image shows 

Elpidia sp. A (left) in addition to Penigaone sp. A. 

 



 

 

 

Figure A-2. Weekly population density of Scotoplanes globosa (individuals/ m
2
) for time period 

between 2007 to 2017 in comparison to the total abundance of all species. 

 



 

 

 
Figure A-3. Weekly population density of Peniagone vitrea (individuals/ m

2
) for time period 

between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-4. Weekly population density of Synallactidae sp. (individuals/ m
2
) for time period 

between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-5.  Weekly population density of Abyssocucumis abyssorum (individuals/ m2) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-6. Weekly population density of Elpidia sp. A  (individuals/ m
2
) for time period 

between 2007 to 2017 in comparison to the total abundance of all species. 

 



 

 

 

Figure A-7. Weekly population density of Oneirophanta mutabilis  (individuals/ m
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 

 



 

 

 

Figure  A-8. Weekly population density of Pseudostichopus mollis  (individuals/ m
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-9. Weekly population density of Paelopatides confundens  (individuals/ m
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-10. Weekly population density of Peniagone papillata  (individuals/ m
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 

 



 

 

 

Figure A-11. Weekly population density of Peniagone sp. 1  (individuals/ meter
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species.  



 

 

 

Figure A-12. Weekly population density of Peniagone sp. 2  (individuals/ meter
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 

 

 

 

 



 

 

 

Figure A-13.  Weekly population density of Holothuroidea sp. 4  (individuals/ m
2
) for time 

period between 2007 to 2017 in comparison to the total abundance of all species. 



 

 

 

Figure A-14. Weekly population density of Psychropotes spp. (combination of P. depressa and 

P. longicauda) (individuals/ m
2
) for time period between 2007 to 2017 in comparison to the total 

abundance of all species. 

 

 

  



 

 

Table A- 1. Mean population density for each species by deployment.  Bold numbers denote maximum density observed. 

 
 

              

Deployment
Peniagone 

sp. A

Scotoplanes 

globosa

Peniagone 

vitrea

Synallactidae 

gen.*

Abyssocucumis 

abyssorum

unknown 

Peniagone  sp.

Elpidia sp. 

A

Oneirophanta 

mutabilis

52 0.048 0.000 0.004 0.000 0.017 0.002 0.000 0.005

55 0.066 0.000 0.024 0.000 0.002 0.001 0.001 0.001

56 0.093 0.000 0.005 0.000 0.010 0.000 0.000 0.001

57 0.110 0.000 0.019 0.000 0.002 0.000 0.001 0.002

58 0.275 0.003 0.043 0.001 0.006 0.002 0.000 0.003

59 0.308 0.015 0.010 0.002 0.002 0.006 0.002 0.001

60 0.651 0.032 0.017 0.002 0.028 0.004 0.001 0.000

62 1.378 0.094 0.039 0.004 0.010 0.061 0.072 0.012

63 0.174 0.091 0.019 0.016 0.012 0.001 0.000 0.001

64 0.927 0.284 0.022 0.019 0.004 0.002 0.000 0.000

65 0.799 0.238 0.001 0.004 0.007 0.000 0.000 0.020

66 0.362 0.277 0.001 0.028 0.002 0.001 0.000 0.004

67 0.031 0.065 0.001 0.007 0.007 0.000 0.000 0.002

68 0.044 0.063 0.003 0.016 0.004 0.000 0.000 0.005

Paelopatides 

confundens

Peniagone 

papillata

Peniagone sp. 

1

Peniagone 

sp. 2

Holothuroidea 

sp. 4

Psychropotes 

spp.

52 0.008 0.000 0.000 0.004 0.000 0.0031

55 0.000 0.000 0.000 0.000 0.000 0.000

56 0.000 0.003 0.000 0.000 0.000 0.000

57 0.000 0.006 0.000 0.001 0.000 0.000

58 0.002 0.004 0.000 0.001 0.000 0.0026

59 0.001 0.002 0.000 0.002 0.000 0.000

60 0.000 0.006 0.000 0.0054 0.000 0.000

62 0.000 0.017 0.018 0.000 0.012 0.002

63 0.001 0.001 0.008 0.002 0.000 0.000

64 0.007 0.000 0.001 0.004 0.007 0.0033

65 0.0087 0.000 0.000 0.004 0.000 0.001

66 0.0090 0.001 0.000 0.0045 0.000 0.002

67 0.007 0.000 0.000 0.000 0.000 0.000

68 0.000 0.000 0.000 0.001 0.000 0.001

0.000

0.000

0.000

0.000

0.000

0.018

0.007

0.000

0.000

Pseudostichopus 

mollis

0.002

0.002

0.005

0.003

0.002



 

 

 

APPENDIX B 

SUPPLEMENTAL CROSS CORRELATION GRAPHS  

(SPECIES VS. MASS FLUX) 
 

 
Figure B-1. Cross correlation results for total holothurians. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 



 

 

 

 

 
Figure B-2. Cross correlation results for Peniagone sp. A. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 

 



 

 

 
Figure B-3. Cross correlation results for Scotoplanes globosa. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 

 



 

 

 
Figure B-4. Cross correlation results for Peniagone vitrea. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 

 



 

 

 
Figure B-5. Cross correlation results for Synallactidae gen sp. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 



 

 

 
Figure B-6. Cross correlation results for Abyssocucumis abyssorum. Lag  in time series data. 

Positive correlation peaks (first and maximum) examined. Corrections for autocorrelation 

reflected in correlation values (r) and p-values. 



 

 

 
Figure 15. Cross correlation results for Elpidia sp. A. Lag  in time series data. Positive 

correlation peaks (first and maximum) examined. Corrections for autocorrelation reflected in 

correlation values (r) and p-values. 

 

 

 

 



 

 

 

APPENDIX C 

SPECIES COMPARISON BETWEEN TIME-LAPSE 

AND ROV TRANSECTS  

 

Table C-1. Species composition of holothurians in time-lapse and ROV imagery used in spatial 

distance analysis.   

 
 

  

CT 62 ROV486 CT 60 ROV403 CT 68 ROV986

Total Individuals (N) 270 411 25 357 14 47

Abyssocucumis abyssorum 8 3 0 1 0 2

Elpidia sp. A 13 156 0 132 0 2

Oneirophanta mutabilis 0 0 0 1 1 0

Paelopatides confundens 0 3 0 2 0 0

Peniagone gracilis 0 14 0 6 0 0

Peniagone papillata 0 3 0 2 0 0

Peniagone  sp. 0 1 0 7 0 2

Peniagone sp. 1 0 0 0 3 0 0

Peniagone sp. 2 0 3 0 3 0 2

Peniagone  sp. A 220 118 22 154 2 12

Peniagone vitrea 3 26 1 21 0 7

Psychropotes spp. 0 1 0 1 0 0

Scotoplanes globosa 17 27 2 75 10 17

Synallactidae gen.* 0 1 0 3 1 3

High Density Medium Density Low Density



 

 

APPENDIX D 

R CODE  
 

###Mass Flux vs. Population Density correlation functions 

 

#Set up data directory 

setwd("C:/ ") 

 

#Import Ranked Data 

Abund_Ranks <- read.csv(file="  ",head=TRUE, sep=",") 

 

#Run cross correlations at a series of lags. Delete lags that are not 

appropriate mechanistically. Repeat for all species.  These correlation 

values are to determine positive peaks in correlation, then corrected for 

autocorrelation with Pypers and Peterson Method 

 

#Max lag can be shifted for each species if necessary, data set has 382 

ccfTotHoloMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked, 

 Abund_Ranks$Total_Holo_Ranked, plot = TRUE, 

      lag.max = 156, na.action = na.pass, xlim=c(-150,0), main = "") 

 

title("Mass Flux vs Total Holothurians Cross Correlation Results", line=0.5) 

 

#Pull out acf values and lags 

corTotHoloMassFlux=ccfTotHoloMassFlux$acf[,,1] 

lagTotHoloMassFlux= ccfTotHoloMassFlux$lag[,,1] 

 

#Put acf and lag into new data frame 

resTotHoloMassFlux= data.frame(corTotHoloMassFlux,lagTotHoloMassFlux) 

resTotHolofollowsMassFlux<- resTotHoloMassFlux[1:157, ] 

 

#Find maximum correlation and lag 

resTotHolofollowsMassFlux_max = resTotHoloMassFlux[ 

 which.max(resTotHolofollowsMassFlux$corTotHoloMassFlux ),] 

print(resTotHolofollowsMassFlux_max) 

resTotHolofollowsMassFlux<- resTotHoloMassFlux[1:157, ] 

 

#Plot correlation values with lag; insert points, p-values, and correlation 

#values. Add significance when necessary calculated from the autocorrected 

#values 

 

plot(resTotHolofollowsMassFlux$lagTotHoloMassFlux, 

 resTotHolofollowsMassFlux$corTotHoloMassFlux,  

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = "Mass Flux leads Total 

 Holothurians") 

 

#Add line at 0 to make it easier to read 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for total holothurians 

points(-103,0.177, type = "p", pch=16) 

mtext("p-value = 0.210", side=3, line=-3, adj=0.43, cex=1) 

mtext("r = 0.237", side=3, line=-4, adj=0.405, cex=1) 



 

 

 

#Maximum positive correlation peak for total holothurians  

points(-149,0.2687, type = "p", pch=16) 

mtext("*", side=3, line=-1.6, adj=0.09, cex=2) ##significance 

mtext("p-value = 0.017", side=3, line=-1.1, adj=0.13, cex=1) 

mtext("r = 0.40", side=3, line=-2.1, adj=0.12, cex=1) 

 

#Repeat for all species with 1% or more of observations  

 

 

#CCF for Peniagone sp. A 

ccfPenSpAMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked, 

 Abund_Ranks$PenSpA_Ranked, plot = TRUE, 

      lag.max = 156, na.action = na.pass, xlim=c(-150,0), main=" ") 

 

title(expression(paste("Mass Flux vs ",italic('Peniagone '), "sp. A Cross 

Correlation Results"), line=0.5)) 

 

corPenSpAMassFlux = ccfPenSpAMassFlux$acf[,,1] 

lagPenSpAMassFlux= ccfPenSpAMassFlux$lag[,,1] 

 

resPenSpAMassFlux = data.frame(corPenSpAMassFlux ,lagPenSpAMassFlux) 

resPenSpAfollowsMassFlux<- resPenSpAMassFlux[1:157, ] 

 

resPenSpAfollowsMassFlux_max = resPenSpAMassFlux[ 

 which.max(resPenSpAfollowsMassFlux$corPenSpAMassFlux ),] 

print(resPenSpAfollowsMassFlux_max) 

resPenSpAfollowsMassFlux<- resPenSpAMassFlux[1:157, ] 

 

plot(resPenSpAfollowsMassFlux$lagPenSpAMassFlux, 

 resPenSpAfollowsMassFlux$corPenSpAMassFlux, 

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = substitute(paste("Mass Flux leads 

 ",italic('Peniagone '), "sp. A"))) 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Peniagone sp. A 

points(-103,0.241, type = "p", pch=16) 

mtext("p-value = 0.057", side=3, line=-3, adj=0.44, cex=1) 

mtext("r = 0.33", side=3, line=-4, adj=0.41, cex=1) 

 

#Maximum positive correlation peak for Peniagone sp. A 

points(-149,0.29, type = "p", pch=16) 

mtext("*", side=3, line=-1.6, adj=0.09, cex=2) ##significance 

mtext("p-value = 0.015", side=3, line=-1.1, adj=0.14, cex=1) 

mtext("r = 0.40", side=3, line=-2.1, adj=0.13, cex=1) 

 

#CCF for Scotoplanes globosa 

ccfScotoMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked,  

 Abund_Ranks$Scoto_Ranked, plot = TRUE, 

      lag.max = 215, na.action = na.pass, xlim=c(-200,0), main=" ") 

 

title(expression(paste("Mass Flux vs ",italic('Scotoplanes globosa'), " Cross 

 Correlation Results"), line=0.5)) 

 



 

 

corScotoMassFlux=ccfScotoMassFlux$acf[,,1] 

corScotoMassFlux = ccfScotoMassFlux$acf[,,1] 

lagScotoMassFlux= ccfScotoMassFlux$lag[,,1] 

 

resScotoMassFlux = data.frame(corScotoMassFlux ,lagScotoMassFlux) 

resScotofollowsMassFlux<- resScotoMassFlux[1:216, ] 

 

resScotofollowsMassFlux_max = resScotoMassFlux[

 which.max(resScotofollowsMassFlux$corScotoMassFlux ),] 

print(resScotofollowsMassFlux_max) 

resScotofollowsMassFlux<- resScotoMassFlux[1:216, ] 

 

plot(resScotofollowsMassFlux$lagScotoMassFlux, 

 resScotofollowsMassFlux$corScotoMassFlux, 

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = substitute(paste("Mass Flux leads 

 ",italic('Scotoplanes globosa')))) 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Scotoplanes globosa 

points(-176,0.112, type = "p", pch=16) 

mtext("p-value = 0.053", side=3, line=-3, adj=0.26, cex=1) 

mtext("r = 0.33", side=3, line=-4, adj=0.24, cex=1) 

 

#Maximum positive correlation peak for Scotoplanes globosa 

points(-203,0.164, type = "p", pch=16) 

mtext("p-value = 0.471", side=3, line=-1.1, adj=0.14, cex=1) 

mtext("r = 0.12", side=3, line=-2.1, adj=0.13, cex=1) 

 

 

#CCF for Peniagone vitrea 

ccfPenVitMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked, 

 Abund_Ranks$PenVit_Ranked, plot = TRUE,  

 lag.max = 156, na.action =  na.pass,xlim=c(-150,0), main= " ") 

 

title(expression(paste("Mass Flux vs ",italic('Peniagone vitrea'), " Cross 

Correlation Results"), line=0.5)) 

 

corPenVitMassFlux = ccfPenVitMassFlux$acf[,,1] 

lagPenVitMassFlux= ccfPenVitMassFlux$lag[,,1] 

 

resPenVitMassFlux = data.frame(corPenVitMassFlux ,lagPenVitMassFlux) 

resPenVitfollowsMassFlux<- resPenVitMassFlux[1:157, ] 

 

resPenVitfollowsMassFlux_max = resPenVitMassFlux[ 

 which.max(resPenVitfollowsMassFlux$corPenVitMassFlux ),] 

print(resPenVitfollowsMassFlux_max) 

resPenVitfollowsMassFlux<- resPenVitMassFlux[1:157, ] 

 

plot(resPenVitfollowsMassFlux$lagPenVitMassFlux, 

 resPenVitfollowsMassFlux$corPenVitMassFlux, 

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = substitute(paste("Mass Flux leads 

 ",italic('Peniagone vitrea')))) 

 



 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Peniagone vitrea 

points(-53,0.153, type = "p", pch=16) 

mtext("*", side=3, line=-10.85, adj=0.655, cex=2) 

mtext("p-value = 0.034", side=3, line=-10.4, adj=0.78, cex=1) 

mtext("r = 0.21", side=3, line=-11.4, adj=0.724, cex=1) 

 

#Maximum positive correlation peak for Peniagone vitrea 

points(-100,0.318, type = "p", pch=16) 

mtext("***", side=3, line=-1.6, adj=0.363, cex=2) 

mtext("p-value = 0.00002", side=3, line=-1.1, adj=0.48, cex=1) 

mtext("r = 0.41", side=3, line=-2.1, adj=0.435, cex=1) 

 

 

#CCF for Synallactidae 

ccfSynallMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked, 

 Abund_Ranks$Synall_Ranked, plot = TRUE, 

      lag.max = 250, na.action = na.pass, xlim=c(-250,0), main= " ") 

 

title(expression(paste("Mass Flux vs Synallactidae gen. Cross Correlation 

 Results"), line=0.5)) 

 

corSynallMassFlux = ccfSynallMassFlux$acf[,,1] 

lagSynallMassFlux= ccfSynallMassFlux$lag[,,1] 

 

resSynallMassFlux= data.frame(corSynallMassFlux,lagSynallMassFlux) 

resSynallMassFlux = data.frame(corSynallMassFlux ,lagSynallMassFlux) 

resSynallfollowsMassFlux<- resSynallMassFlux[1:251, ] 

 

resSynallfollowsMassFlux_max = resSynallMassFlux[ 

 which.max(resSynallfollowsMassFlux$corSynallMassFlux ),] 

print(resSynallfollowsMassFlux_max) 

resSynallfollowsMassFlux<- resSynallMassFlux[1:251, ] 

 

plot(resSynallfollowsMassFlux$lagSynallMassFlux, 

 resSynallfollowsMassFlux$corSynallMassFlux, 

     type = "l", xlab = "Lag \n(number of steps in weeks)",  

     ylab = "Correlation Value", main = "Mass Flux leads Synallactidae sp.") 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Synallactidae gen. 

points(-141,0.136, type = "p", pch=16) 

#mtext(" ", side=3, line=-1.6, adj=0.363, cex=2) 

mtext("p-value = 0.174", side=3, line=-6, adj=0.53, cex=1) 

mtext("r = 0.16", side=3, line=-7, adj=0.494, cex=1) 

 

#Maximum positive correlation peak for Synallactidae gen. 

points(-210,0.210, type = "p", pch=16) 

mtext("**", side=3, line=-1.6, adj=0.175, cex=2) 

mtext("p-value = 0.003", side=3, line=-1.55, adj=0.24, cex=1) 

mtext("r = 0.28", side=3, line=-2.55, adj=0.224, cex=1) 

 

 

#CCF for Abyssocucumis abyssorum 



 

 

ccfAbyssMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked,  

 Abund_Ranks$Abyss_Ranked, plot = TRUE, 

      lag.max = 156, na.action = na.pass, xlim=c(-150,0), main= " ", ylim=c(-

 0.2,0.2)) 

 

title(expression(paste("Mass Flux vs ",italic('Abyssocucumis abyssorum'), " 

 Cross Correlation Results"), line=0.5)) 

 

 

corAbyssMassFlux = ccfAbyssMassFlux$acf[,,1] 

lagAbyssMassFlux= ccfAbyssMassFlux$lag[,,1] 

 

resAbyssMassFlux = data.frame(corAbyssMassFlux ,lagAbyssMassFlux) 

resAbyssfollowsMassFlux<- resAbyssMassFlux[1:157, ] 

 

resAbyssfollowsMassFlux_max = resAbyssMassFlux[ 

 which.max(resAbyssfollowsMassFlux$corAbyssMassFlux ),] 

print(resAbyssfollowsMassFlux_max) 

resAbyssfollowsMassFlux<- resAbyssMassFlux[1:157, ] 

 

plot(resAbyssfollowsMassFlux$lagAbyssMassFlux, 

 resAbyssfollowsMassFlux$corAbyssMassFlux, 

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = substitute(paste("Mass Flux leads 

 ", italic('Abyssocucumis abyssorum')))) 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Abyssocucumis abyssorum 

points(-48,0.139, type = "p", pch=16) 

#mtext(" ", side=3, line=-1.6, adj=0.363, cex=2) 

mtext("p-value = 0.218", side=3, line=-3, adj=0.81, cex=1) 

mtext("r = 0.10", side=3, line=-4, adj=0.75, cex=1) 

 

#Maximum positive correlation peak for Abyssocucumis abyssorum 

points(-146,0.154, type = "p", pch=16) 

mtext("**", side=3, line=-1.6, adj=0.085, cex=2) 

mtext("p-value = 0.009", side=3, line=-1.55, adj=0.14, cex=1) 

mtext("r = 0.22", side=3, line=-2.55, adj=0.13, cex=1) 

 

 

#CCF for Elpidia sp. A 

ccfElpMassFlux<- ccf(Abund_Ranks$MassFlux_Ranked,  

 Abund_Ranks$Elpidia_Ranked, plot = TRUE,  

      lag.max = 156, na.action = na.pass, xlim=c(-150,0), main= " ") 

 

title(expression(paste("Mass Flux vs ",italic('Elpidia '), "sp. A Cross 

 Correlation Results"), line=0.5)) 

corElpMassFlux = ccfElpMassFlux$acf[,,1] 

lagElpMassFlux= ccfElpMassFlux$lag[,,1] 

 

resElpMassFlux = data.frame(corElpMassFlux ,lagElpMassFlux) 

resElpfollowsMassFlux<- resElpMassFlux[1:157, ] 

 

resElpfollowsMassFlux_max = resElpMassFlux[ 

 which.max(resElpfollowsMassFlux$corElpMassFlux ),] 



 

 

print(resElpfollowsMassFlux_max) 

resElpfollowsMassFlux<- resElpMassFlux[1:157, ] 

 

plot(resElpfollowsMassFlux$lagElpMassFlux, 

 resElpfollowsMassFlux$corElpMassFlux, 

      type = "l", xlab = "Lag \n(number of steps in weeks)",  

      ylab = "Correlation Value", main = substitute(paste("Mass Flux leads 

 ",italic('Elpidia'), " sp. A"))) 

 

abline(a=0,b=0,h=0) 

 

#Initial positive correlation peak for Elpidia sp. A 

points(-25,0.148, type = "p", pch=16) 

#mtext("*", side=3, line=-1.6, adj=0.363, cex=2) 

mtext("p-value = 0.060", side=3, line=-5, adj=0.97, cex=1) 

mtext("r = 0.20", side=3, line=-6, adj=0.9, cex=1) 

 

#Maximum positive correlation peak for Elpidia sp. A 

points(-82,0.202, type = "p", pch=16) 

mtext("*", side=3, line=-1.6, adj=0.475, cex=2) 

mtext("p-value = 0.032", side=3, line=-1.3, adj=0.57, cex=1) 

mtext("r = 0.23", side=3, line=-2.3, adj=0.53, cex=1) 

 

 

 

###Spatial Distances: Nearest Neighbor Index 

##ROV transects 

 

#Set up data directory 

setwd("C:/ ") 

 

#Nearest neighbor for ROV TRANSECT 403 (Pulse 60) all species 

#Import ROV data 

ROV99403 <- read.csv(file="ROV99403_Pulse60.csv",head=TRUE,sep=",") 

ROV99486 <- read.csv(file="ROV99486_Pulse62.csv",head=TRUE,sep=",") 

ROV99986 <- read.csv(file="ROV99986_Pulse68.csv",head=TRUE,sep=",") 

 

#Create a window to plot coordinates of individuals NOTE: These are in 

meters. 

w <- as.owin(list(xrange=c(0,1),yrange=c(0,200))) 

 

#Plot coordinates into window 

holo60=ppp(ROV99403$X_distance, ROV99403$y.distance.from.beginning..m., 

 window=w, unitname=c("meters", "meters"), labels(ROV99403$ConceptName)) 

  

plot(holo60) 

 

 

#Calculate nearest neighbor index for all holothurians 

NN60=nndist(holo60) 

write.csv(NN60, "Puls60_NNDistances.csv") 

 

#Determine which individual is the nearest neighbor which makes it possible 

#to coordinate with measurements made in VARS 

NN60Individual=nnwhich(holo60) 

write.csv(NN60Individual, "Puls60_NNIndividual.csv") 



 

 

 

#Calculate the mean nearest neighbor distances 

NN_obs_min=(sum(NN60)/length(NN60)) 

 

#Calculate the expected nearest neighbor distances 

NN_expected=(0.5/(sqrt(length(NN60)/(200)))) 

  

#Calculate the nearest neighbor index (NNI) 

NNI60=NN_obs_min-NN_expected 

 

 

#If the NNI result is: 

##                  < 0 then clustered 

##                  = 0 then random 

##                  > 0 then dispersed 

 

#To determine intensity, compute Z score (a double check to above). This 

#gives 95% confidence interval 

 

#Calculate the Standard Error 

SE_All= sd(NN60)/(sqrt((length(NN60)^2)/200)) 

  

#Use standard error to calculate the z score 

z_score_AllHolo60= NNI60/SE_All 

 

#If the z score result is (with 95% CI): 

##                  < -1.96 then clustered 

##                  > 1.96 then dispersed 

 

 

#Initial pass at the ROV data Look at individual species to see if 

#distribution patterns are different than total holothurians 

 

#NNI for Peniagone sp. A subset 

Pen_spA_60= subset(ROV99403, ConceptName=="Peniagone sp. A") 

 

w <- as.owin(list(xrange=c(0,1),yrange=c(0,200))) 

 

Pen_spA_60_ppp=ppp(Pen_spA_60$X_distance, 

 Pen_spA_60$y.distance.from.beginning..m.,  

 window=w, unitname=c("meters", "meters"), labels(ROV99403$ConceptName)) 

  

plot(Pen_spA_60_ppp) 

 

Pen_spA_NN60=nndist(Pen_spA_60_ppp) 

  

Pen_spA_NN60Individual=nnwhich(Pen_spA_60_ppp) 

 

Pen_spA_NN_obs_min=(sum(Pen_spA_NN60)/length(Pen_spA_NN60)) 

 

Pen_spA_NN_expected=(0.5/(sqrt(length(Pen_spA_NN60)/(200)))) 

 

Pen_spA_NNI60=Pen_spA_NN_obs_min-Pen_spA_NN_expected 

 

Pen_spA_SE= 0.26136/(sqrt((length(Pen_spA_NN60)^2)/200)) 

 



 

 

Pen_spA_z_score= Pen_spA_NNI60/Pen_spA_SE 

 

plot(Pen_spA_60$X_distance, Pen_spA_60$y.distance.from.beginning..m., 

 ylab="meters", xlab="meters", 

      main="Peniagone sp. A Distribution \nROV Transect 403", ylim=c(0,200), 

 xlim=c(0,1), col= "black", pch=16) 

 

##Repeat for other species: Elpidia sp. A; Peniagone vitrea; Scotoplanes 

#globosa; Peniagone gracilis; Abyssocucumis abyssorum; Paelopatides 

#confundens; Peniagone papillata; Peniagone sp. 2; Synallactidae; Peniagone 

#papillata; Peniagone sp. 1; Psychropotes spp.; Oneirophanta mutabilis  

 

##Repeat Nearest Neighbor Index with other ROV transects:  

#ROV TRANSECT 486 (Pulse 62) and ROV TRANSECT 986 (Pulse 68) 

 

###Spatial Distances: Nearest Neighbor Index 

#Camera Tripod 

 

#Import Deployment Data 

#Nearest neighbor for Pulse 60 for week after ROV transect all species 

Pulse60_SD <- read.csv(file="Pulse60SDCoordinates.csv",head=TRUE,sep=",") 

 

#Create a window to plot coordinates of individuals NOTE: These are in pixels 

but ROV is in meters. Pixel length will be converted post hoc 

w <- as.owin(list(xrange=c(0,4350),yrange=c(800,2900))) 

 

#Plot coordinates into window 

CT60=ppp(Pulse60_SD$x, Pulse60_SD$y, window=w,  

 unitname=c("pixels", "pixels"), labels(Pulse60_SD$ConceptName)) 

 

#nndist() in r is not able to pull only one timecode out, rather it compares 

one time code to all other coordinates in data set; so I subset by time code 

first 

CT60_TTC1=subset(Pulse60_SD, TapeTimeCode=="00:00:00:13") 

 

 

#Plot timecode subset into new window 

CT60_TTC1_ppp=ppp(CT60_TTC1$x, CT60_TTC1$y, window=w, unitname=c("pixels", 

 "pixels"), labels(Pulse60_SD$ConceptName)) 

 

#Determine which individual is the nearest neighbor which makes it possible 

#to coordinate with measurements made in VARS 

CT60_TTC1Individual=nnwhich(CT60_TTC1_ppp) 

write.csv(CT60_TTC1Individual, "Puls60_CT60_TTC1_NNIndividual.csv") 

 

#Calculate the nearest neighbor distances in the window 

NN60_TTC1=nndist(CT60_TTC1_ppp) 

write.csv(NN60_TTC1, "Puls60_TTC1_NNDistances.csv") 

 

#Calculate the mean nearest neighbor distances 

NN60_TTC1_obs_min=(sum(NN60_TTC1)/length(NN60_TTC1)) 

 

#Calculate the expected nearest neighbor distances 

NN60_TTC1_expected=(0.5/(sqrt(length(NN60_TTC1)/(16.91)))) 

 

 



 

 

#Calculate the nearest neighbor index (NNI) 

NN60_TTC1_NNI60= NN60_TTC1_obs_min - NN60_TTC1_expected 

 

#If the NNI result is: 

##                  < 0 then clustered 

##                  = 0 then random 

##                  > 0 then dispersed 

 

 

##Repeat for all timecodes in the corresponding week to the ROV transect 

 

CT60_TTC2=subset(Pulse60_SD, TapeTimeCode=="00:00:00:28") 

CT60_TTC3=subset(Pulse60_SD, TapeTimeCode=="00:00:01:14") 

CT60_TTC4=subset(Pulse60_SD, TapeTimeCode=="00:00:01:19") 

CT60_TTC5=subset(Pulse60_SD, TapeTimeCode=="00:00:01:24") 

CT60_TTC5=subset(Pulse60_SD, TapeTimeCode=="00:00:01:24") 

CT60_TTC6=subset(Pulse60_SD, TapeTimeCode=="00:00:02:03") 

CT60_TTC7=subset(Pulse60_SD, TapeTimeCode=="00:00:02:24") 

CT60_TTC8=subset(Pulse60_SD, TapeTimeCode=="00:00:03:13") 

CT60_TTC9=subset(Pulse60_SD, TapeTimeCode=="00:00:03:18") 

CT60_TTC10=subset(Pulse60_SD, TapeTimeCode=="00:00:03:27") 

CT60_TTC11=subset(Pulse60_SD, TapeTimeCode=="00:00:04:15") 

 

 

#Nearest neighbor for Pulse 62 for week after ROV transect all species 

Pulse62_SD <- read.csv(file="Pulse62SDCoordinates.csv",head=TRUE,sep=",") 

 

w <- as.owin(list(xrange=c(0,4350),yrange=c(800,2900))) 

 

CT62=ppp(Pulse62_SD$x, Pulse62_SD$y, window=w, unitname=c("pixels", 

 "pixels"), labels(Pulse62_SD$ConceptName)) 

 

#Repeat steps for 62 Deployment 

CT62_TTC1=subset(Pulse62_SD, TapeTimeCode=="00:00:00:03") 

CT62_TTC2=subset(Pulse62_SD, TapeTimeCode=="00:00:00:13") 

CT62_TTC3=subset(Pulse62_SD, TapeTimeCode=="00:00:00:23") 

CT62_TTC4=subset(Pulse62_SD, TapeTimeCode=="00:00:00:26") 

CT62_TTC5=subset(Pulse62_SD, TapeTimeCode=="00:00:01:03") 

CT62_TTC6=subset(Pulse62_SD, TapeTimeCode=="00:00:01:13") 

CT62_TTC7=subset(Pulse62_SD, TapeTimeCode=="00:00:01:23") 

CT62_TTC8=subset(Pulse62_SD, TapeTimeCode=="00:00:02:03") 

CT62_TTC9=subset(Pulse62_SD, TapeTimeCode=="00:00:02:13") 

CT62_TTC10=subset(Pulse62_SD, TapeTimeCode=="00:00:02:23") 

CT62_TTC11=subset(Pulse62_SD, TapeTimeCode=="00:00:02:26") 

CT62_TTC12=subset(Pulse62_SD, TapeTimeCode=="00:00:02:29") 

CT62_TTC13=subset(Pulse62_SD, TapeTimeCode=="00:00:03:03") 

CT62_TTC14=subset(Pulse62_SD, TapeTimeCode=="00:00:03:10") 

CT62_TTC15=subset(Pulse62_SD, TapeTimeCode=="00:00:03:13") 

CT62_TTC16=subset(Pulse62_SD, TapeTimeCode=="00:00:03:19") 

CT62_TTC17=subset(Pulse62_SD, TapeTimeCode=="00:00:03:23") 

CT62_TTC18=subset(Pulse62_SD, TapeTimeCode=="00:00:03:24") 

CT62_TTC19=subset(Pulse62_SD, TapeTimeCode=="00:00:03:27") 

CT62_TTC20=subset(Pulse62_SD, TapeTimeCode=="00:00:04:02") 

CT62_TTC21=subset(Pulse62_SD, TapeTimeCode=="00:00:04:08") 

CT62_TTC22=subset(Pulse62_SD, TapeTimeCode=="00:00:04:13") 

CT62_TTC23=subset(Pulse62_SD, TapeTimeCode=="00:00:04:23") 



 

 

CT62_TTC24=subset(Pulse62_SD, TapeTimeCode=="00:00:04:29") 

 

 

#Nearest neighbor for Pulse 68 for week after ROV transect all species 

Pulse68_SD <- read.csv(file="Pulse68SDCoordinates.csv",head=TRUE,sep=",") 

head(Pulse68_SD) 

 

w <- as.owin(list(xrange=c(750,4385),yrange=c(1100,4000))) 

 

CT68=ppp(Pulse68_SD$x, Pulse68_SD$y, window=w, unitname=c("pixels", 

 "pixels"), labels(Pulse68_SD$ConceptName)) 

 

#Repeat steps for 68 Deployment 

CT68_TTC1=subset(Pulse68_SD, TapeTimeCode=="00:00:51:22") 

CT68_TTC2=subset(Pulse68_SD, TapeTimeCode=="00:00:52:17") 

CT68_TTC3=subset(Pulse68_SD, TapeTimeCode=="00:00:52:26") 

CT68_TTC4=subset(Pulse68_SD, TapeTimeCode=="00:00:53:10") 

CT68_TTC5=subset(Pulse68_SD, TapeTimeCode=="00:00:53:15") 

CT68_TTC6=subset(Pulse68_SD, TapeTimeCode=="00:00:54:07") 

CT68_TTC7=subset(Pulse68_SD, TapeTimeCode=="00:00:54:13") 

 

 

#Mann Whitney/Wilcoxon CT_ROV_Comparison 

 

#Import data 

CT_ROV_Comp= read.csv(file="CT_ROV_Comparison.csv",head=TRUE,sep=",") 

 

#Create vectors of distances for camera tripod and ROV NN distancecs 

P60ROV=CT_ROV_Comp$X60ROV_NNDistance 

P60CT=CT_ROV_Comp$X60CT_NNDistance 

 

#Run Mann Whitney 

wilcox.test(P60ROV, P60CT) 

 

#Repeat for other sets 

P62ROV=CT_ROV_Comp$X62ROV_NNDistance 

P62CT=CT_ROV_Comp$X62CT_NNDistance 

 

wilcox.test(P62ROV, P62CT) 

 

P68ROV=CT_ROV_Comp$X68ROV_NNDistance 

P68CT=CT_ROV_Comp$X68CT_NNDistance 

 

wilcox.test(P68ROV, P68CT) 
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