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Abstract: Earth observations collected by remote sensors provide unique information to our
ever-growing knowledge of the terrestrial biosphere. Yet, retrieving information from remote sensing
data requires sophisticated processing and demands a better understanding of the underlying
physics. This paper reviews research efforts that lead to the developments of the stochastic radiative
transfer equation (RTE) and the spectral invariants theory. The former simplifies the characteristics
of canopy structures with a pair-correlation function so that the 3D information can be succinctly
packed into a 1D equation. The latter indicates that the interactions between photons and canopy
elements converge to certain invariant patterns quantifiable by a few wavelength independent
parameters, which satisfy the law of energy conservation. By revealing the connections between
plant structural characteristics and photon recollision probability, these developments significantly
advance our understanding of the transportation of radiation within vegetation canopies. They enable
a novel physically-based algorithm to simulate the “hot-spot” phenomenon of canopy bidirectional
reflectance while conserving energy, a challenge known to the classic radiative transfer models.
Therefore, these theoretical developments have a far-reaching influence in optical remote sensing of
the biosphere.

Keywords: vegetation remote sensing; stochastic radiative transfer equation; spectral invariants theory

1. Introduction

The past a few decades have seen rapid development in scientific research and applications that
monitor and/or simulate terrestrial ecosystems with the help of remote sensing data [1]. Thanks to
advances in technology, we have sensors that operate across a broad spectral range, at high spatial,
temporal, and spectral resolutions, and with passive or active modes. For instance, on sun-synchronous
orbits the classic MODIS (Moderate Resolution Imaging Spectroradiometer) and SUOMI NPP (National
Polar-Orbiting Partnership) VIIRS (Visible Infrared Imaging Radiometer Suite) are now joined by
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Landsat 8/OLI (Operational Land Imager) [2,3], Copernicus Sentinel-2 [4], and JPSS (Joint Polar
Satellite System) VIIRS [5]. On geostationary orbits we now have advanced multi-band imagers
on Himawari-8/9 [6], GOES-16/17 [7,8], FengYun-4 [9] and the forthcoming sensors from Korea
Meteorological Administration and European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT). On the International Space Station there is ECOSTRESS (Ecosystem Spaceborne
Thermal Radiometer Experiment on Space Station), which will be soon joined by GEDI (Global
Ecosystem Dynamics Investigation) [10]. A plethora of remote sensing products have been derived
that reflect various characteristics of the terrestrial biosphere, including vegetation spectral indices,
land cover types, canopy structural parameters, and many others. As remote sensing data uniquely
provide consistent coverage over large spatial scales, it is rare nowadays that a global change study
does not use such information.

Remote sensing data are not uncertainty-free but come with caveats. In optical remote sensing,
for example, photons that reach the sensor have gone through complicated interactions with the
atmosphere-vegetation-soil medium [11]. A series of processing must be conducted to calibrate and
correct the top-of-atmosphere signals before information about the surface can be extracted from them.
As remote sensors cannot directly measure the surface biophysical characteristics of interest, models are
used to transform the measurements into estimates of the desirable vegetation canopy variables (e.g.,
Leaf Area Index), a process methodologically called “inversion.” The inverse problems encountered in
remote sensing are often under-determined and “ill-posed” [12], thus a priori information, additional
constraints on potential solution space, and regularization techniques are often applied to make
the problem solvable [13–17]. Given these challenges, a better understanding of the methodological
backgrounds of remote sensing products can be beneficial for users of these datasets.

Interactions between photons and the atmosphere-vegetation-soil medium are succinctly
quantified by the radiative transfer equation (RTE) and the associated boundary conditions [18].
The theory of radiative transfer was originally developed to study the scattering and absorption of
sunlight in the atmosphere and later to simulate the transport of neutrons in nuclear reactors [19].
The theory was applied to model the radiation regime in vegetation canopy in the second half of
the last century [20–22]. A range of models have been developed to describe the radiation regime
in vegetation canopies as well as their interactions with the atmosphere and the soil. Some of the
representative models, for instance, include Raytran [23], DART (Discrete Anisotropic Radiative
Transfer) [24,25], SAIL (Scattering by Arbitrary Inclined Leaves) [26–28], PROSPECT [29], GORT
(Geometric Optical-Radiative Transfer) [30,31], and PARAS [32]. A recent review of the canopy radiative
transfer models can be found in Reference [18].

Compared with turbid media or nuclear reactors, vegetation canopy has its own structural
and optical characteristics. On one hand, leaves have finite sizes and therefore cast shadows [33],
which violates the assumptions of Beer’s law [34,35]. For instance, the mutual shadowing effects
of the canopy elements are mainly responsive for a sharp peak of the canopy reflectance in the
retro-illumination direction. This phenomenon is often called the “hot-spot” effect, which is difficult
to simulate with the classic RTE [33,36]. On the other side, the sizes of leaves (and twigs, branches,
etc.) are often much larger than the spectral wavelengths considered in optical remote sensing.
The total extinction coefficient (or cross-section) of photons in vegetation canopies is thus determined
by the structural distribution of the leaves (and other phytoelements) rather than the wavelengths of
photons [37]. Such characteristics of the vegetation medium present both challenges and opportunities
to research efforts on the radiative transfer theory in vegetation canopies.

This paper intends to contribute a review of the theoretical advancements in modeling radiative
transfer processes in 3D vegetation canopies. It particularly focuses on the developments of the
stochastic radiative equation and the spectral invariant theory, which have been widely applied in
retrieving vegetation structural information from remote sensors like MODIS and MISR (Multi-Angle
Imaging Spectroradiometer) to the recent EPIC (Earth Polychromatic Imaging Camera) on the DSCOVR
(Deep Space Climate Observatory) platform and the latest geostationary sensors like AHI (Advanced
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Himawari Imager; on Himawari-8/9) and ABI (Advanced Baseline Imager; on GOES-16/17). However,
a detailed account of such theoretical progresses is somewhat scarce in recent review papers [38–45]
or textbooks [46] on remote sensing sciences and applications, which becomes a main motivation for
this paper.

A question may rise: Why should we care so much about the theoretical properties of the radiative
transfer processes in a time of big data, artificial intelligence and machine learning? It is true that
in general the RTE has to be solved numerically [47]. In many applications we rely on statistical or
empirical methods to solve the problem at hand [43]. Artificial intelligence and machine learning tools
have also been introduced into remote sensing applications since their early stages and are gaining
increasing popularity with rapid developments in the technology [48]. However, as mentioned earlier,
the task of remote sensing is essentially ill-posed. The solution to the inverse problem often is not
unique [43] and may not even be physical [35]. For instance, though the spectroscopy of a single leaf
may be accurately measured in a laboratory, those measured for a forest stand by remote sensors
convolute signals from the phytoelements (e.g., leaves, twigs, branches, trunks), the land surface,
the atmosphere in between, as well as the interactions among them [22]. It is far from straightforward
to establish a robust quantitative link between satellite measurements and leaf-level biogeochemical or
biogeophysical traits. Without a clear understanding of the underlying processes, we may misinterpret
empirically identified correlations from the data [49]. Furthermore, physically-based radiative transfer
models (RTM) usually assume many parameters, which make them difficult to invert in practice [43].
The success of an RTM in remote sensing applications thus requires a balance between the simplicity
of the model formulation and the fidelity of physics it preserves. Such a task can only be achieved with
a deep understanding of the radiative transfer processes. As we will discuss later, the stochastic RTE
and the spectral invariant theory represent elegant advancements with this modeling aspect regarded.

The rest of the paper is organized as follows. We begin by introducing the radiative transfer
equation formulated for 3D vegetation canopies. We then focus on four particular topics in the main
text, including the decomposition of RTE into the black-soil (“BS”) and the soil (“S”) problems,
the development of the stochastic RTE that efficiently packs 3D canopy features into a 1D form,
the spectral invariants theory that links the solutions of the RTE at different wavelengths by a few key
canopy structural parameters, and the latest effort to address the “hot-spot” problem in vegetation
remote sensing. We conclude the paper with a brief summary of the key ideas reviewed in these topics.

We would like to emphasize that, although the concepts of the spectral invariants and stochastic
canopy geometrical properties may appear abstract, they have concrete physical interpretations and
are measurable from ground and remote observations. Additionally, the basic ideas behind these
theoretical developments are actually simple. Their derivations repeatedly make use of the ideas of
decomposition and superposition, convergence and invariants, and the law of energy conservation.
Therefore, we invite the readers to pay more attention to these ideas rather than the mathematical
details of the theory, if the latter appears to be a bit complicated at the first look.

2. Radiative Transfer Equation for Vegetation Canopy

The classic RTE theory assumes that the radiative transfer properties of a vegetation canopy
are largely determined by how the leaves are distributed in space, how they are oriented, and the
fashions in which photons interact with the leaves [11,22,37,50]. These three aspects are mathematically
described by the leaf area density distribution function uL(x), the leaf normal distribution function
gL(x, ΩL)/2π, and the leaf element scattering phase function γL(λ, x, Ω→ Ω′, ΩL), respectively
(Figure 1). Here, ΩL represents the direction of the leaf normal, Ω is the incident direction, and Ω′ is
the direction in which photons are scattered into. Note that the scattering phase function γL explicitly
depends on both Ω and Ω′ but not only the scattering angle cos−1

(
Ω·Ω−1

)
, which is a key difference

between vegetation canopies and gaseous media [37].
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Figure 1. Schematic diagram of the Radiative Transfer Equation (RTE) and the Spectral Invariants
theory. The left side of the flowchart (outside the dashed box) describes the successive-order scattering
approximation (SOSA) scheme to solve the RTE. The right side of the diagram (inside the dashed box)
indicates the logic flow of the spectral invariants theory. The symmetric arrangement of the diagram is
to emphasizes that the canopy spectral invariants provide an equivalent set of parameters (other than
the traditional ones) to succinctly characterize the canopy structural properties.

From these functions we can derive a few key parameters to be used in RTE, including the
single scattering albedo ω0(λ), the total extinction cross-section σ(Ω), and the differential scattering
cross-section σS(Ω→ Ω′). Here we have assumed that ω0 is a variable of only spectral wavelength and
that σ(Ω) and σS(Ω→ Ω′) do not depend on locations (x) or spectral wavelengths (x). The detailed
definitions of these variables and their relationships are given in the Appendix A. Note that although
the single scattering albedo is generally understood as the averaged leaf albedo, its definition actually
depends on the spatial scales of the elementary scatters considered in the equation [51]. As will be
discussed later, this parameter is related to the canopy scattering coefficients by the associated scaling
rules [45].

Denoting Iλ(x, Ω) as the monochromatic radiation intensity (radiance), we use the operator
notations [52] to describe the radiative transfer processes in vegetation canopies (for readers who
are not familiar with linear differential/integral operators, you may think them as matrices with
infinite dimensions). In particular, the streaming-collision operator (L) describes the spatial/directional
change of the radiation intensity and the extinction of radiance due to collisions between photons and
phytoelements (Reference [52]; the same for Equations (2)–(5)),

LIλ ≡ Ω·∇Iλ(x, Ω) + σ(x, Ω)Iλ(x, Ω) (1)
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The scattering operator (Sλ) describes the addition of radiance by photons scattered in from
other directions,

Sλ Iλ ≡
∫

4π

ω0(λ)σS(x, Ω′ → Ω)Iλ(x, Ω′)dΩ′ (2)

The steady state RTE is thus
LIλ = Sλ Iλ, (3)

with the boundary conditions specified by

Iλ(xT , Ω) = δ(Ω−Ω0), nT ·Ω < 0 (4)

and

Iλ(xB, Ω) =
1
π

∫
nB ·Ω′>0

ρλ(xB, Ω′ → Ω)Iλ(xB, Ω′)|nB·Ω′|dΩ′, nB·Ω < 0 (5)

where xT and xB ∈ ∂V, nT and nB and the outward normal of the boundary, ρλ is the bidirectional
reflectance factor (BRF) of the lower boundary (i.e., soil surface). In remote sensing applications the
influence of lateral boundaries is considered small and thus neglected [35,37]. For simplicity we also
only consider the direct solar illumination but neglect the diffuse radiation. This corresponds to the
case where the influences of path radiances are removed through atmospheric corrections.

The RTE of Equation (3) describes photon-canopy interactions in three spatial dimensions (i.e.,
x) and two directional dimensions (Ω and Ω′). As the phase function γL is not rotational invariant,
we cannot decompose the solution in spherical harmonics to simplify the calculation [37]. Direct
numerical schemes to solve the equation thus have to perform 5-dimensional integration at every
iteration, which is complicated and prone to numerical errors. Therefore, we seek to simplify the
problem based on its mathematical/physical properties, which is discussed in the following sections.

3. Black-Soil and Soil Problems

A key property of the RTE is its linearity with regard to Iλ, which allows the problem to be
decomposed into a set of sub-problems that are easier to solve. The classic MODIS algorithm [35]
decomposes the RTE problem according to its boundary conditions. The easiest boundary condition is
represented by the black-soil (“BS”) problem, which is formulated for a vegetation canopy illuminated
from above by a mono-directional sun beam and otherwise bounded by purely absorbing (i.e.,
“black”) surface from below. In contrast, the soil (“S”) problem is formulated for the same canopy
but illuminated from below by anisotropic sources and bounded by absorbing surfaces everywhere
else. Such a decomposition scheme separates the influence of illumination conditions from those of
soils. The two sub-problems are solved independently but their solutions can be flexibly superposed
to render the full solution of the original problem (Figure 1).

To solve the black-soil problem, we further decompose the radiation field into the un-collided
component, Q0,

Q0(xT , Ω) = δ(Ω−Ω0), nT ·Ω < 0 (6)

and the collided (or diffuse) components, Idi f , which satisfies the so-called standard problem with zero
boundary conditions where no photon entering the canopy from above or below [53],

L0 Idi f = Sλ Idi f + SλQ0. (7)

As L is an ordinary differential operator, the solution of Q0 can be relatively easily obtained.
By introducing the integral operator T = L−1

0 Sλ, we write the diffuse component, Idi f , symbolically as

Idi f = TIdi f + TQ0. (8)
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We should explain the physical meaning of the T operator later in Section 5. For now, note that
we can solve for Idi f as

Idi f =
TQ0

E− T
, (9)

where “E” is the identity operator (i.e., EIdi f = Idi f ). Adding Q0 to both sides, we obtain the solution
of the black-soil problem as

Ibs = Idi f + Q0 = Q0
E−T

=
(

E + T + T2 + · · ·+ Tk + · · ·
)

Q0.
(10)

The last line of Equation (10) is the expansion of the operator (E− T)−1 in Neumann series,
which is analogous to geometrical series of numbers. Physically it indicates that IBS is the superposition
of photons that are un-collided, once-collided, twice-collided, and so on. The condition that the
series converge is provided by the law of energy conservation because the system is dissipative.
This superposition scheme, generally referred to as “successive-order scattering approximation”
(SOSA; Reference [54]), also bridges the black-soil problem solution to a few key concepts in the
radiative transfer theory in vegetation canopies.

The soil (“S”) problem is formulated as follows:

LIs = Sλ Is,
Is(xB, Ω) = dB(xB, Ω), nB·Ω < 0,

(11)

where dB(xB, Ω) is an anisotropic source normalized to have its hemispherical integral (i.e., irradiance)
to be unit. Note that the soil problem also assumes purely absorbing boundaries and the only
difference is that the canopy is illuminated from below by a diffuse source. It can be solved with the
same approach as the black-soil problem.

We now explain how to use the solutions of the black-soil and the soil problems to model
interactions between the canopy and the underlying soil surface. First, the anisotropic source in the
S-problem is initialized by radiation that passes through the canopy and reflected by the soil surface.
If the spatial distribution pattern of the downward radiation (as which is regulated by the structure of
the canopy) does not change significantly, we may assume that the anisotropy is determined by the
soil surface but independent on the incoming radiation field [35].

Let the spatial mean effective ground bi-hemispherical reflectance (BHR) of the soil surface to be
ρe f f and the mean radiation flux (irradiance) from the downward radiance generated by the black-soil

problem to be Fbs. As the system is linear, the radiation field that generated by the first interaction of
the canopy and the soil surface is (approximately) ρe f f Fbs Is. A part of the photons will be scattered
back by the canopy to interact with the soil surface again. Denote the mean BHR of the canopy
illuminated by the anisotropic source dB(xB, Ω) to be Rs, and the radiation field generated by the

second interaction between the canopy and the soil surface is thus
(

ρe f f

)2
RsFbs Is. As this process

iterates, we arrive at the total radiation generated by the interactions between the canopy and the
soil surface

Irest(x, Ω) =
ρe f f Fbs

1− ρe f f Rs
Is(x, Ω) (12)

and the solution to the full RTE problem is therefore

Iλ(x, Ω) = Ibs(x, Ω) +
ρe f f Fbs

1− ρe f f Rs
Is(x, Ω). (13)
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The above derivation of Equation (13) is slightly different from Reference [35] but shares the same
the idea. Ultimately, these decomposition schemes can be derived from the concept of Green’s function
of the RTE [53]. The assumption about the constancy of canopy BHR (Rs) and the anisotropy dB(xB, Ω)

is reasonable. This is because the diffused radiation field within the canopy tend to converge toward
certain spatial distributions that are independent on external illumination conditions (see below).

4. Stochastic Radiative Transfer Equation

In remote sensing applications we are generally more interested in the statistical mean of the
radiation fields than individual solutions [35]. An apparent way to achieve this goal is to generate an
ensemble of representative canopy realizations, solve the RTE for them separately, and then calculate
the mean in the end. However, this approach costs time and computation resources. Alternatively,
we can also calculate the statistical mean canopy first before solving for the RTE. The second approach
is the main idea behind the development of the Stochastic RTE, which turns out to be more efficient in
addressing the question [55]. As the ensemble mean is usually equivalent to the average of the 3D
radiation field over the horizontal space (i.e., the ergodicity assumption), the central task of Stochastic
RTE is the same as to efficiently pack a 3D radiative regime into a 1D form.

To illustrate, recall that Ω·∇I(x, Ω) is a directional derivative, i.e.,

Ω·∇I(x, Ω) =
dI(xB + ξΩ, Ω)

dξ
=

dI(xB + (z− zB)/µΩ, Ω)

1/µdz
. (14)

Integrating the RTE over the vertical dimension from the top (z = 0) or the bottom (z = 1) of the
canopy leads to

I(x, Ω) + 1
µ

∫
Z uL(x′)σ(Ω)I(x′, Ω)dz′

= 1
µ

∫
Z ω0uL(x′)dz′

∫
4π

σs(Ω′ → Ω)I(x′, Ω′)dΩ′+ I(xB, Ω) (15)

where x′ = x + (z′ − z)/µΩ and Z represents appropriate integration intervals. The subscript “B”
denotes general boundaries, which may be “top” or “bottom” according to the direction of the
integration [55]. Let 〈·〉 denote the horizontal average. Apply the operator to both sides of the equation
and we obtain,

I(x, Ω) + 1
µ

∫
Z σ(Ω)〈uL(x′)I(x′, Ω)〉dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)〈uL(x′)I(x′, Ω′)〉dΩ′+ I(xB, Ω)
(16)

where I(x, Ω) = 〈I(x, Ω)〉. Therefore, the original RTE becomes a 1D equation with regard to the
vertical (“z”) dimension.

Note that in Equation (16) I(x, Ω) is the mean radiation intensity (at the vertical level z) averaged
over the whole horizontal domain while the “second-moment” variable 〈uL(x)I(x, Ω)〉 is the mean
intensity averaged only at locations where a leaf element presents. These two variables are generally
different from each other except for special cases. In order to evaluate 〈uL(x)I(x, Ω〉), we multiply
both sides of the RTE by uL(x) and integrate over the horizontal scale to get

〈uL(x)I(x, Ω)〉+ 1
µσ(Ω)

∫
Z〈uL(x)uL(x′)I(x′, Ω)〉dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)〈uL(x)uL(x′)I(x′, Ω′)〉dΩ′+ 〈uL(xB)I(x, Ω)〉 (17)

Now another new (the “third-moment”) variable, 〈uL(x)uL(r′)I(r′, Ω′)〉, appears in the equation!
The procedure can go on and on, but every time we try to solve for a lower-moment variable, we end
up introducing a new higher-order unknown into the equation. The process is conceptually analogous
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to the “Reynolds Averaging” technique in fluid dynamics. A parameterization scheme thus must be
introduced to “close” the Stochastic RTE [56].

The scheme adopted in the current literature is derived based on the binary-medium assumption,
under which the leaf density function uL(x) is represented by an indicator function χ(x) that specifies
the presence (χ = 1) or absence (χ = 0) of a unit leaf element (dL), i.e., uL(x) = dLχ(x). Note that for a
random variable like χ(x) its spatial averaging (〈·〉) is essentially the same as its spatial expectation.
As χ(x) = χ(x)2, by the standard formula of statistical covariance of two variables, we see that

〈χ(x)χ(x′)I(x′, Ω′)〉 = 〈χ(x)χ(x′)2 I(x′, Ω′)〉
= 〈χ(x)χ(x′)〉〈χ(x′)I(x′, Ω′)〉+ cov(χ(x)χ(x′), χ(x′)I(x′, Ω′)).

(18)

The first term in Equation (18) represents the “global mean” of χ(x)χ(x′) and χ(x′)I(x′, Ω′),
respectively, whose meaning will be explained below. The second (the covariance) term represents
their “local chaotisity”, which is assumed negligible [57]. We thus arrive at

〈χ(x)χ
(

x′
)

I
(

x′, Ω′
)
〉 ≈ 〈χ(x)χ

(
x′
)
〉〈χ
(
x′
)

I
(
x′, Ω′

)
〉. (19)

By the common notation of the literature [55,58], we define

pc(z) = 〈χ(x)〉,
qc(z, z′, Ω) = 〈χ(x)χ(x′)〉,

K(z, z′, Ω) = qc(z, z, Ω)/pc(z),
U(z, Ω) = 〈χ(x)I(x, Ω)〉/pc(z),

(20)

where pc(z) is the probability of finding leaf elements at locations z. qc(z, z′, Ω) and K(z, z′, Ω) are the
joint and the conditional probability (or pair correlation functions) of finding leaf elements at locations
z and z′ along the direction Ω simultaneously. U(z, Ω) is the mean radiation intensity averaged over
vegetation occupied horizontal space (i.e., with gaps excluded). The stochastic RTE is then fully
specified as [55,58]

I(z, Ω) + 1
µ

∫
Z σ(Ω)pc(z′)U(z′, Ω)dz′

= 1
µ

∫
Z ω0dz′

∫
4π

pc(z′)U(z′, Ω′)σs(Ω′ → Ω)dΩ′+ I(zB, Ω)
(21)

and
U(z, Ω) + 1

µσ(Ω)
∫

Z K(z, z′, Ω)U(z′, Ω)dz′

= 1
µ

∫
Z ω0dz′

∫
4π

σs(Ω′ → Ω)K(z, z′, Ω′)U(z′, Ω′)dΩ′+ U(xB, Ω) (22)

with corresponding boundary conditions adapted for I(xB, Ω) and U(xB, Ω), respectively. In general,
we must evaluate U(z, Ω) first by Equation (22) before solving Equation (21) for I(z, Ω). Note that
because K(z, z′, Ω′) is a function of both z′ and z, Equation (22) is a Volterra integral equation.

The stochastic RTE was initially developed to solve the mean radiation intensity in the medium of
broken clouds [57,59,60]. It was first applied to the vegetation canopy by Reference [61]. The current
form of the Stochastic RTE in vegetation canopy was introduced in Reference [55], who also detailed a
SOSA procedure to solve the Volterra integral equation.

The most important feature of the Stochastic RTE is the incorporation of the pair correlation
function K(z, z′, Ω′). The function succinctly characterizes the structural and the spatial distribution
properties such as heterogeneity and anisotropy of the 3D canopies. It encompasses information
presented by traditional metrics like forest gap fractions and clumping indices. Indeed, the introduction
of K(z, z′, Ω′) allows the 1D RTE to resolve the differences between U(xB, Ω) and I(xB, Ω), which can
be used to retrieve canopy gap fractions [62]. The first set of realistic pair-correlation functions was
derived by Reference [58] using stochastic geometry models [63]. The approach is to idealize individual
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tree crowns as regular geometrical objects (e.g., spheres, cylinders, cones, etc.) and assume their
locations follow certain spatial patterns (e.g., Poisson’s distribution). The pair-correlation functions
then can be computed analytically or statistically. Reference [58] presents detailed examples of the pair
correlation functions for different crown shapes and canopy distribution patterns. As a special case,
when the leaf elements are spatially not correlated, K(z, z′, Ω′) reduces to pc(z), Equation (22) reduces
to a classic 1D RTE, and U(z, Ω) becomes the same as I(z, Ω). Reference [58] also systematically
compared the simulation results of the stochastic RTE with those of the classic 1D RTE as well as field
measurements, showing that the Stochastic RTE is able to capture the 3D radiation effects previously
reported in the literature and therefore the pair-correlation function provides a “most natural and
physically meaningful” [58] measure to 3D canopy structural properties over a range of scales.

There are a couple of more facts about the Stochastic RTE that need attention. First, the pair
correlation function is not a merely theoretical concept but can be evaluated from observations
for real-world applications. With the development of terrestrial lidar scanning (TLS) instruments,
now we can measure the 3D structure of forest stands with relative ease and the pair correlation
function of the canopy can be accurately computed with such measurements. The function can also be
estimated from high-resolution satellite imageries and air-/space-born lidar data over larger spatial
scales. Second, as the pair correlation function encapsulates purely the structural or geometrical
characteristics of the canopy, it has a close connection with the school of geometrical optical (GO)
models in remote sensing [30,31,64,65]. Indeed, the stochastic geometry models used in deriving
the theoretical pair correlation functions in Reference [58] are essentially the same as those used
in References [64,65]. However, the two schools are different in the specific approaches to use the
canopy geometric information. In GO models, the information is used to derive “kernels” of the
bidirectional reflectance distribution function (BRDF), which allow the model to fit with observations in
a semi-empirical fashion. In contrast, the Stochastic RTE tries to preserve the law of energy conservation
and rigorously follows the radiative transfer formulation. As a cost, the Stochastic RTE inherits the
limitations of the 3D RTE and cannot resolve, at least to certain spatial scales, the “hot-spot” effects of
the canopy radiation regime [33]. We shall return to this topic in Section 6.

5. Canopy Spectral Invariants

The preceding sections have described the traditional algorithms to solve the RTE at a specific
wavelength (λ). In remote sensing applications we often need to obtain solutions at many wavelengths
to sample the (multiple or hyperspectral) bandwidth of the sensors. Do we have to iterate the process
for Iλ(x, Ω) at every wavelength? This question is the main concern of the spectral invariant theory
(Figure 1).

The idea underlying the spectral invariant theory is simple: The single albedo ω0(λ) is the only
parameter in the RTE of Equation (1) that depends on wavelengths, while all the other parameters
are determined by the structures of the canopy [52]. Therefore, we seek a formula to separate the
influence of ω0(λ) on the solutions of Iλ(x, Ω) at different wavelengths. There are multiple ways in
the literature [35,52,66] to derive the spectral invariants theory. Below we follow the SOSA approach
described in Reference [66], which represents the most general case and is the easiest to understand.
We will use the black-soil problem as the example, though the same methods can be applied to the “S”
problem as well [67].

Recall that the black-soil problem can be decomposed to successively collided problems, each of
which satisfies the Law of Energy Conservation. For instance, integrating the first-collision problem
over the spatial domain and the solid angles eventually leads to (Appendix A)

∫
δV

dxB

∫
Ω·n(xB)>0

Q1|Ω·n(xB)|dΩ +
∫

4π×V

σQ1dΩdx = ω0

∫
4π×V

σQ0dΩdx (23)
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or, by the norm notation [66],
‖ Q1 ‖ ρ+ ‖ Q1 ‖= ω0 ‖ Q0 ‖, (24)

where “‖ · ‖” and “‖ · ‖ρ” indicate the intercepted and the escaped (either being reflected or
transmitted) radiation energy, respectively. Equation (24) simply indicates that the portion (i.e., ω0) of
photons scattered from the first collision will either escape through the boundary or collide with the
canopy again.

Note that the stream-collision operator (L or L0) depends only on canopy structural parameters,
and the un-collided radiation field Q0 and the initial interceptance ‖ Q0 ‖ are therefore wavelength
independent. The first-collided radiation field Q1 (and thus ‖ Q1 ‖) is regulated by ω0(λ), but the ratios

p1 = ‖Q1‖
ω0‖Q0‖

q1 = ‖Q1‖r
ω0‖Q0‖

(25)

are also wavelength independent. Physically p1 represents the recollision probability that the scattered
photons will re-collide with the canopy again and q1 denotes the probability that the photos will escape
the canopy. Clearly p1 + q1 = 1, satisfying the conservation of energy.

Following the same idea, we normalize the radiation fields as

ek(x, Ω) =
Qk(x, Ω)

‖ Qk ‖
, k = 1, 2, . . . (26)

It is easy to see that ‖ ek(x, Ω) ‖ = 1 and they satisfy the standard RTE

pkω0ek = Tek−1. (27)

Equations (26) and (27) have clear physical interpretations: ek(x, Ω) represents the probability
density function that a photon scattered k times will arrive at x along the direction Ω. Therefore,
the operator T transforms the probability distribution of photons between successive orders of
scattering and evaluates their recollision probability [66]. Note that the factor ω0 is separated from
ek(x, Ω) so that the normalized radiation fields are indeed wavelength-independent.

Based on the above definitions we can re-write the solution of the black-soil problem as:

Iλ(x, Ω) =‖ Q0 ‖
(

∞

∑
k=0

Tk

)
Q0

‖ Q0 ‖
= i0

∞

∑
k=0

θk
kωk

0ek(x, Ω) (28)

where i0 =‖ Q0 ‖, θk =
√

p0 p1 p2 · · · pkk, and p0 = 1. Note that i0, θk, and ek(x, Ω) are all
wavelength independent.

In Equation (28) if the θk’s and the ek’s change little (i.e., invariant) over the order of scattering,
the equation can be significantly simplified. Fortunately, this is exactly what the spectral invariants
theory suggests: Based on a fundamental property established for the eigenvalues/eigenvectors of the
linear RTE operator T [68], the theory indicates that the RTE has a unique dominant eigenvalue γ∗

(or p∗ω0) that corresponds to a positive (and physically feasible) eigenvector e∗(x, Ω), such that

p∗ω0e∗(x, Ω) = Te∗(x, Ω). (29)

Therefore, if e0 = e∗(x, Ω), we will subsequently have ek = e∗(x, Ω) and θk = p∗, so that

Iλ =
i0e∗(x, Ω)

1− γ∗
=

i0e∗(x, Ω)

1− p∗ω0(λ)
. (30)

Although the set (pkω0, ek) derived by the SOSA method are generally different from the ideal
eigenvalue-eigenvector pair (p∗ω0, e∗), analyses show that they converge rapidly so that we only
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need a couple of (pk, ek) pairs to accurately represent the full solution of Equation (28). For instance,
Reference [66] uses a zero-order approximation to satisfactorily estimate the recollision probability p∗

and the initial interceptance i0 from field measured i(λ) and ω0(λ). A detailed analysis of the SOSA
approximation can be found in Reference [66] and earlier studies [69–72]. Consistent results are also
supported by simulations from Monte Carlo Ray Tracing (MCRT) models [73–75]. The key message is
that once we have estimated a few parameters and functions (pk, ek, and i0), the solution Iλ(x, Ω) can
be easily obtained with the knowledge of ω0 at any other wavelength (Figure 1).

The interpretation of the parameter p∗ as the recollision probability of photons by Reference [76]
represents an important contribution to the spectral invariants theory. It helps us develop a physical
intuition to the mathematical concept of the leading eigenvalue of the RTE and associate it with
measurable structural properties of vegetation canopies. Once established, the interpretation sees
immediate applications in scaling relevant canopy properties across different canopy hierarchies [32,74,76].
For instance, suppose p∗sh and p∗cr are the recollision probabilities of shoots and crowns, the overall p∗

parameter for the two-level canopy, resulting from a finite-state Markov process [67], naturally follows

p∗ = p∗sh + (1− p∗sh)p∗cr. (31)

Similarly, the apparent single scattering albedos of two levels of canopy structures (e.g., shoots
and crowns) are related by

ωcr =
ωsh
(
1− p∗sh

)
1− p∗shωsh

. (32)

It can be easily verified that the canopy scattering albedo W can be represented by either ωcr or
ωsh [76]:

W =
ωcr(1− p∗cr)

1− p∗crωcr
=

ωsh(1− p∗)
1− p∗ωsh

. (33)

Therefore, the single albedo of a higher level structure (e.g., ωcr) totally encapsulates the scattering
properties of the lower level structures (e.g., ωsh). The overall scattering coefficients of the crown
(or the canopy) will not change if we replace the shoots (needles) with broadleaves of the same
(apparent) single albedo. This property suggests that we can use the same set of simulation results
(i.e., Look-Up Tables) to retrieve effective structural parameters for both clumped and non-clumped
canopies. Additionally, the scaling rules of the recollision coefficients and the scattering coefficients are
often associated with changes in spatial scales. They can be used to generate consistent products from
satellite sensors operating at different spatial resolutions [77,78]. A detailed review of the physical
interpretation of the p∗ parameter, its links with measurements, and the scaling rules can be found in a
recent review by Reference [45].

In practice, the recollision probability (p∗) of a vegetation canopy can be estimated from field
measurements of canopy reflectance, absorptance, transmittance, and single-scattering albedo [66,72].
In remote sensing applications, the common measurements of the surface after atmospheric corrections
are the bidirectional reflectance factor (BRF). Therefore, it is desirable to derive a relationship between
BRFs and the spectral invariant parameters. Note that under the assumption that the irradiance of
the incoming solar radiation is unity, the BRF is just the averaged top-of-canopy radiance (Equation
(28) or Equation (30) for the ideal case) multiplied by a constant factor (π). The desired relationship is
thus [52]

BRFλ(Ω; Ω0) =
πpA〈e(xB, Ω)〉xB

i0
1− pA

·ω0(λ)(1− pA)

1−ω0(λ)pA
, (34)

where 〈·〉xB
denotes spatial average over the canopy boundary xB, and pA denotes the effective

recollision probability. In Equation (34) we have neglected the un-collided component of the radiance,
as it does not contribute to the reflectance.
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In Equation (34) the first term on the right side combines the recollision probability (pA),
the interceptance (i0), and canopy escape probability (qA = πpA〈e(xB, Ω)〉xB

), all being spectral
invariant. We define this term the Directional Area Scattering Factor (DASF) [52,79],

DASF(Ω; Ω0) =
qA(Ω; Ω0)i0(Ω0)

1− pA
, (35)

which can be understood as the BRF for a purely reflective canopy (e.g., ω0 = 1). The second term on
the right side of Equation (34) is just the canopy scattering coefficient W in Equation (33). Therefore,
BRF is succinctly represented by the product of DASF and the canopy single scattering albedo W.

An important feature of DASF is that it is measurable from both field observations and satellite
remote sensing data. When ω0(λ) is known, DASF can be easily estimated from ground measurements
of spectral BRF using the inverse linear regression method [66]. In remote sensing applications where
ω0(λ) is difficult to obtain, Reference [49] developed an algorithm to retrieve DASF from BRF between
710 nm and 790 mm with an intrinsic leaf scattering spectrum v0(λ), where v0(λ) is computed with
theoretical models. A key component of the algorithm is to use the scaling rule of Equation (33) to
estimate ω0(λ) from v0(λ) with a within-leaf recollision probability pL, an intermediate variable that
is later cancelled from the calculation. The algorithm is recently used in Reference [80] to derive a
global DASF map from the GOME-2 (Global Ozone Monitoring Experiment-2) data.

Of the above spectral invariant parameters, only p∗ is an intrinsic property of the canopy while
the others (i0, pA, qA and DASF) are influenced by the external illumination conditions. The values of
these parameters generally change with the direction of the incident beam (Ω0). Indeed, the directional
illumination has an important effect on the angular signature of canopy BRF (and DASF), which we
review in the next section.

6. The “Hot-Spot” Problem

In optical remote sensing, the term “hot spot” refers to the phenomenon that the canopy reflectance
has a sharp peak in the retro-illumination direction. The main physical mechanism of the phenomenon
is the mutual shadowing of the canopy elements. This is because shadows are invisible from the
backscattering direction but become increasingly visible when the view and the illumination angles
deviate away from each other [33,36].

It is known that the classic RTE has difficulties simulating the hot-spot effects. This is because the
stream-collision operator, which follows the Beer’s law, is essentially formulated for gaseous media
where the spatial distribution of the scatters is statistically independent at all spatial scales [34]. On the
contrary, leaves have finite sizes and their spatial distributions are intrinsically correlated at a certain
level. To illustrate the difference between the two cases, we consider a conceptual experiment that a
purely absorptive (ω0 = 0) canopy bounded below by a perfect mirror (ρλ = 1) that is positioned to
reflect the nadir incident photons back along the same paths they come from (i.e., the retro-illumination
direction). Let the optical depth of the canopy be σ and the intensity of the radiation beam be 1.
Under the gaseous media assumption, the intensity of the reflected radiation beam at the top of
the canopy will be exp(−2σ), attenuated by the same fashion on the incident and the return paths.
For finite-sized leaves, the intensity of the reflected radiation will be exp(−σ), for all the photons that
reach the lower surface (i.e., mirror) are guaranteed a free path to travel through the canopy on the
way back.

The above example suggests that, due to the effects of mutual shadowing, the canopy
extinction cross section in the backscattering direction σ(x,−Ω0) appears to be smaller than those
of other directions. Therefore, previous efforts to model the hot-spot phenomenon focused on
developing a function H(x, Ω, Ω0) to regulate the cross section σ(x, Ω), especially for the first collision
component [33,81–83]. However, the incorporation of H(x, Ω, Ω0) in the RTE is equivalent to the
introduction of an additional source term in the equation. As a result, the solution no longer satisfies
the law of energy conservation [35].
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Recently, Reference [79] developed a new algorithm that uses the spectral invariant theory to
model the spectral BRF of vegetation canopies in the hot-spot region. A key idea of the algorithm is to
decompose the canopy into sun-lit and sun-shaded leaf area, where the former is referred to as the
“stochastic reflecting boundary” and the latter as the “interior” of the canopy. Photons escaping from
the sun-shaded leaf area must have gone through multiple scattering. Thus, their escape probability
approximately converges to a certain value, qiso(Ω). Photons reflected from the sun-lit leaf area that
is visible from the direction Ω can escape with a unit probability. Thus, their conditional escape
probability, qlit(Ω; Ω0), is expected to be higher than qiso(Ω). Therefore, we need to evaluate their
contribution to the canopy directional escape probability qA(Ω; Ω0) separately. Let h(Ω0, Ω) represent
the correlation between the sun-lit and the visible leaf areas. The probability qA(Ω; Ω0) is therefore
composed of two components that is weighted by h(Ω0, Ω) as

qA(Ω; Ω0) = [1− h(Ω0; Ω)]qiso(Ω) + h(Ω0; Ω)qlit(Ω0; Ω). (36)

Similarly, we can decompose DASF and BRF by contributions from the interior leaves and the stochastic
boundary separately [79].

In the above equation qlit(Ω0; Ω) can be evaluated from canopy structural properties and qiso
can be estimated with the classic RTE [79]. Therefore, if the correlation function h is known, we can
estimate qA. Conversely, if qA is known, we can estimate the correlation function h as [79]

h(Ω; Ω0) =
qA(Ω; Ω0)− qiso(Ω)

qlit(Ω; Ω0)− qiso(Ω)
. (37)

The current algorithm of Reference [79] uses the latter approach to evaluate correlation coefficient
h(Ω0; Ω) with a stochastic RTE (Section 3) that is modified to incorporate an additional hot-spot
parameter cHS [36]. The stochastic RTE needs to run twice, with an actual cHS and with a zero value,
respectively, in order to evaluate qA(Ω; Ω0) and qiso(Ω) [79].

The algorithm of Reference [79] has two main benefits. First, some of the intermediate results are
easy to verify with field measurements. For instance, the visible fraction of leaf area (VFLA) can be
estimated with below canopy measurements of transmittance t0(Ω) as [79]

VFLA(Ω) =
1− t0(Ω)

|ln(t0(Ω))| =
i0(Ω)

|ln(t0(Ω))| , (38)

and the canopy DASF under isotropic illumination conditions (an approximation for the interior
canopy component) can be estimated as [79]

qiso(Ω)i0(Ω0)

1− piso
≈ i0(Ω)i0(Ω0)

2·idi f
, (39)

where idi f is the canopy interceptance under the isotropic sky radiation [84]. These relationships
provide a set of convenient tools to validate the solutions.

Second and more importantly, the spectral invariants relationships do not necessarily depend on
the formulation of the classic RTE but are supported by both observations and the simulation results
of MCRT models, whose formulation does not require Beer’s law at all [85]. Therefore, the spectral
invariants relationships may conserve energy and capture the hot-spot phenomenon at the same
time. Reference [79] illustrates this potential with a simple stochastic Monte Carlo model. Though the
algorithm is still subjected to further examinations and refinements in the future, it introduces a new
and promising perspective to address the old challenge.
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7. Summary

This paper reviews developments of the radiative transfer theory in optical remote sensing of
terrestrial vegetation, including the decomposition of the black-soil (BS) and the soil (S) problems,
the development of the stochastic RTE, the theory of spectral invariants, and the latest effort to address
the “hot-spot” challenge. The first three topics are centered around the idea as how to simplify the
solutions of the RTE under different boundary conditions (e.g., soil reflective properties), over full
3-dimensional spatial domains, and with regard to radiation at different wavelengths. The last topic is
intended to highlight the advantage of the spectral invariants theory in remote sensing applications.

As the RTE is linear as regard to Iλ, a fundamental strategy to solve the equation is decomposition
and superposition. The separation of the black-soil and the soil problems, the expansion of Neumann’s
series, and the method of successive orders of scattering approximation discussed in Section 3 are all
demonstrations of this strategy. The concept of invariants, the convergence of the radiation field to a
certain distribution that does not change (except for the magnitude) over subsequent scattering, is also
a natural result that follows the line of thinking. The existence of such a unique intrinsic solution is
backed by the mathematical theories of eigenvalues/eigenvectors of the RTE and the physical law of
energy conservation.

Another important thread of developments in the Stochastic RTE and the spectral invariants
theory is to efficiently represent the canopy structural or geometrical information in the equation.
The stochastic RTE introduces a pair-correlation function K(z, z′, Ω), which describes the probability
of simultaneously finding leaves at two locations (z, z′) along the direction Ω. It characterizes the
heterogeneity and anisotropy characteristics of the canopies and regulate the corresponding cross
sections (σ and σs). Therefore, the function provides a natural and physically meaningful measure of
3D canopy structural properties over a range of scales.

The spectral invariants theory further simplifies the representation of canopy structural
characteristics to a single wavelength-independent parameter p∗, which defines the recollision
probability that a scattered photon will interact with the canopy again. Once p∗ (and the corresponding
escape probability function) is estimated, we can accurately approximate the solution (radiance
or BRF) of the RTE at any other wavelength with the knowledge of ω0(λ), which imbues the
wavelength-dependent influence on the radiation field. As p∗ represents recollision probability,
it can be used to scale canopy properties (e.g., scattering coefficients) across various canopy hierarchies
or spatial scales.

Although the pair-correlation function K(z, z′, Ω), the photon recollision probability p∗, and the
other spectral invariants functions/parameters such as DASF appear to be “abstract,” they all can be
estimated from field measurements or remote sensing data. For instance, the pair-correlation function
can be derived from high-resolution satellite images and lidar data. The recollision probability of a
vegetation canopy can be determined from field measurements of canopy reflectance, absorptance,
transmittance, and single-scattering albedo with simple linear correlations. DASF can also be retrieved
directly from ground measurements or hyperspectral remote sensing data between 710 nm and 790 mm
for dense vegetation in a similar fashion. These concepts, backed by rigorous mathematical analysis
and physical principles, thus represent our current best understanding of the empirical relationships
identified from observations.

The spectral invariants theory also provides a promising approach to solve the “hot-spot” problem
known to the classic RTE models. This challenge has its roots in the formulation of the equation based
on the turbid medium assumption and Beer’s law. On the contrary, leaves are finite sized and their
spatial correlations cannot be neglected. Previous efforts to address this problem usually introduce a
semi-empirical factor to regulate the extinction cross section in the equation, which however violate the
law of energy conservation. A new algorithm was recently developed to address the challenge based
on the spectral invariants theory. The algorithm decomposes the canopy into a reflective boundary
and interior points and models the escape probability (and DASF) for the two components separately.
The directional escape probability from the reflective boundary is assumed to be unity, a feature that
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cannot be simulated by the classic RTE. As such, the new approach does not depend on the Beer’s law
formulation in the RTE but satisfies the law of energy conservation. This example further demonstrates
the spectral invariants theory as a powerful tool in optical remote sensing applications.
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Nomenclature

γL(λ, x, Ω→ Ω′, ΩL) Leaf element scattering phase function
θk Geometric mean of photon recollision probabilities, i.e.,

√
p0 p1 · · · pkk

λ Wavelength
µ Cosine of zenith angle of direction Ω
σ(x, Ω) Total extinction coefficient (or cross section)
σS(λ, x, Ω→ Ω′) Differential scattering coefficient (or cross section)
ω0(λ) Single scattering albedo
ΩL Leaf normal direction vector
Ω, Ω′ Incident and scattered radiation direction vectors, respectively
gL(x, ΩL) Leaf normal distribution function
i0(Ω0) Canopy interceptance
p∗, pA Theoretical and effective photon recollision probability, respectively
q(Ω; Ω0) Photon escape probability density function
uL(x) Leaf area density distribution function
BRF Bidirectional reflectance factor
DASF Directional area scattering factor
E Identity operator
Iλ(x, Ω) Monochromatic radiation intensity (radiance)

K(z, z′, Ω)
Conditional pair correlation functions of finding leaf elements at locations z and z′

along Ω simultaniously
L Streaming-collision operator
Qk The k-th collided component of radiation field
Sλ Scattering operator
T Integral operator defined as L−1

0 Sλ

U(z, Ω) Horizontal mean radiation intensity averaged over vegetated area
〈·〉 Horizontal average operator

‖ · ‖, ‖ · ‖ρ
Integral norm operator that indicates the intercepted and the escaped radiation
energy, respectively.

Appendix

Appendix A.1 Definitions of the Canopy Structural Parameters

The leaf albedo is mathematically defined as

ωL(λ, x, Ω, ΩL) =
∫

4π

γL(λ, x, Ω→ Ω′, ΩL)dΩ (A1)

the total extinction coefficient (or cross-section) is

σ(x, Ω) =
uL(x)

2π

∫
2π+

gL(x, ΩL)|Ω·ΩL|dΩL (A2)
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and the differential scattering cross-section is

σS(λ, x, Ω→ Ω′) = uL(x)
2π

∫
2π+

gL(x, ΩL)|Ω·ΩL|γL(λ, x, Ω→ Ω′, ΩL)dΩL (A3)

As photons scattered from one direction provide sources for radiation in other directions, the two
cross-section terms are closely related by

∫
4π

σS(λ, x, Ω→ Ω′)dΩ′ = ω0(λ, x, Ω)σ(x, Ω) (A4)

where ω0(λ, x, Ω) is the single scattering albedo, which is usually defined as an average to the leaf albedo

ω0(λ, x, Ω) =

∫
2π+ gL(x, ΩL)|Ω·ΩL|ωL(λ, x, Ω, ΩL)dΩL∫

2π+ gL(x, ΩL)|Ω·ΩL|dΩL
(A5)

For simplicity, in the paper we further made the following assumptions

ω0(λ, x, Ω) = ω0(λ),
σ(x, Ω) = uL(x)σ(Ω),

σS(λ, x, Ω→ Ω′) = ω0(λ)uL(x)σS(Ω→ Ω′).
(A6)

Note that ω0 is only a variable of spectral wavelength while σ(Ω) and σS(Ω→ Ω′) are spatially and
spectrally independent.

Appendix A.2 Derivation of Equation (23)

Integrating the first-collision problem over the spatial domain and the solid angles leads to

∫
4π×V

L0Q1dΩdx =
∫

4π×V

SQ0dΩdx (A7)

By Stokes’ Theorem, ∫
4π×V

Ω·∇Q1dΩdx =
∫

δV

dxB

∫
4π

Q1|Ω·n(xB)|dΩ (A8)

where δV represents the boundary of the domain. As the incoming radiation (i.e., Ω·n(xB) < 0) in the standard
problem is zero, Equation (A7) thus becomes

∫
δV

dxB

∫
Ω·n(xB)>0

Q1|Ω·n(xB)|dΩ +
∫

4π×V

σQ1dΩdx =
∫

4π×V

SQ0dΩdx (A9)

By the definition of the scattering operator (Equation (2)), we have

∫
4π×V

SQ0dΩdx =
∫

4π×V

∫
4π

ω0(λ)σS(x, Ω′ → Ω)Q0(x, Ω′)dΩ′ dΩdx

=
∫

4π×V

∫
4π

ω0(λ)σS(x, Ω′ → Ω)Q0(x, Ω′)dΩ dΩ′ dx

= ω0(λ)
∫

4π×V
σQ0 dΩ′ dx

(A10)

In the last step of Equation (A10) we used the relationship from Equation (A4). As the integration is
performed over all solid angles (i.e., 4π), we can safely exchange Ω′ with Ω and thus obtain Equation (23) in the
main text.
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Appendix A.3 Energy Conservation between pA and qA

Integrating the effective directional escape probability density function over all the out-scattering directions
Ω, we have

1
π

∫
4π

qA(Ω; Ω0)|µ|dΩ = (1− pA)
∞

∑
k=1

(
1
π

∫
4π

qk(Ω; Ω0)|µ|dΩ
)

θk−1
k−1 (A11)

By Equations (25) and (35),
1
π

∫
4π

qk(Ω; Ω0)|µ|dΩ = qk = 1− pk (A12)

where qk on the right-hand-side of the equation is the k-th escape probability. Substituting it into Equation (A11),
we have

1
π

∫
4π qA(Ω; Ω0)|µ|dΩ = (1− pA)∑∞

k=1(1− pk)θ
k−1
k−1

= (1− pA)∑∞
k=1

(
θk−1

k−1 − θk
k

)
= 1− pA

(A13)

In the last step of Equation (A13) we used the fact that θ0 = p0 = 1 (Equation (28)).
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