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ABSTRACT

Acute Effects of Elevated pCO2 and Hypoxia on Blue Rockfish
(Sebastes mystinus) Gene Expression and Metabolic Enzyme
Activity

by

Andrew Jacob Cline
Master of Science in Applied Marine and Watershed Science
California State University Monterey Bay, 2018

In the Northeast Pacific, seasonal upwelling periodically exposes nearshore
organisms to elevated levels of pCOz and hypoxia. Upwelling is projected to intensify under
climate change as more frequent and intense alongshore wind events bring deeper, more
acidic and hypoxic seawater to shallower depths and into nearshore ecosystems. Previous
work demonstrated that blue rockfish (Sebastes mystinus) are relatively tolerant to high levels
of pCO2 at multiple biological scales compared with copper rockfish (S. caurinus) following
chronic exposure for multiple months. To investigate the tolerance of juvenile blue rockfish
over shorter, more ecologically relevant periods, I measured changes in muscle tissue gene
expression at 12 h, 24 h and two weeks of exposure to elevated pCO2 (1200 patm), hypoxia
(4.0 mg/L) and combined high pCOxz/hypoxia. I also measured the activities of key metabolic
enzymes (citrate synthase and lactate dehydrogenase) under combined high pCOx/hypoxia to
assess the stressors’ effects at the biochemical level. I found that gene expression patterns
over time varied significantly among the three treatments, with little functional overlap
among genes responsive to each treatment. In response to elevated pCOz, blue rockfish
increased expression of genes encoding muscular contractile proteins as well as genes
involved in ATP metabolism pathways, possibly indicating shifts in muscle composition and
heightened basal metabolism. Under hypoxia, blue rockfish also up-regulated genes encoding
ATP metabolic proteins, but also up-regulated important ionoregulatory proteins like
carbonic anhydrase. Under combined high pCO:2 and hypoxia, I observed differential
expression of genes involved in various signaling pathways and oxygen carrying capacity,
but observed no changes in metabolic enzyme activities. While blue rockfish up-regulated
many of the same genes under combined high pCO2/hypoxia that were observed under each
independent stressor, the response under both stressors was not additive but varied with
exposure time between synergism and antagonism. My findings indicate that juvenile blue
rockfish may be equipped to cope with moderate high pCO2 and hypoxia in the short term,
and that the species may be sufficiently responsive to employ different gene suites under
each stressor. If rockfishes in general display tolerance to these stressors, annual recruitment
may continue to play a larger role in determining abundances than climate-related
oceanographic shifts. If changing conditions are shown to adversely impact some rockfish
species more than others, however, environmental forecasting data may merit inclusion in
California groundfish fishery management.
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SECTION 1

INTRODUCTION

MARINE STRESSORS: OCEAN ACIDIFICATION AND HYPOXIA

Shifting marine chemistry associated with global climate change such as ocean
acidification (OA) and hypoxia will have both predictable and unanticipated effects on
marine organisms (Fabry et al. 2008, Kroeker et al. 2010, Hoegh-Guldberg and Bruno
2010). Approximately 30-50% of atmospheric CO2 has dissolved into the ocean, leading
to decreases in ocean surface pH (Sabine et al. 2004, Orr et al. 2005). Mean surface pH
levels have fallen by approximately 0.11 pH units since the Industrial Revolution,
corresponding to a 30% increase in pH (IPCC, 2014). Separately, marine deoxygenation
is projected to increase as climate change progresses (Breitburg et al. 2018). Oxygen
solubility declines as water temperature increase, and increased stratification reduces
mixing of oxygenated upper layers and deeper oxygen-poor layers (Meire ef al. 2013).
Extreme low oxygen and anoxia have already been observed in the California Current
Large Marine Ecosystem (CCLME), driven by stratification and upwelling of hypoxic
water onto the continental shelf (Bograd et al. 2008, Chan et al. 2008).

In the CCLME, northerly spring winds in April-August move surface waters
offshore that are replaced by cold, nutrient-rich, acidic, hypoxic water from greater
depths in a phenomenon known as upwelling (Feely et al. 2008). Climate change is
projected to alter the frequency, intensity and duration of these coastal upwelling events
(Bakun 1990, Snyder et al. 2003, Bakun et al. 2015, Brady et al. 2017). Typically,
upwelled waters intrude into nearshore ecosystems on the scale of hours to days as
strong, but intermittent alongshore winds drive surface waters offshore (Booth et al.
2012). These short-term events may become more prolonged and more frequent,
however, as northerly winds are strengthened by increasing pressure gradients between
land and sea (Sydeman et al. 2014). Even if upwelling patterns remain unchanged,
upwelled waters in the CCLME will likely see continued climate-driven decreases in

background DO and pH (Bograd et al. 2008, Booth et al. 2012), due to global CO2



emissions. These forecasts raise questions about the ability of nearshore organisms such
as teleost fishes to effectively cope with high pCO, and hypoxia during longer and more
severe events. Understanding the responses of teleosts to these stressors has been
identified as a priority by biologists, fishermen, policymakers, and consumers of marine
products (Costanza et al. 1997, Hoegh-Gulberg and Bruno 2010, Cheung et al. 2010,
Natl. Res. Council 2010, Natl. Res. Council 2011).

RESPONSES OF FISH TO OCEAN ACIDIFICATION AND HYPOXIA

Although most teleosts are known to effectively buffer against internal pH
changes via bicarbonate retention and other strategies (Cameron 1978, Cameron and
Iwama 1989), negative effects on behavior, growth, development, survival, metabolic
rate and swimming performance have now been reported in many species (reviewed in
Heuer and Grosell 2014). Traits impacted by OA include decreased growth in juvenile
Atlantic cod (Moran and Stettrup 2011), disturbances in homeostatic pH regulation in
bream (Michaelidis ef al. 2007) and depressed metabolic rates, aerobic scope and
cardiorespiratory function in other species (Gilmour 2001, Munday et al. 2009a, Enzor et
al. 2013, Gilmour 2007). Behaviorally, reef fishes have been shown to be adversely
impacted in their olfactory and auditory capabilities, suggesting that early life stages may
be vulnerable if their changed behavior exposes them to increased predation or reduces
their settlement success (Munday et al. 2009b, Munday et al. 2010, Simpson et al. 2011).
Molecularly, these changes appear to be driven by altered cell membrane ion gradients
impacting the function of the GABA neurotransmitter and its GABAA receptors (Nilsson
et al. 2012). After chronic OA exposure, some studies report up-regulation of transcripts
encoding important ion-exchanger proteins like the Na+/K+ ATPase pump (NKA), AE1,
NBC1, NHE2, NHE3 transporters and carbonic anhydrase (Deigweiher et al. 2008,
Tseng et al. 2013). Additionally, numerous metabolic processes are apparently reduced in
fish by combined warming and high pCOz, including mitochondrial respiration and both
aerobic and anaerobic (glycolytic) enzyme activities (Strobel et al. 2012, Strobel et al.
2013a, Strobel et al. 2013b). Interestingly, some studies have reported partial

compensation for these metabolic shifts in certain tissues like red muscle and liver



(Strobel et al. 2013a, Strobel ef al. 2013b). It must also be noted that some studies on
teleosts have observed no change (Maneja ef al. 2013, Jutfelt and Hedgéirde 2013,
Hamilton ef al. 2017) or even improvements in physiological performance under OA
(Melzner et al. 2009, Miller et al. 2013).

Hypoxia is a separate marine stressor that is often coincident with low pH
(Melzner et al. 2013). To cope with low levels of dissolved oxygen (DO), fishes must
employ mechanisms to increase oxygen supply or decrease demand (Richards 2009,
Claireux and Chabot 2016). Short-term responses to increase oxygen supply include
elevated ventilation rates to increase flow of water over the gills (Randall 1982),
increased erythrocyte counts and/or hemoglobin affinity for oxygen in blood (Randall
1982, Val 1995) and increases in gill lamellae surface area (Randall 1982, Wu and Woo
1985). If aerobic metabolism is impacted by a lack of oxygen, some fish will increase
reliance on anaerobic metabolic pathways (Goolish 1991). Under severe hypoxia, oxygen
demand can be decreased through metabolic suppression (Wu 2002). At the molecular
level, hypoxia-inducible factors (HIFs) have been shown to control transcription of genes
involved in the hypoxic response such as growth factors, metabolic enzymes and
erythropoietin (Wu 2002). In eukaryotes, some HIFs have been identified as master
initiators of a complicated signaling cascade, while prolyl hydroxylases (PHDs) have
been suggested as additional regulators in teleosts (Gracey et al. 2001, Terova et al. 2008,
Xiao et al. 2015). Additionally, metabolic depression and shifts towards anaerobiosis are
often accompanied by signs of a cellular stress response (CSR), down-regulation of
protein synthesis, post-transcriptional and post-translational modifications, inhibition of
growth processes, and reduction in adenosine trisphosphate (ATP) production and
turnover (Gracey et al. 2001, Wu 2002, Terova et al. 2008).

Research on the interaction of OA and hypoxia in teleosts is presently minimal,
but highly relevant in upwelling systems. Responses to individual stressors may interact
additively, antagonistically or synergistically (Kroeker et al. 2013). For example,
increased ventilation to sustain oxygen uptake may subject fish to internal hypercapnia
(elevated COz2 in fluids/tissues) and acidosis (increased acidity/lower pH of fluids) as

more CO, diffuses across gill epithelia (Heuer and Grosell 2014, Miller et al. 2016). A

recent study in juvenile summer flounder (Paralichthys dentatus) examined the effects of



diel cycling of moderate and extreme, independent and combined DO and pH over a
period of 20 days (Davidson et al. 2016). Flounder experienced reductions in growth rate
at the extreme low DO level across all pH levels, but there was no other evidence of
changes in growth rate in any other independent or combined treatments, suggesting that
growth was primarily hindered by hypoxia rather than hypercapnia. A study of the
combined-stressor effects on two larval Menidia congeners and larval Cyprinodon
variegatus suggested that even closely related species exhibit different responses
(DePasquale ef al. 2015). Survival of M. beryllina decreased under low pH (7.4) alone,
while both survival and size of M. beryllina were influenced negatively and additively by
low DO and low pH. Survival of M. menidia decreased synergistically under low DO and
low pH, but survival of C. variegatus was not impacted by either the independent or
combined stressors. The growing body of literature on these interactions indicates that,
much like under independent hypoxia and OA (Vaquer-Sunyer and Duarte 2008, Heuer
and Grosell 2014, Cattano et al. 2018), there is a broad range of sensitivities across taxa.

Predicting the effects of multiple climate drivers like high pCO2 and hypoxia can
be challenging (Crain et al. 2008, Kroeker et al. 2017). Recently, models of stressor
interactions have been proposed that consider the direction of stressor effects (positive or
negative) (Piggott et al. 2014, Coté et al. 2016). Responses may be classified as (i)
additive; where the response to the combined treatment is equal to the sum of the
responses to the individual stressors, (ii) synergistic; where the response is greater than
the sum of the responses to the individual stressors, or (iii) antagonistic, where the
response is less than the sum of the responses to the individual stressors. Antagonism can
occur if similar pathways are used to respond to individual stressors, whereas synergistic
responses can occur if one stressor inhibits the response pathway required to respond to a
second stressor. Coupled OA and hypoxia have been shown to have negatively additive
and synergistic effects on coastal organisms, and like the stressors independently, affect
even closely related taxa differentially (Gobler et al. 2014, Gobler and Baumann 2016,
Davidson et al. 2016).

In some fishes, insufficient compensation for low pH or hypoxia has been
observed to induce a cellular stress response (CSR). CSR proteins can be involved in

molecular chaperoning, ubiquitination, DNA damage repair, oxidative stress, immune



system functions, and apoptosis (Kiiltz 2005). The CSR in fish is most frequently
documented in response to elevated temperature (Smith ez al. 2013, Qian et al. 2014), but
some studies report up-regulation of CSR heat-shock chaperones and DNA
damage-inducible transcripts under OA (Dennis ef al. 2015, Huth and Place 2016). In a
study that examined acute and chronic gene expression under high pCO, and warming in
an Antarctic notothenioid (7rematomus bernacchii), a significant CSR response was
documented that tapered to near-basal levels after 50 days (Huth and Place 2016).
Another recent study described increases in CSR gene suites after five months of
exposure to pCOz levels above 1900 patm in copper rockfish (Sebastes caurinus) and a
similar CSR in blue rockfish (S. mystinus) that was induced at pCO: levels as low as 750
patm (Hamilton et al. 2017). Separately, the CSR in fish under hypoxia has been

documented primarily at extreme low oxygen levels (Fuzzen ef al. 2011).

STUDY SPECIES: BLUE ROCKFISH

Sebastes (Teleostei: Sebastidae: Sebastes) congeners may exhibit differential
responses to OA in their behavior, aerobic physiology, gene expression patterns, enzyme
activities and overall metabolic poise (Hamilton ez al. 2017, Davis et al. 2018). Varying
behavioral patterns, depth distributions, habitat requirements, larval durations, and
settlement behavior have been observed among Sebastes and may contribute to their
divergent tolerances (Love et al. 1990, Leaman 1991). As juveniles, for example, copper
rockfish recruit from the open ocean after a 1-2 month pelagic larval duration (PLD) to
nearshore kelp forest canopies. Blue rockfish juveniles also settle in kelp forests, but
recruit closer to the benthos after a 3-4 month PLD (Lenarz et al. 1991, Love et al. 2002).
It has been suggested that because benthic and upwelled seawater tend to be colder, more
acidic and more hypoxic compared with surface waters in kelp forests, juvenile blue
rockfish may have acclimatized or adapted to these conditions (Frieder ef al. 2012,
Hamilton ef al. 2017, Koweek et al. 2018). Furthermore, gravid adult blue rockfish
typically undergo parturition during winter months, allowing the young-of-year to
develop more before the onset of spring upwelling than species that give birth during the

spring, like copper rockfish. Blue rockfish are of interest to both biologists and managers



due to their abundance in Californian waters and their significance to the state’s

recreational and commercial groundfish fishery (Key et al. 2008, Dick et al. 2017).

RNA SEQUENCING

The utility of next-generation sequencing (NGS) techniques in ecological studies
is increasing as their costs continue to fall (Ekblom and Galindo 2011, Todd et al. 2016).
Initially developed for biomedical purposes, NGS allows millions of copies of an
organism’s genes to be sequenced from a minimal amount of starting material. Using
fluorescent dyes and ligands, specialized polymerase enzymes and advanced
spectrophotometric techniques, the specific nucleotides of the deoxyribonucleic acid
(DNA) molecules that comprise genes can be determined. Cloud, cluster and server
computing have emerged as platforms powerful enough to analyze the massive datasets
produced by NGS. More recently, sequencing of complementary DNA (cDNA)
produced from ribonucleic acid (RNA) has also become feasible. Messenger RNA
(mRNA) is the molecule produced by transcription of DNA coding regions and often
contains alternatively spliced gene exons and other interesting expression information.
mRNA’s role as a “middleman” between information-coding DNA and the functional
proteins that make up a phenotype has distinguished the transcriptome, or the global
expression of mRNA molecules in a tissue or organism, as a valuable source of
information on species’ molecular physiology (Wang et al. 2009). Quantifying temporal
transcriptional regulation in tissues can provide insight into the different types and
quantities of proteins that species must produce in response to dynamic environmental
conditions (Garcia ef al. 2012, Qian et al. 2014, Long et al. 2015, Oomen and Hutchings
2017). One important consideration in interpreting transcriptomic data, however, is that
mRNA expression does not always correlate with nor account for cumulative protein
expression (Liu et al. 2016). For example, some genes are not transcriptionally regulated
or are modified post-transcription or post-translation (Schwanhausser et al. 2011).

Despite some biological limitations, RNA sequencing can now determine the
relative abundances of thousands of RNA transcripts in a given cell or tissue. This

process and the associated techniques are now known collectively as RNA-seq. Perhaps



the greatest advantage of RNA-seq is that it does not require a complete genome to
estimate gene expression. The transcriptome to which reads are mapped is generally
much smaller and simpler to construct than a genome (Grabherr et al. 2011). Moreover,
the unbiased nature of RNA-seq fosters hypothesis generation and the discovery of novel
transcripts and expression patterns not explicitly predicted by the researcher a priori.
These facts distinguish RNA-seq as well-suited for examination of DGE in non-model
species.

RNA-seq has been used to identify differential gene expression (DGE) patterns
across non-model fish species under different stressors (Palstra et al. 2013, Smith et al.
2013, Qian et al. 2014, Logan and Buckley 2015, Huth and Place 2016, Hamilton ef al.
2017). Such work has helped identify molecular pathways, physiological responses and
biomarker genes that describe the mechanisms underlying the condition of ecologically
and economically important species. Combining high-throughput transcriptomic data
with examination of other sub-organismal responses to environmental stressors represents
an integrative approach to uncovering the mechanistic underpinnings of changes in

teleost physiology (Komoroske et al. 2015, Hamilton et al. 2017).

RESEARCH QUESTIONS AND HYPOTHESES

To date, the responses of blue rockfish to independent and combined high pCO2
and hypoxia over short timescales emulating the duration of an upwelling event have not
been investigated. A recent comprehensive study, however, has provided an intriguing
comparison of juvenile blue and copper rockfish responses after chronic exposure to high
pCO:z at behavioral, physiological and molecular levels (Hamilton ef al. 2017). The data
presented in this study suggest that in response to OA, blue rockfish are better able to
retain their overall aerobic performance, induce greater changes in gene expression, and
are less affected in the activities of key metabolic enzymes than copper rockfish. To
determine whether or not these responses hold true during the initial days to weeks over
which upwelling events typically occur, and to examine the interaction of high pCO2 and
hypoxia, we sought to answer three questions: 1) How do juvenile blue rockfish alter

gene expression in their white muscle tissue in response to short-term independent and



combined high pCO2 and hypoxia? 2) Do juvenile blue rockfish exhibit an additive,
synergistic or antagonistic response to combined high pCO2 and hypoxia in terms of both
the number and function of differentially expressed genes? 3) Do blue rockfish increase
anaerobic metabolism in their white muscle, gills and liver in response to short-term
combined high pCO2 and hypoxia (as measured by enzyme activities of citrate synthase,
an aerobic indicator, and lactate dehydrogenase, an anaerobic indicator)?

To answer these questions, we exposed juvenile blue rockfish to independent high
pCO2, independent hypoxia, combined high pCO:z and hypoxia, and a control treatment
for two weeks and sampled dorsal white muscle, gill and liver tissues at 12 h, 24 h and
two weeks of exposure to examine the effects of acute and prolonged upwelling. We
performed RNA-seq on white muscle, which comprises a large portion of fish biomass
(white muscle RNA-seq data are also directly comparable to data generated from the
same tissue in previous studies). We also performed targeted enzyme activity assays on
white muscle, gill and liver, tissues in which sub-organismal metabolic shifts may be
observed.

Per RNA-seq, we hypothesized that juvenile blue rockfish would respond to high
pCO2, hypoxia and the combined stressors through differential expression of tens to
hundreds of genes as compared with control fish, although fewer or greater numbers of
genes could be differentially expressed if the stressor effects were lesser or greater than
anticipated. Under the combined stressors, we anticipated either an additive response in
which the rockfishes’ responses to independent high pCO2 and hypoxia were present
under the combined stressors, or a synergism in which the responses interacted and
stimulated novel responses like a sustained CSR. Given the findings of previous studies,
we anticipated that classic signs of mild cellular stress like molecular chaperones (i.e.
heat-shock proteins or HSPs), oxidative stress, increased transcription, DNA damage and
ubiquitination would be up-regulated at the 12 h and 24 h timepoints in the high pCOa,
hypoxia and combined high pCOz/hypoxia experimental treatments. At two weeks of
exposure, we expected that these gene expression signatures would taper to levels
approximating those observed after five months (Hamilton ef al. 2017). At the two-week
timepoint in the experimental conditions, we anticipated up-regulation of genes involved

in more chronic responses like muscular restructuring. In the hypoxic and combined



stressor treatments, we expected signs of increased oxygen transport and transcriptional
regulation in the form of transcription factors. Up-regulation of energetically intensive
processes that would increase oxygen supply, like angiogenesis and erythropoiesis, were
also expected. Quantitatively, we anticipated that the combined stressors would induce an
additive or synergistic response (i.e. the number of genes differentially expressed under
both stressors would be equal to or greater than the sum of the genes expressed under
each individual stressor). Qualitatively, an additive response under the combined
stressors would include functional gene categories present under both the individual
stressors, while a synergistic response would include additional categories such as a CSR
or metabolic processes that were not utilized under either of the independent stressors
(Piggott et al. 2015, Coté et al. 2016).

In terms of metabolic enzyme activity, we hypothesized that juvenile blue
rockfish would exhibit increased anaerobic metabolism relative to aerobic metabolism
(i.e. increased LDH:CS ratios) during exposure to combined high pCO2/hypoxia as
compared with control fish. We expected that these changes would be driven by increases
in LDH activity and/or decreases in CS activity. Prior studies report that critical
swimming speed, aerobic scope and LDH:CS ratios were not affected in blue rockfish
after chronic exposure (five months) to extreme high pCO2 (Hamilton ez al. 2017). We
expected that the shift towards anaerobic metabolism would be greatest at 12 h and
subsequently taper to lower LDH:CS ratios that still remained significantly elevated
above those observed in control fish. To our knowledge, this is the first study to examine
the individual and combined effects of high pCO2 and hypoxia on gene expression and

enzyme activity in teleosts.
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SECTION 2
METHODS

F1SH COLLECTION, HUSBANDRY AND SEAWATER CHEMISTRY

In June 2016, we collected 80 juvenile blue rockfish recruits near the benthos of
the kelp forest and rocky reef environment of Stillwater Cove in Carmel, California on
SCUBA using hand nets. Blue rockfish morphology and life history are similar to those
of a recently identified cryptic species, the deacon rockfish (S. diaconus; Frable et al.
2015), but deacon rockfish are more common at higher latitudes north of the Monterey
Bay. Thus, no effort was made to distinguish the possibility that both species were
collected.

Rockfishes were transported in 12° C seawater to Moss Landing Marine
Laboratories in Moss Landing, CA and held in ambient flow-through seawater (FSW) for
one month for lab acclimation. During acclimation, fish were fed thawed krill ad libitum
every 48 hours. All fish were then transported in 12° C seawater to the NOAA Southwest
Fisheries Science Center in Santa Cruz, CA for the experiment. Juveniles were placed in
100 L black cylindrical aquaria with plastic mesh serving as simulated habitat and
acclimated in ambient FSW for one week, after which we immediately placed 20
individuals in each of four seawater treatments for two weeks: ambient (pCO2~400 patm,
pH~8.0, DO~8 mg/L), high pCO2/low pH (pCO2~1200 patm, pH~7.6, DO~8 mg/L), low
DO (pC0O2~400 patm, pH~8.0, DO~4 mg/L), and a “combined” treatment at both high
pCO2 and low DO levels (pCO2~1200 patm, pH~7.6, DO~4 mg/L). Control fish were
removed and placed back into ambient conditions to control for handling stress.
Temperature was maintained across all treatments using a system of chillers, ranging
from 11.4-12.3° C due to natural fluctuations in incoming seawater. Fishes were fed
thawed krill ad libitum every 48 h, with at least a 48 h starvation period prior to each
experimental time-point to avoid gene expression changes associated with specific
dynamic action. We quickly weighed the fish and measured their standard and total

lengths (Table S1) before dissecting them and flash-freezing white muscle, gill and liver
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fish in captivity was

permitted by the California Figure 1. Experimental design of the acute high pCO2/low DO
time-course in which blue rockfish were exposed to four
seawater treatments and RNA-seq was performed on their

Wildlife on permit #SC- dorsal white muscle tissue.

6477.

Department of Fish and

pCO2 and DO levels were maintained at the treatment set points by bubbling
CO; and N2 gas, respectively, into intermediary 500 L reservoirs with recirculation
pumps, each feeding two replicate treatment tanks (Table S2). Gas flow was controlled
via solenoid valves and regulated by Loligo® Systems CapCTRL™ and WitroxCTRL™
software. Temperature, pH and DO were checked daily in all tanks with a Hach®
HQ40D™ portable multi-meter and pH values were corrected using Tris buffer pH
measurements at temperature. We collected water samples at zero hours, one week and
two weeks in accordance with best practices and assessed total alkalinity using a
Metrohm® 855™ robotic titrosampler (Riebesell et al. 2010). pH was measured using m-
cresol dye in a spectrophotometer at 440, 560, and 730 nm (Dickson et al. 2007).
Carbonate chemistry parameters were calculated using CO2SYSS version 1.0.3 (Pierrot et

al. 2006).
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RNA SEQUENCING, CDNA LIBRARY PREPARATION AND SEQUENCING

We extracted total RNA from a total of 48 white muscle tissue samples (n=4
fish per treatment per time point) using an RNeasy Plus Mini™ Kit (Qiagen®, Valencia,
CA; cat. no. 74134). Briefly, we homogenized 15-30 mg of tissue from each sample in
RLT lysis buffer with a 5 mm stainless steel bead using a Qiagen® TissueLyser LT™ at
50 Hz for three minutes. Genomic DNA (gDNA) was removed with a spin column. Total
RNA was eluted into 50 pL. of nuclease-free water and quantified using a NanoDrop™
2000 spectrophotometer and a Qubit® 2.0 fluorometer (Qubit® RNA Broad Range Assay
kit, Invitrogen™, cat. no. Q10210). RNA integrity was assessed and RNA Quality Num
bers (RQNs) were calculated using an Advanced Analytical® Fragment Analyzer™ (High
Sensitivity RNA Analysis Kit, Advanced Analytical®, cat. no. DNF-472-0500). One
microgram of high quality total RNA (RQN > 8.0) from each blue rockfish muscle tissue
sample was used to prepare complementary DNA (cDNA) libraries.

We isolated mRNA an d constructed 48 cDNA libraries using two Illumina®
TruSeq™ Stranded mRNA Library Preparation Kits (Illumina®, cat. no. RS-122-2101
and RS-122-2102, Adaptor Sets A and B) (Figure 1). Libraries were prepared in two sets
of 24 and randomized to account for batch effects. Briefly, we removed ribosomal and
other non-coding RNAs to purify messenger RNA (mRNA) and fragmented the isolated
mRNA. We synthesized first strand cDNA using SuperScript III Reverse Transcriptase
(Invitrogen™, cat. no. 18080-044), and second strand cDNA using the 2'-deoxyuridine
5'-triphosphate (dUTP) nucleotide method for strand specificity. We then ligated a unique
adapter index to each cDNA library and amplified the libraries through 15 cycles of
polymerase chain reaction (PCR). cDNA purification steps were completed with
PCRClean™ DX paramagnetic beads (Aline Biosciences®, cat. no. C-1003-5) and
Agencourt AMPure™ XP beads (Beckman-Coulter®, cat. no. A63881). We quantified
cDNA concentrations using a Qubit® 2.0 fluorometer and Qubit® dsDNA High
Sensitivity Assay kit (Invitrogen™, cat. no. Q32851) and verified that fragments were
distributed in the 260-320 bp range using an Advanced Analytical® Fragment Analyzer™
(High Sensitivity Large Fragment Analysis Kit, Advanced Analytical®, cat. no.
DNF-493-0500). Adapter dimers were removed with a 1.2X bead:sample volume
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clean-up step. Libraries were randomly multiplexed and sequenced in equal numbers in
each of two 50 base-pair (bp) single-end (SE) lanes on a HiSeq4000 platform at the
Vincent J. Coates Genomics Sequencing Laboratory (GSL) at the University of
California, Berkeley.

DE NOVO TRANSCRIPTOME ASSEMBLY

To create a de novo blue rockfish reference transcriptome, we prepared cDNA
libraries from eight additional blue rockfish brain, liver, gill and muscle tissue samples
harvested after various low pH and hypoxia exposures using the procedure described in
RNA Sequencing, cDNA Library Preparation and Sequencing (Table S3). The one
exception to this procedure was that these eight libraries were multiplexed and sequenced
in one 150 base-pair paired-end (PE) HiSeq4000 sequencing lane at GSL; longer reads
were used to improve the quality of the de novo assembly.

We used FastQC to assess the quality of the raw sequence reads in both the SE
(time-course) and PE (de novo) cDNA libraries (Andrews 2010). For all pass-filter reads
in the SE libraries, we used Trimmomatic to remove adapter sequences, trim the reads
base-by-base for quality (Phred quality scores > 5 retained) and discard short reads (< 25
bp in length) after trimming (Bolger et al. 2014, MacManes 2014). We then performed
FastQC again on the QC-processed data (Table S4).

Using Trinity software (v2.3.2, Haas et al. 2013), we built a de novo
transcriptome assembly for blue rockfish using the eight libraries from the PE sequencing
lane along with three additional SE libraries from the experimental time-course that
ensured representation of genes expressed during the exposure (indicated by asterisks *,
Table S3). The sequence file type was fastq, the maximum memory allocated was 50 GB,
the strand-specific library type was specified as reverse-forward (RF) per the dUTP
method of ensuring strand specificity, and 20 central processing units (CPUs) were
allocated to perform the assembly. We used default Trimmomatic quality trimming
parameters to trim the raw reads as well as the in silico digital read normalization

argument to remove excess reads and reduce computing time. Assembly quality was
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assessed using the Trinity program Trinity.Stats.pl to determine the number of contigs and
N statistics.

We annotated the full assembly against the UniProtKB and NCBI non-redundant
(nr) Actinopterygii protein databases using DIAMOND (Buchfink ef al. 2015). We
identified putative gene functions using a single, broad level of gene ontology (GO)
pathways by entering UniProtKB identifiers into the PANTHER classification system
(www.pantherdb.org, Mi et al. 2019a, Mi et al. 2019b). To assess the biological

completeness of the assembly, we used the Actinopterygii (ray-finned fishes) database of
Benchmarking Universal Single-Copy Orthologs (BUSCOs) to assess the biological
completeness of the assembly by verifying the presence of conserved orthologs (Simao et

al. 2015).

DIFFERENTIAL GENE EXPRESSION ANALYSIS

We used the same quality control procedures and parameters on the SE blue
rockfish sequences as on the PE sequences used to create the de novo assembly. After
filtering and trimming reads from the SE cDNA libraries, we mapped the reads to the
blue rockfish de novo assembly using Bowtie (Langmead et al. 2009) and estimated
transcript abundance using RNA-Seq by Expectation-Maximization (RSEM) (Li and
Dewey 2011). We produced transcript abundance matrices and performed differential
gene expression (DGE) analyses with a false discovery rate (FDR)-corrected g-value
threshold of 0.05 with no fold change requirement using the Bioconductor package
edgeR (Robinson ef al. 2010).

To compare the effects of each individual stressor and the combined stressors on
gene expression, we performed a separate DGE analysis at each time-point of interest (12
h, 24 h and two weeks) and a separate DGE analysis for each of the four treatments
across time for a total of seven analyses. This design allowed for a detailed analysis of
the fishes’ responses at each time-point as well as a comparison of total DGE levels over
time. edgeR calculates differential expression of a given gene relative to the mean
expression level of that gene across all samples used in the analysis. We created

heatmaps in the R programming environment using the “ggplot2” package, grouping
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columns by treatment and rows (genes) by hierarchical clustering. We identified putative
gene functions through gene ontology (GO) categories by entering UniProtKB identifiers
into PANTHER and manually reviewing relevant literature. To test for
over-representation of GO categories in DGE lists from each of the three experimental
treatments, we performed the built-in PANTHER statistical over-representation test on
each of the three lists of UniProtKB identifiers (test type: Fisher’s Exact; correction: false
discovery rate).

To examine interaction effects between the two individual stressors and the
combined treatment, we used total numbers of DE genes and GO categories observed in
each treatment without assigning directionality (i.e. “positive” or “negative”) to the
responses. Responses to high pCO> and hypoxia combined treatment were first classified
as additive, synergistic or antagonistic based on numbers of differentially expressed
genes (i.e., additive if number DE genes in the combined treatment were nearly equal to
the sum of the responses to the individual stressors; synergistic if there were more genes
responsive than the sum, or antagonistic if there were fewer genes). Next, we examined
the PANTHER pathway categories for signs of functional overlap in genes responsive to

the individual and combined treatments.

METABOLIC ENZYME ACTIVITY ASSAYS

We also tested for shifts towards anaerobic metabolism by measuring enzymatic
activity of citrate synthase (CS) and lactate dehydrogenase (LDH) in muscle, gill and
liver of rockfishes from the control and combined high pCOx/hypoxia treatments at 12 h,
24 h and two weeks. These enzymes are established indicators of aerobic and anaerobic
(glycolytic) metabolism in fishes, respectively (Childress and Somero 1990). We assayed
CS and LDH activities at 30° C on a Tecan Infinite® M200 Pro™ microplate reader,
using a previously described protocol with slight modifications (Hamilton ef al. 2017).
Briefly, we homogenized 5-30 mg of frozen tissue at a 1:10 tissue:buffer dilution for four
minutes at 50 Hz in ice-cold monobasic/dibasic potassium phosphate (KnPO4) buffer (pH
6.8 at 20° C) (tissue masses varied between 5-30 mg due to differences in the average

mass of each tissue type that was successfully dissected and preserved). Homogenates
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were centrifuged twice at 13,000 x g for 10 minutes and serially diluted to working
concentrations. For CS assays, we diluted the tissue at a ratio of 1:50 tissue:buffer for all
three tissues. For LDH assays, tissues were diluted to 1:1000 for white muscle,1:500 for
gill tissue, and 1:50 for liver due to large differences in activity between tissue types.
These dilutions yielded the most linear and stable enzymatic reactions for each tissue
type. We corrected for each tissue-specific dilution factor when normalizing activities to
grams fresh weight of tissue (GFW) and grams fresh weight of protein (GFP).

The synthesis of citrate from acetyl coenzyme A and oxaloacetate was indirectly
determined by the dethionation of 5,5-dithio-bis-[2-nitrobenzoic acid] (DTNB) and the
appearance of TNB at 412 nm, while LDH activity was determined by the coupled
oxidation of B-nicotinamide adenine dinucleotide (NADH) at 340 nm during reduction of
pyruvate to lactate. Reaction absorbances were measured for 10 minutes, but only data
collected between 2-5 minutes were used for the final analysis because this region
yielded the greatest overall linearity and lowest variability between technical replicates
across all tissue samples. Total protein content was determined using bicinchoninic acid
(BCA) assays on a microplate reader (Pierce™ BCA Protein Assay, Thermo Scientific™,
cat. no. 23225). Enzyme activities were calculated in International Units (IU) and
normalized to GFW and GFP. We tested the six data sets (LDH and CS activities in
muscle, gill and liver) for normality using Shapiro-Wilk tests (p<0.05) and for
homogeneity of variance using Levene’s tests (p<0.05). For any non-normal data sets,
Box-Cox transformations were applied using the optimal Box-Cox transformation
parameter (A) as calculated in the “forecast” package in the R programming environment.
Significant differences in enzyme activity across treatments and time were determined

using a two-way Analysis of Variance (ANOVA) and Tukey post hoc tests.
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SECTION 3

RESULTS

F1SH HUSBANDRY AND SEAWATER CHEMISTRY

No mortality was observed in blue rockfish over two weeks under control
conditions, high pCO», hypoxia, or the combined stressors. The average fish weight at the
time of dissection was 1.62 +/- 0.47 (SD) g and the average total length was 54.9 +/- 3.5
(SD) mm (see Table S1). No effects of treatment or exposure time were observed on
rockfish weights or total lengths (two-way ANOVA; p>0.05). Temperature, pCO; and
DO levels were maintained at the target set-points for the duration of the experiment

(Table S2).

RNA EXTRACTION, CDNA LIBRARY PREPARATION AND SEQUENCING

We successfully extracted high-quality total RNA from 46 of 48 blue rockfish
white muscle samples and synthesized high-yield cDNA libraries for 44 of 46 total RNA
samples. Two cDNA libraries returned yields below the minimum requirement and were
not sequenced. Fragment analysis of all sequenced libraries revealed primary cDNA
peaks between 242-346 base-pairs. The trimmed SE reads used for differential gene
expression analysis averaged 17,526,508 reads per library (min: 10,257,254; max:
35,798,493). The SE read mapping rate to the assembly ranged from 95.63-96.86% of all
reads (unique and multi-mapped). Sequencing quality and quantity information is
presented in Table S4. The data discussed herein have been deposited in NCBI’s Gene
Expression Omnibus (Edgar et al. 2002) and are accessible through GEO Series
accession number GSE129003.
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DE NOVO TRANSCRIPTOME ASSEMBLY

Eight high quality cDNA libraries were created for blue rockfish brain, liver, gill
and muscle tissues from individuals held under control conditions, high pCO,, low DO or
the combined treatment (SRA accession nos. SRR8717232, SRR8717233, SRR8717234,
SRR8717235, SRR8717236, SRR8717237, SRR8717238, SRR8717239). After
Trimmomatic post-processing, 471,950,098 PE reads were retained with an average of
58,993,762 reads per library (min: 40,207,774; max: 84,764,890). The Trinity de novo
reference transcriptome yielded 239,549 contigs (“genes’), 463,213 total transcripts
(“isoforms”). The contig Nso value was 1,939 bp, with a median contig length of 420 bp
and an average contig length of 948 bp. The assembly contained 94.7% of the
Actinopterygii (ray-finned fishes) BUSCOs (34.0% single-copy orthologs; 60.7%
duplicated orthologs). Using DIAMOND, we annotated 32.5% of the 463,213 unique
transcripts assembled by Trinity to the UniProtKB/Swiss-Prot database (150,707
transcripts) and 43.3% to the Actinopterygii nr database (200,746 transcripts).

DIFFERENTIAL GENE EXPRESSION ANALYSIS

Bowtie mapping of high-quality reads retained after QC processing yielded a total
mapping rate of 95.63-96.86% of all reads (unique and multi-mapped) to the newly
produced blue rockfish de novo transcriptome assembly. Unique read mapping rates
ranged from 57-61%. In the pairwise comparisons involving the control treatment across
the three separate edgeR analyses performed at each time-point (i.e. control fish
compared to treatment fish), we observed differential expression of 641 unique contigs
(FDR<0.05). Of these, we successfully extracted UniProtKB accession codes and gene
function information for 293 contigs (45.6%).

Gene expression profiles for the three experimental treatments were distinct over
time, varying in both the types and quantities of DE transcripts. Our first analysis
examined differential expression between the control and experimental treatments at each
time-point separately. At 12 h, a total of 162 genes were differentially expressed across
the three experimental treatments (FDR<0.05). At 24 h, 285 total genes were

differentially expressed. After two weeks, 278 total genes exhibited differential
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expression. Across all three time-points, 641 unique contigs were differentially

expressed. Of these, we successfully extracted UniProtKB accessions for 293 contigs

(45.7%, Table S5) and nr accessions for 394 contigs (61.3%).

Treatment effects over time: high pCO:

Under elevated pCO., the number of overall DE genes (both up- and

down-regulated) increased over time compared to the control treatment (Figure 2). After

12 h under high pCO., 24 genes were differentially expressed in blue rockfish muscle

tissue (nine up-regulated, 15 down-regulated) compared to fish in the control treatment.

At 24 h, 42 genes were differentially expressed (22 up-regulated, 20 down-regulated).
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Figure 2: Total numbers of differentially expressed
genes in blue rockfish white muscle under A) high
pCO2 B) hypoxia and C) high pCO:/hypoxia versus the
control treatment (FDR<0.05).

After two weeks of
exposure to high pCO»,
205 genes exhibited
differential expression,
with the majority (146)
displaying up-regulation
(Figure 2).

At 12 h under high
pCO», up-regulated genes
included creatine kinase
m-type (CKM),
sarcoplasmic reticulum
calcium ATPase 1
(SERCA1), and acyl-coA
synthase 2 (ACSF2),
which initiates fatty acid
metabolism (Table S5).
The rockfish also
up-regulated genes
encoding ribosomal

proteins (RPL9, RPL23)
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and a cathepsin L protease (CATL). The genes down-regulated at 12 h included three
variants of sterile alpha motif domain-containing proteins (SAMD9 and SAMD9-like),
ribosomal protein L7A, the o subunit of ATP synthase (ATP6), and an interferon-induced
very large GTPase (GVIN1).

At 24 h, genes central to aerobic and anaerobic metabolism were up-regulated,
including cytochrome ¢ oxidase (COX3), ATP synthase (ATP6), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Table S5). Also up-regulated
were troponins, myosins, and titins, genes essential to striated muscle contraction. The
genes down-regulated at 24 h included septin-4 (SEPT4), a kinesin-associated protein
family NTPase (NKPD1), tubulin a-2 (TBA2), microtubule-associated protein 2 (MAP2),
B-galactoside a-2,6-sialyltransferase 2 (SIAT2), a serine/threonine protein kinase
(TAOK1), and protein phosphatase slingshot homolog 2 (SSH2) which regulates actin
filament construction by activating the depolymerization factor cofilin.

At two weeks of exposure to high pCO,, we observed up-regulation of more
genes than at either 12 h or 24 h, encoding ribosomal proteins (RPL7A, RPL13, RPL19,
RPL23, RPL24, RPL30, RPL32), muscular contractile components (light- and
heavy-chain myosins, paramyosins, actins and nebulins) and sustained mitochondrial
metabolic demand (cytochrome b-c1 complex subunits COX3, CYB, COX4, and
UQCRB as well as ATPases and ATP synthases, Table S5). One cytochrome b-cl
complex subunit was down-regulated after two weeks (COX2), as was CKM and three
genes involved in the mild cellular stress response: a DNA repair protein (RADS51D), an
E3 ubiquitin-protein ligase (RNF213B), and sacsin (SACS), which is a co-chaperone for
heat-shock protein 70. Among all three time-points, 18 genes whose functions were
identified were differentially expressed under high pCO.. These encoded muscular
proteins like myosins, troponins, and SERCA1, key electron transport chain proteins like
cytochrome b and ¢ (CYB and COX3), and ATP metabolic proteins like CKM, and ATP
synthase (ATP6). In total, we identified the functions of 95 unique genes that blue
rockfish differentially expressed in response to high pCO> (Table S5).
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Figure 3: Relative gene expression in control and experimental blue rockfish muscle tissue after 12
h, 24 h and two weeks of exposure to A) high pCOz/low pH (pCO2~1200 patm, pH~7.6, DO~8.0
mg/L) B) hypoxia (pCO2~400 patm, pH~8.0, DO~4.0 mg/L) and C) combined high pCO:/hypoxia
(CO2~1200 patm, pH~7.6, DO~4.0 mg/L) (FDR<0.05). Each row represents a gene, while each
column represents an individual fish. Numbers listed indicate gene totals in each heatmap. Yellow
shades indicate relative up-regulation, while blue shades indicate down-regulation compared to the
mean expression level across all samples. Black indicates no change in expression.
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Treatment effects over time: hypoxia

Blue rockfish held under hypoxia exhibited different patterns in gene expression
than those held under high pCO.. Overall DE was greatest at 12 h, with 129 genes
differentially expressed. Substantially less DE was observed at 24 h (27 genes), while 56
DE genes were observed at the two-week time-point (Figure 2). Only 16 genes were
commonly expressed between the hypoxic and high pCO> treatments, encoding proteins
involved in processes ranging from ATP and fatty acid metabolism (CKM, ATP6,
ACSF?2 and fatty acid-binding protein FABP2) to muscle contraction (troponin I and
SERCAT) to putative control of cellular proliferation (sterile alpha motif
domain-containing protein 9 homolog, SAMDOL).

At 12 h in the hypoxic treatment, the 22 up-regulated genes included some of the
same metabolic genes observed under high pCO> including CKM, COX3, and ACSF2.
Also up-regulated at 12 h were carbonic anhydrase 1 (CA1) and two proteins possibly
involved in the cellular stress response: nucleoside diphosphate kinase (NDKB) and an
E3 ubiquitin-protein ligase (RNF144B). At 12 h, however, the vast majority of the 129
DE genes (107) were down-regulated compared to fish from the control treatment (Figure
3). These down-regulated genes encoded structural proteins like the fast-twitch isoform
of troponin I (TNNI2), a-tubulin (TUBA1), microtubule-associated protein 2 (MAP2) as
well as transcription factors (CEBPD, ATF1, ATF3, HES1A, LMO41, ALPK3), E3
ubiquitin ligases (TRIM63, MYLIP-A), and certain serine/threonine protein kinases
(STK35, NIM1).

At 24 h in the hypoxic treatment, the 15 up-regulated genes included CKM,
COX3, SERCAL, and ATP6. The 12 genes down-regulated under hypoxia at 24 h
included troponin I (skeletal muscle fast-twitch isoform), transcription factor ATF1,
histone H3.2, elongation factor 1-gamma (EF1G) which elongates peptides during
translation, and protein phosphatase slingshot homolog 2 (SSH2).

After two weeks under hypoxia, blue rockfish differentially expressed 56 genes
(29 up-regulated, 27 down-regulated). Among the up-regulated genes were FABP2,
COX3, a hemoglobin subunit (HBB2), metal-binding metallothionein A (MTA), and
fructose-bisphosphate aldolase A (ALDOA), a key protein in glycolysis and

gluconeogenesis. At all three time-points under hypoxia, one COX3 subunit and at least
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one indicator of mild cellular stress were up-regulated (apoptosis regulator RNF144B at
12 h, apoptosis regulator TRIM39 at 24 h and an aldehyde dehydrogenase, P5CS, at two
weeks) (Table S5). Across all time-points, we identified the functions of 110 unique

genes that blue rockfish differentially expressed in response to hypoxia.

Treatment effects over time: combined high pCO; and hypoxia

Under combined high pCO- and hypoxia, blue rockfish gene expression profiles
differed from those observed under the independent stressors. Differential gene
expression was minimal at 12 h and two weeks (9 and 17 genes, respectively), but peaked
markedly at 24 h (216 genes) (Figure 2). Most of these genes (128) were down-regulated
at the 24 h time-point. At 24 h in the independent high pCO- and hypoxic treatments, a
total of only 69 DE genes were observed.

At 12 h of exposure to the combined stressors, only nine genes exhibited
differential expression relative to fish from the control treatment, three of which were
up-regulated and six down-regulated. Two of the up-regulated genes at 12 h were a
stonustoxin subunit (STXB) and a long-chain fatty acid-coA ligase (ACBG1), while none
of the six down-regulated genes received functional UniProtKB annotations.

At 24 h under the combined stressors, blue rockfish dramatically increased DE in their
white muscle, up-regulating 88 genes and down-regulating 128 genes for a total of 216
differentially expressed genes. Notably at 24 h, more genes involved in ionoregulation
were up-regulated under both stressors than under high pCO- or hypoxia alone, including
the a-1 and a-3 subunits of a sodium/potassium-transporting ATPase pump (AT1A1,
AT1A3), an intracellular chloride channel protein (CLIC2), a HIF-hydroxylating cellular
oxygen sensor (EGLN2) and GAPDH (Table S5). Additionally at 24 h, a cellular oxygen
sensor (EGLN?2) that hydroxylates the o subunits of HIF1 and HIF2 was up-regulated.

After two weeks under both stressors, DE decreased to 17 genes (nine genes
up-regulated, eight genes down-regulated). Among the up-regulated genes in this group
were two hemoglobin subunits (HBAE, HBB2), carbonic anhydrase (CAHZ), a
cytochrome B complex subunit (CYB) and ALDOA, the latter of which is involved in
glycolysis. Also at two weeks, the heat shock protein 70-associated protein 13 (HSPA13)

was down-regulated. Over all time, we observed 131 different DE genes under combined



24

high pCO; and hypoxia. 104 of these 131 genes were expressed only under the combined
stressors and not under independent high pCO: or hypoxia. The genes uniquely expressed
under the combined stressors were involved in various signaling (insulin/IGF-1, integrin,
interleukin, Wnt, Ras, TGF-B, CCKR, and PDGF) and biosynthetic (coenzyme A,
vitamin B6 and noradrenaline biosynthesis) pathways (Figure 4).

Finally, we also observed a large increase in the total number of differentially
expressed genes in each treatment over time suggesting an effect of laboratory exposure
independent of treatment. For example, in the control treatment, over 4,500 genes were
differentially expressed between 24 h and two weeks (FDR<0.05). Thousands of genes
were also regulated over time in the other treatments. To isolate the effect of treatment

versus time, all previous comparisons were made to the control treatment.

Functional similarities between treatments

Based on numbers of DE genes, we found no evidence of an additive effect of
combined high pCO; and hypoxia on blue rockfish gene expression, while the presence
of synergism or antagonism was heavily dependent on exposure time. Across all
time-points, similar numbers of total DE genes observed in the three experimental
treatments indicate moderate antagonism between high pCO> and hypoxia: 242 genes in
the combined treatment compared with 271 genes under high pCO, and 212 genes under
hypoxia. At 12 h and two weeks of exposure to the combined stressors, we observed
strong antagonism in the low numbers of responsive genes (9 and 17, respectively) but
comparatively high numbers of DE genes under independent high pCO, (24 and 205,
respectively) and hypoxia (129 and 56, respectively) at the same time-points (Figure 2).
In contrast, a strong synergism was observed at 24 h, with 216 DE genes observed under
the combined stressors but only 69 total DE genes between the two independent stressor
treatments. There was also qualitative evidence for this synergism in the functionality of
some unique genes and GO categories expressed under the combined stressors.

70-78% of the UniProtKB-annotated genes responsive under high pCO», hypoxia
or the combined stressors were successfully classified into PANTHER pathways. 19

distinct GO pathways were identified under high pCO,, 20 pathways were identified
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under hypoxia, and 33 different pathways were identified under combined high pCO; and
hypoxia (Figure 4). Of these, eight pathways represented by at least one gene were
common to both the independent high pCO- and hypoxia treatments. 13 pathways were
commonly represented under high pCO- and the combined stressors, including the Ras
signaling pathway, glycolysis and the oxidative stress response. 15 pathways were
represented under hypoxia and the combined stressors. These 15 pathways included
integrin signaling, both the p38 microtubule-associated protein kinase (MAPK) and
insulin-like growth factor (IGF) MAPK pathways, Wnt signaling and apoptosis signaling.
Only seven pathways were represented in all three experimental treatments, including the
p38 MAPK pathway, integrin signaling, Wnt signaling, chemokine/cytokine-mediated
inflammation, and pathological pathways associated with Parkinson and Huntington
diseases. 12 pathways were uniquely represented under combined high pCO> and
hypoxia. These 12 pathways included the hypoxia response via HIF activation (not
observed under independent hypoxia), the PDGF and TGF-p signaling pathways, T-cell
activation and various metabolic pathways. No statistically significant
over-representation of any GO pathways was observed in any of the three treatments.

Because our annotated DGE lists were relatively short (95-131 genes) and the
PANTHER over-representation analysis had low power to detect potential differences,
we also manually examined individual gene function among the three experimental
groups. Over all time-points, a moderate antagonistic effect was also observed in the
numbers of annotated genes expressed in each treatment, with 95 unique genes expressed
under high pCO3, 110 genes unique genes expressed under hypoxia but only 131 unique
genes expressed under both stressors. 104 of these 131 genes were expressed only under
the combined stressors and not under independent high pCO> or hypoxia.

Based on function, there was little similarity among annotated genes differentially
expressed among the three experimental treatments at any given time-point (Figure 5).
Over all time-points in the independent high pCO> and hypoxic treatments, 16 annotated
genes out of 189 unique annotated DE genes were commonly differentially expressed (23
common contigs out of 445 unique contigs, including two isoforms of CKM). At 12 h,
CKM, ACSF2, and ribosomal protein L9 were commonly up-regulated under the two
independent stressors. At 24 h, COX3, ATP6, troponin I and an uncharacterized protein
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(ART?2) were also all up-regulated under high pCO> and hypoxia. Also at 24 h, protein

phosphatase slingshot homolog 2 (SSH2) was down-regulated in both treatments.

Over all time under both high pCO; and the combined stressors, 10 annotated

genes out of 216 unique annotated DE genes were commonly differentially expressed (16

common contigs out of 487 unique contigs). GAPDH, a known glycolytic enzyme, was

commonly up-regulated under high pCO; and the combined stressors at 24 h. Also at 24

h, septin-4 and B-galactoside a-2,6-sialyltransferase 2 were commonly down-regulated.

total = 64 total = 35
A high pCO,
52
58
combined
total = 66
total = 37 total = 77
B

high pCO,
29

total = 66

Figure 5: A) Up-regulated genes and B) down-regulated genes
in blue rockfish white muscle under high pCO:, hypoxia and
combined high pCO:/hypoxia versus the control treatment
(FDR<0.05) and annotated against the UniProtKB protein

database.

50
combined

At two weeks, SERCA1 was
up-regulated in both
treatments.

Under both hypoxia
and the combined stressors,
22 annotated genes out of
219 unique annotated DE
genes were commonly
differentially expressed (33
common contigs out of 410
unique contigs). 13 of the 22
shared genes were
down-regulated at both 12 h
under hypoxia and 24 h
under the combined
stressors, coinciding with the
large numbers of
down-regulated genes in the
hypoxic and combined
treatments at these
time-points. 10 of the 13
shared genes were involved
in signaling pathways

including the apoptosis,
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insulin/IGF-1, interleukin, ionotropic and metabotropic glutamate receptor pathways. At
24 h, elongation factor 1-gamma was down-regulated under both hypoxia and the
combined stressors. At 24 h, cysteine and glycine-rich protein 1 (CSRP1) was
up-regulated under hypoxia and the combined stressors. At two weeks, a hemoglobin
subunit (HBB2) and muscle-specific fructose-bisphosphate aldolase A (ALDOA,
involved in glycolysis) were commonly up-regulated under hypoxia and the combined
stressors at two weeks.

Among all three experimental treatments across all three time-points, there were
only 6 unique contigs in common (out of 641), 5 of which were annotated. One of these
five, SERCA1, was exclusively up-regulated. SERCAT1 was up-regulated at 12 h and two
weeks under high pCO», at 24 h under hypoxia and at two weeks under the combined
stressors. SERCA1 and CKM were up-regulated in all three treatments. CKM was the
most frequently occurring gene and was up-regulated in all three treatments at either 12 h
or 24 h. CKM was also down-regulated at two weeks under both independent high pCO»
and hypoxia. Two genes were exclusively down-regulated (septin-4 and -galactoside
a-2,6-sialyltransferase 2) under high pCO> and the combined stressors at 24 h, as well as

under hypoxia at 12 h.

METABOLIC ENZYME ACTIVITY ASSAYS

We observed no statistically significant effect of treatment on either LDH activity
or CS activity in blue rockfish muscle, gill or liver. In blue rockfish liver tissue, we
observed a significant decrease in LDH (anaerobic) activity between 24 h and two weeks,
but not between the control and combined high pCO»/hypoxia treatments at any
time-point (Two-way ANOVA, p=0.001, Tukey post hoc, Figure 6). In gill tissue, we
observed increases in CS (aerobic) activity between 24 h and two weeks, but not between
the control and experimental treatments (Two-way ANOVA, p=0.0003, Tukey post hoc,
Figure 7). Normalizing enzyme activities to grams fresh protein (GFP) yielded the same
statistical results when compared to activities normalized to grams fresh weight of tissue
(GFW), and therefore we only present results normalized to GFW. LDH activities in blue
rockfish gill tissue were not normally distributed per a Shapiro-Wilk test (p=0.0003), so
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Figure 6: Lactate dehydrogenase (LDH) enzyme activity
in blue rockfish A) white muscle B) gill and C) liver
tissues after 12 h, 24 h and two weeks of exposure to
either control or combined high pCO:/hypoxic
conditions. Enzyme activities were normalized to grams
fresh weight of tissue (GFW). Asterisks (*) indicate
significant differences between 24 h and two weeks in
liver (p=0.001), but not between treatments (two-way
ANOVA, Tukey pairwise post hoc). A Box-Cox
transformation was applied to the gill tissue LDH
activity prior to ANOVA testing due to non-normality.
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we applied a Box-Cox
transformation to the gill
tissue LDH activities before
two-way ANOVA testing
(ALpH = -0.9436).
Importantly, we observed no
statistically significant
differences between the
control and combined
stressor treatments at any
time-point. Anaerobic (LDH)
activities were greatest
overall in blue rockfish white
muscle (Figure 6), while the
greatest aerobic (CS)
activities were observed in
gill tissue (Figure 7). Liver
tissue consistently exhibited

the lowest LDH activities

(Figure 7).
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Figure 7: Citrate synthase (CS) enzyme activity in blue
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activities were normalized to grams fresh weight of tissue
(GFW). Asterisks (*) indicate significant differences
between 24 h and two weeks in gill (p=0.0003), but not
between treatments (two-way ANOVA, Tukey pairwise

post hoc).
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SECTION 4

DISCUSSION

Previous studies suggest that blue rockfish may be relatively tolerant to the effects
of climate change compared with other rockfish congeners (Fennie 2015, Hamilton et al.
2017). In this study, we examined the molecular mechanisms by which blue rockfish
respond to climate related stressors over acute and acclimatory timescales. We also
examined whether there was an interactive effect between hypoxia and high pCO; by
comparing responses to the individual stressors to those from a combined stressor
treatment. Exposure to combined high pCO» and hypoxia better simulates exposure to
intensified upwelling conditions expected with climate change. We found that genes
responsive to the combined stressors of high pCO»/hypoxia were mostly unique
compared to the individual stressors alone, but that there were also some shared
responses between the combined and individual stressor treatments. We observed both
novel and previously known transcriptional responses to high pCO- and hypoxia.
However, we found no evidence of a shift towards anaerobic metabolism or a sustained
cellular stress response (CSR) over the time-course, providing additional evidence that

blue rockfish may be relatively tolerant to the effects of future climate change.

INTERACTIVE RESPONSES TO HIGH PCO; AND HYPOXIA

Rockfishes are frequently exposed to multiple stressors in their natural
environment and have evolved physiological and molecular adaptations to respond. The
mechanisms of cross-talk between responses that are unique to individual stressors versus
those that are shared are not well characterized. We hypothesized that gene expression
under combined high pCO, and hypoxia would reflect the same genes responsive to the
individual stressors, yielding an additive response. We also noted the possibility of
physiological responses to each single stressor interacting synergistically (e.g. respiratory
acidosis as increased ventilation rates under low DO and low pH exchange more CO»

through the gills, or exacerbated metabolic stress as fish decrease ventilation under low
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DO to avoid acidosis) and in turn inducing DE of novel gene groups not observed under
the individual stressors (Vulesevic et al. 2006, Esbaugh et al. 2012, Heuer and Grosell
2014, Miller et al. 2016, Esbaugh 2018). Under this framework, we identified genes and
pathways unique to each treatment as well as shared responses between the stressors.

We found no evidence for a purely additive interaction between high pCO; and
hypoxia at any time-point, but observed evidence of synergism at 24 h of exposure.
Greater overall DGE (216 genes) was observed at this time-point than in either of the
independent treatments (42 genes under high pCO> and 27 genes under hypoxia),
including representation of all 33 GO pathways observed in the combined treatment
across the time-course. This response was not evident at two weeks, however. It is
possible that an early, coordinated synergistic response that altered various signaling
pathways allowed the fishes to acclimate by two weeks. The sustained DGE at two weeks
under both independent high pCO> and independent hypoxia, however suggests a
strongly antagonistic relationship between the two stressors.

Under the combined stressors, hypoxia appeared to dominate the response of blue
rockfish. The greatest number of shared GO pathways (15) was shared between the
hypoxic and combined stressor treatments. Many of these were signaling pathways that
may have stimulated downstream protein expression and arrival at a muscular phenotype
more suited to a hypoxic environment. Similar to the immediate down-regulation of 107
genes under hypoxia at 12 h, at 24 h under the combined stressors we observed
down-regulation of 128 genes including transcription factors, cytoskeletal components
and ribosomal proteins that may indicate a slowing of overall metabolism and protein
turnover (Gracey et al. 2001).

Also at 24 h, blue rockfish began to exhibit some signs of acclimation to the
combined stressors. Unexpected down-regulation of a number of CSR-induced genes
such as polyubiquitin B and H, two DNA damage-inducible repair proteins (SPIDR and
DDTA4L), and heat shock factor protein 4 (HSF4) at 24 h could represent acclimation to
the stressors. Additional evidence for acclimation to the combined stressors at 24 h was
up-regulation of a cellular oxygen sensor (EGLN2) that hydroxylates the o subunits of
HIF1 and HIF2. Hydroxylated HIFs are typically marked for proteosomal degradation,
hence the up-regulation of EGLN2 at 24 h may represent targeted elimination of HIFs
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used to stimulate an early hypoxia response that was not captured at the mRNA level. At
two weeks under the combined stressors, the heat shock protein 70-associated protein 13
(HSPA13) was down-regulated, possibly indicating a diminished need for protein
chaperone activity.

While few genes were differentially expressed at two weeks under combined high
pCO» and hypoxia, the genes up-regulated at this time-point suggest that multiple
compensatory responses were engaged: two hemoglobin subunits (HBAE and HBB2)
may indicate increased erythropoiesis, the important glycolytic fructose-bisphosphate
aldolase A (ALDOA) may indicate an increased reliance on glycolysis, and carbonic
anhydrase (CAHZ) may indicate lasting ionoregulatory shifts under the combined
stressors (Table S5).

TRANSCRIPTOMIC RESPONSES TO HIGH PCO2 AND HYPOXIA OVER TIME

We predicted that elevated pCO; would stimulate DE of ionoregulatory, muscular
contractile and metabolic genes in blue rockfish. We observed a steady increase in overall
DGE over two weeks, characterized by up-regulation of key metabolic genes as well as
muscular and cytoskeletal structural components, but no accompanying ionoregulatory
shifts. At 12 h, when compared to control fish, blue rockfish immediately increased
expression of genes encoding proteins involved in metabolic ATP demand, up-regulating
energy-transducing proteins like creatine kinase m-type (CKM), sarcoplasmic reticulum
calcium ATPase 1 (SERCAL1), and acyl-coA synthase 2 (ACSF2), which initiates fatty
acid metabolism. At 24 h, the fishes up-regulated genes central to aerobic and anaerobic
metabolism such as cytochrome ¢ oxidase (COXC), ATP synthase, and GAPDH. They
also up-regulated troponins, myosins, and titins, genes essential to striated muscle
contraction. Interestingly, Hamilton et al. (2017) observed down-regulation of these
components in blue rockfish muscle at higher pCO; levels (2800 patm), suggesting
plasticity in muscle composition in response to different levels of pCOa.

At two weeks of exposure to high pCO,, we observed a response of greater
magnitude than at either 12 h or 24 h. Up-regulated genes included those involved in
increased protein synthesis (ribosomal proteins RPL7A, RPL13, RPL19, RPL23, RPL24,
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RPL30, RPL32), muscular restructuring (light- and heavy-chain myosins, paramyosins,
actins and nebulins) and sustained metabolic demand (cytochrome b and c oxidases,
ATPases and ATP synthases). A recent study of the muscle proteome of sea bream
(Sparus aurata) after 42 days under a pH of 7.5 reported up-regulation of proteins
involved in many of these same categories including glycolysis and lipid metabolism
(Aragjo et al. 2018), suggesting utilization of these energetic pathways in the muscle
tissue of some teleosts under OA.

We observed that over acute timescales (12-24 h), hypoxia stimulated substantial
down-regulation of transcriptional and signaling machinery under independent hypoxia
(12 h) and combined high pCO»/hypoxia (24 h). Perhaps the most significant DE pattern
in the hypoxic condition was an immediate down-regulation at 12 h of 107 genes
involved in signaling, muscle structure, and transcriptional regulation. These patterns
may indicate targeted changes in transcription and decreased protein synthesis/turnover in
blue rockfish under low DO, which are known ATP conservation strategies (Liu and
Simon 2004). Interestingly, few of these down-regulated genes were involved in protein
biosynthesis, even though protein synthesis is one of the most energetically costly
cellular processes and often leads to strong down-regulation of ribosomal subunits and
other translation machinery (Gracey et al. 2001, Ton et al. 2003). The strong
down-regulation of transcription factors may indicate that reductions in protein synthesis
were more targeted at the transcriptional level. Separately, down-regulation of
monocarboxylate transporter 10 (MCT10) at 12 h represented an expression pattern
opposite that of MCT4 observed over a chronic timescale in the zebrafish (Danio rerio)
(van der Meer et al. 2005). MCTs aid in the transport of glycolytic metabolites like
pyruvate and lactate, and thus the function of these proteins under hypoxia may change
with the duration of reliance on glycolysis.

Under hypoxia, we also expected to observe DE of genes involved in conserved
vertebrate hypoxia responses like a mild CSR, glycolysis, erythropoiesis and/or
angiogenesis, and altered expression of oxygen sensors like HIFs and prolyl hydroxylases
(PHDs) or their downstream targets (Xiao 2015). We observed expression of few of these
genes, however, but observed up-regulation of carbonic anhydrase (CA1). Recent

evidence suggests that CA1 may be hypoxia-induced and mediate dissociation of O» from
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hemoglobin by altering extracellular pH in fish (Randall 1982, Esbaugh et al. 2008,
Alderman et al. 2016). Up-regulation of these ionoregulatory genes did not continue at
two weeks, suggesting that the fish underwent osmotic shifts early in the time course to
account for increased ventilation or another method of oxygen delivery. After two weeks
under hypoxia, blue rockfish also up-regulated a hemoglobin subunit (HBB2) in their
white muscle, possibly indicating heightened erythrocyte production. These findings
indicate that blue rockfish contended with moderate hypoxia through multiple responses,
one of which may involve a change in ionoregulatory status to alter the affinity of
oxygen-carrying molecules and release O that would otherwise be unavailable.
Unexpectedly, our data also revealed a large effect of time on gene expression in
blue rockfish muscle tissue in this experiment across all treatments, including the control.
For example, between 24 h and two weeks, more than 4,500 genes were differentially
expressed. This could have been a result of handling stress or an acclimatory response to
the experimental set-up. Previous studies have also noted strong effects of routine
handling and husbandry on the composition of skeletal muscle in teleosts (Aedo et al.
2015). Over longer-term periods in the laboratory, blue rockfish are known to have lower
survival rates than other rockfish species even under ambient conditions (Mattiasen
2018). Although we cannot explain what drove the large changes in gene expression over
time, we highlight the importance of sampling control fish at every time-point during a

time course experiment to remove the effect of time from treatment-driven responses.

RELATIVE RESILIENCE OF BLUE ROCKFISH AT THE MOLECULAR LEVEL

Our findings suggest that blue rockfish may be physiologically equipped to cope
with moderately elevated pCO> (~1200 patm) and moderate levels of hypoxia (~4.0 mg
O2/L) during upwelling. In combination, the two stressors did not induce a shift towards
anaerobic metabolism based on metabolic enzyme activities nor did they result in any
mortality. Similarly, we did not observe significant differential expression of citrate
synthase or lactate dehydrogenase isoforms or subunits in the muscle tissue gene
expression data, but it is possible that genes encoding these proteins were differentially

regulated in the gills, liver or other tissues.
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At the transcriptomic level under the combined stressors, we observed few signs
of a CSR under the combined stressors. These findings contrast with a study in
Trematomus bernachii gill tissue that observed an acute CSR persisting for seven days in
response to high pCO> (1000 patm) and warming (+4° C) (Huth and Place 2016). Like T.
bernachii, however, blue rockfish did not exhibit an inducible CSR or heat shock
response to independent high pCO> (Huth and Place 2016). We note that the threshold
levels of pCO> and hypoxia for this species may lie below the levels to which the fishes
were exposed in this experiment (Vaquer-Sunyer and Duarte 2008). Given that OA and
hypoxia are predicted to become more prevalent in the CCLME, the wide range of
sensitivities across taxa and the possibility that native organisms are already living close
to their physiological limits, we highlight the importance of species-specific studies in the
context of multiple stressors (Crain et al. 2008, Vaquer-Sunyer and Duarte 2008, Monaco

and Helmuth 2011).

CONCLUSION

We found that juvenile blue rockfish differentially expressed largely dissimilar
gene suites under independent high pCO., independent hypoxia and combined high pCO>
and hypoxia. Among the mechanisms employed by blue rockfish to contend with high
pCO: and hypoxia were cytoskeletal restructuring, the activation of glycolysis and fatty
acid metabolism, increased hemoglobin production, and altered ionoregulation, possibly
for the purpose of maintaining O>-hemoglobin affinity while buffering against
hypercapnia. Interestingly, under the combined stressors, a synergistic spike in DGE at
24 h allowed for a relaxation in DGE at two weeks. The absence of a significant CSR or
increased enzymatic reliance on anaerobic metabolism indicates that blue rockfish may
be physiologically resistant to moderate levels of pCO» and hypoxia.

Even if blue rockfish are resistant to moderate high pCO; and hypoxia, additional
studies in this and other native rockfish species are required to inform the larger
groundfish fishery in central California. Previous work has suggested differential
tolerances among congeners within Sebastes, which could influence the composition of

juvenile rockfish assemblages that are an important mid-trophic food source for predatory
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fishes and seabirds (Hamilton ef al. 2017, Davis et al. 2018, Warzybok et al. 2018).
Knowledge of the mechanisms that rockfish employ to contend with ocean acidification
and hypoxia (particularly at critical life stages) may help interpret future shifts in
populations or catch totals (Young et al. 2006, Metcalfe et al. 2012). Future research
should address the possibility of species-specific thresholds under these stressors, above
or below which species are impacted even if negative effects are not observed at less
severe levels of the stressor(s) (Vaquer-Sunyer and Duarte 2008, Hamilton et al. 2017).
The use of fluctuating pCO> and DO levels should also be considered in lieu of static
exposures, in order to better emulate the onset of upwelling events and to capture
physiological or behavioral patterns (i.e. recovery) that may not be observed under static
pCO2 and DO (Brady and Targett 2010, Booth et al. 2012, Jarrold et al. 2017). In
aggregate, this information may inform the condition or recruitment success of different
rockfishes under extreme oceanographic conditions in the Northeast Pacific such as

increasingly strong upwelling events.
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APPENDIX A

SUPPLEMENTARY DATA

Table S1: Weights, standard lengths (SL), and total lengths (TL) of all juvenile blue rockfish
individuals examined in the acute time-course.

FishID Treatment Time-point Weight(g) SL (mm) TL (mm)

Mysl14 Control 12h 1.71 49.9 56.6

Mysl6 Control 12h 1.42 46.9 53.5

Mys18 pH 7.6 12h 1.16 423 49.8

Mys20  pH7.6 12h 1.54 46.7 54.3

Mys22 DO 4.0 12h 1.66 48.4 54.6

Mys24 DO 4.0 12h 2.67 51.2 60.6

7065 Combined 12h 1.07 44.6 51.4

7067 Combined 12h 2.05 50.3 58.2

Mys26 Control 24h 1.26 46.7 54

Mys28 Control 24h 1.08 45.1 51.2

Mys30  pH7.6 24h 3.47 60.9 69.5

Mys32 pH 7.6 24h 1.13 42.2 49.1

Mys34 DO 4.0 24h 1.47 45.5 52.5

Mys36 DO 4.0 24h 1.65 48.2 55.1




FishID Treatment Time-point Weight(g) SL (mm) TL (mm)

7069 Combined 24h 1.78 48.5 55

7071 Combined 24h 1.07 43.1 50.2

MysS0 Control 2wk 1.27 45.9 54.1

Mys52 Control 2wk 1.78 45.8 54.2

Mys54  pH7.6 2wk 1.99 50 58.3

Mys56 pH 7.6

Mys58 DO 4.0 2wk 1.6 45.8 55.1
| Mws9 DOso kL w o sle |
Mys60 DO 4.0 2wk 1.65 48 55.5
| 707 Combined 2wk 1s1ds4 sz |
7077 Combined 2wk 1.7 48 56.3
| 707 Combined 2wk 231 503 93|
7079 Combined 2wk 1.72 49.4 56.6

51
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Table S2: Mean temperature, pH, pCO2, dissolved inorganic carbon (DIC), total alkalinity (TA), and
dissolved oxygen (DO) levels of the four treatments to which blue rockfish were exposed during the
two-week time-course.

Total Mean
Treatment Mea(l:) g; mp- Mean pH M(zal; tme)Oz ( ﬁzzll/lll(l)ég&/) Alkalinity DO
M nmol/ke (nmol/kg SW) (mg/L)
Control 11.40 (0.11)  8.023 (0.007) 403.8 (6.4) 2042.7 (6.2) 2216.5 (8.8) (g‘(l)é)
High pC0O2/low 12.03 (0.33)  7.583(0.017) 1238.9(56.3)  2208.6 (22.5) 2235.7 (21.9) 8.30
pH (0.06)
Hypoxic / low 3.93
DO 12.27 (0.09) 8.02 (0.008) 408.4 (7.3) 2039.8 (5.4) 2217.5 (8.1) (0.02)
Cross (high 3.92
»CO2/ low DO) 11.58 (0.34)  7.595(0.027) 1194.5(91.8) 2192.5 (44.7) 2221.3 (41.7) (0.04)

Table S3: Eleven blue rockfish tissue samples from which mRNA was isolated, cDNA libraries were
constructed, [llumina® sequence information was generated and a de novo transcriptome was created. All
libraries were paired-end (PE) except the three marked with asterisks (*), which were single-end (SE)
libraries sourced from the experimental time-course.

Fish ID Treatment Time-point Tissue
Mys 0 B Control 0Oh brain
Mys 0 L Control Oh liver
7069 Combined 24 h gill
Mysl61 DO 4.0 6 mo gill
Mys259 pH 7.5 6 mo gill
7068 Combined 24 h muscle
Mys165 DO 4.0 6 mo muscle
Mys252 pH 7.5 6 mo muscle
Mys53* pH 7.5 2 wk muscle
MysS57* DO 4.0 2 wk muscle
7076* Combined 2 wk muscle
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Table S4: Mean read sizes and read totals before and after Trimmomatic QC trimming and filtering of all
paired-end (PE) and single-end (SE) sequence files used to construct the blue rockfish de novo
transcriptome and perform the differential gene expression analysis. Statistics for the paired-end (PE)
reads apply to both the forward (R1) and reverse (R2) reads that were paired after trimming and
incorporated into the de novo assembly (Trinity does not incorporate PE reads that are unpaired after
trimming).

Pre-QC Post-OC

D Trmen T | Meanead - Toul PP | Mo bead Toul 21
De novo 398,410,942 235,975,049
Mys 0 B Control Oh 151 55,620,582 150.98 32,551,698
Mys 0 L Control Oh 151 66,257,155 150.98 42,382,445
Mys252 pH7.5 6mo 151 37,180,620 150.98 20,103,887
Mys259 pH7.5 6mo 151 58,493,852 150.98 32,192,367
Mysl61 DO 4.0 6mo 151 39,461,465 150.98 27,841,021
Mys165 DO 4.0 6mo 151 47,075,883 150.98 34,194,227
7068 Cross 24h 151 44,779,488 150.98 22,876,866
7069 Cross 24h 151 49,541,897 150.98 23,832,538

Pre-QC Post-QC

FisFile D Treatment 00 | NEOGNY N ds | Swepy  Reads
Time-course 776,060,318 771,166,351
Mys13 Control 12h 51 12,727,920 50.98 12,713,785
Mysl14 Control 12h 51 17,630,260 50.99 17,618,520
Mysl5 Control 12h 51 13,783,923 50.98 13,043,267
Mysl6 Control 12h 51 13,449,926 50.98 13,426,336
Mys17 pH7.5 12h 51 19,340,677 50.98 19,047,919
Mys18 pH7.5 12h 51 19,349,035 50.98 19,013,334
Mys19 pH7.5 12h 51 38,169,202 50.98 38,138,073
Mys20 pH7.5 12h 51 18,113,019 50.98 18,101,246
Mys21 DO 4.0 12h 51 17,634,252 50.98 17,613,183
Mys22 DO 4.0 12h 51 26,234,935 50.98 26,082,503
Mys23 DO 4.0 12h 51 14,378,646 50.99 14,352,716
Mys24 DO 4.0 12h 51 14,579,059 50.98 14,386,966
7064 Cross 12h 51 32,267,458 50.98 31,662,789
7065 Cross 12h 51 35,981,427 50.98 35,798,493
7066 Cross 12h 51 19,693,491 50.99 19,683,192
7067 Cross 12h 51 11,388,832 50.99 11,384,555
Mys25 Control 24h 51 24,802,340 50.98 24,609,193
Mys26 Control 24h 51 15,798,612 50.98 15,767,321
Mys27 Control 24h 51 14,670,899 50.98 14,616,365
Mys28 Control 24h 51 10,297,933 50.99 10,257,254
Mys30 pH7.5 24h 51 15,747,852 50.98 15,635,227
Mys31 pH7.5 24h 51 17,416,433 50.98 17,388,883
Mys32 pH7.5 24h 51 18,587,147 50.98 18,545,501
Mys34 DO 4.0 24h 51 18,175,850 50.98 17,701,625
Mys35 DO 4.0 24h 51 20,367,295 50.98 20,354,053
Mys36 DO 4.0 24h 51 14,832,363 50.99 14,816,428




D Treamen T | Menfled | TolSE | Manad - Toul St
7068 Cross 24h 51 15,144,745 50.98 15,131,662
7069 Cross 24h 51 15,196,808 50.98 15,133,676
7070 Cross 24h 51 14,951,744 50.98 14,923,514
7071 Cross 24h 51 13,435,403 50.99 13,412,936
Mys49 Control 2wk 51 13,440,498 50.98 13,360,606
Mys50 Control 2wk 51 16,357,180 50.97 16,130,310
Mys51 Control 2wk 51 16,229,708 50.99 16,217,789
Mys52 Control 2wk 51 18,614,315 50.98 18,600,238
Mys53 pH7.5 2wk 51 12,931,448 50.98 12,797,362
Mys54 pH 7.5 2wk 51 13,809,824 50.98 13,761,457
Mys57 DO 4.0 2wk 51 15,519,207 50.97 15,449,294
Mys58 DO 4.0 2wk 51 17,692,314 50.98 17,403,940
Mys59 DO 4.0 2wk 51 15,865,426 50.98 15,850,225
Mys60 DO 4.0 2wk 51 15,694,820 50.99 15,677,482
7076 Cross 2wk 51 17,348,220 50.98 17,228,807
7077 Cross 2wk 51 11,306,869 50.99 11,293,989
7078 Cross 2wk 51 18,820,794 50.98 18,790,475
7079 Cross 2wk 51 18,282,209 50.99 18,243,862
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