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ABSTRACTS 

Curious food procurement in the eastern North Pacific Kyphosidae 

by 


Clinton J. Moran 

Masters in Marine Science 


California State University Monterey Bay, 2011 

Chapter 1: 

Prey capture kinematics have been thoroughly described for many suction-feeding 
fishes. This is not the case for biters and scrapers. Girella nigricans, a temperate 
kyphosid, is known to be an herbivore often scraping or picking microalgae from rocky 
substrate. The aims of this study were to quantify the kinematics of two feeding 
behaviors exhibited by G. nigricans. A scraping behavior was elicited by allowing G. 
nigricans to scrape from a block of brine shrimp gelatin and a picking behavior was 
elicited by allowing G. nigricans to feed on Ulva spp. Measured kinematic variables were 
cranial elevation, lower jaw rotation, premaxillary protrusion, premaxillary rotation, gape 
maximum, and intramandibular rotation. Intramandibular rotation was described as any 
rotation around the articulation between the articular and the dentary. Significant 
differences in feeding kinematics were seen for every kinematic variable except 
premaxillary rotation. During feeding events it became apparent that G. nigricans does 
not use, or has lost, the ability to suction feed. When feeding on non-attached diet items 
they approached their prey with their gape wide open until the prey was in their mouth, 
likely to reduce the bow wave created in the water. The lack of suction during feeding 
and the presence of the IMJ has led to the conclusion that G. nigricans is a specialized 
scraper. 
Chapter 2: 

Herbivory in marine fishes has been studied at the ecological and physiological 
level but less so at the physical level of algae removal. Previous works conducted on 
algae scrapers have noted the presence of feeding structure novelties such as the 
intramandibular joint. The intramandibular joint allows for an increased force produced 
by the jaw along with an increased residence time of the tooth-bearing surface on the 
scraped substrates. This study focused on the three species of common eastern North 
Pacific kyphosids, the scraper; Girella nigricans, the grazer; Hermosilla azurea, and the 
picker; Medialuna californiensis. Theoretical jaw force production was calculated using 
the program Mandiblever and comparisons were made among species. Girella nigricans 
had a higher theoretical bite force per unit length than any other species studied. The 
mechanical advantages for adductor mandibulae two ofH. azurea and G. nigricans were 
not different from one another but both were higher than M. californiensis. This was not 
the case for adductor mandibulae three as M. californiensis was higher than H. azurea 
and G. nigricans, which did not differ from each other. The deep jaw structure and the 
presence of the IMJ in G. nigricans set this species apart as a specialized scraper. The 
separation of each species based on physiological cross-sectional area of the adductor 
mandibulae two and three and the theoretical force produced during the course of a bite 
suggests these three species in the family Kyphosidae remove algal dietary items 
differently. 
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CHAPTERl 

KINEMATICS OF HERBIVOROUS FEEDING 


IN THE EASTERN NORTH PACIFIC 


KYPHOSID GlRELLA NIGRICANS 


INTRODUCTION 

Suction feeding, the basal mechanism for fish prey capture, is a subject that has 

now been well-studied from the perspective ofhow fish capture their food in the aquatic, 

viscous medium they inhabit (e.g., Alexander 1967, Osse and Muller 1980, Muller et aL 

1982, Motta 1984, Lauder 1985, Wainwright and Shaw 1999). This mechanism has 

afforded fishes tremendous successes with feeding on items both in the water column and 

on or in biotic and abiotic habitats. Less well understood are the feeding methods 

associated with biting and scraping, which allow fishes to feed on attached diet items 

(Alfaro et al. 2001, Konow et al. 2008, Hernandez et al. 2009, Ferry-Graham and Konow 

2010). Anatomical changes, such as those that allow for increased contact of the teeth 

with the substrate, are common, and have been studied in the Cichlidae (Liem 1980, 

Bouton et al 1998), the Cyprinodontiformes (Hernandez et al. 2009), the Girellidae 

(Ferry-Graham and Konow 2010), and the Pomacanthidae (Konow and Bellwood 2005). 

One anatomical novelty that has evolved independently in many lineages of 

scraping fishes is the intramandibular joint (lMJ). Typically located between the dentary 

and articular, the intramandibular joint allows for dorsal bending within the lower jaw 

that is not seen in most fish species. Fishes that feed on epiphytic diet need to apply the 

tooth-bearing surface directly to hard surfaces upon which these diet items grow. As the 

jaw closes, rotation around the intramandibular joint occurs (Gibb et al. 2008). This is 
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thought to increase the maximum gape and allow for a larger tooth-bearing surface to be 

in contact with the feeding substrate for a longer period of time, in comparison with 

species without this joint. Other theoretical advantages of the IMJ include a more shallow 

body angle when feeding on the benthos for increased predator detection and the ability 

to maintain the ability to suction feed while also being able to scrape (Gibb et aL 2008). 

In the eastern North Pacific, specifically off the coast of California, a rich algal 

food source of green~ red and brown algae is available along with various forms of 

microalgae covering the substrate in the intertidal and subtidal (Barry and Ehret 1993). 

Of the subtidal fishes there, only two families exploit this eastern North Pacific 

temperate/subtropic herbivorous food source, the Embiotocidae and the Kyphosidae 

(Hom 1989, Barry and Ehret 1998). Members of the Embiotocidae are considered to be 

multivorous, often ingesting algae incidentally while picking invertebrates from the 

substrate. The Kyphosidae, however, are considered to be primarily herbivorous with 

multivorous feeding occurring only in the early stages oflife (Barry and Ehret 1993, 

Harris et al. 1984). The subfamily Girellinae is made up of 18 species that span the globe 

primarily occupying sub-tropical and temperate waters (Yagishita and Nakabo 2003). 

The herbivorous Girella nigricans, a member of the Girellinae and Kyphosidae, is 

the focal species for this study. As juveniles and sub-adults, these fish occupy both 

intertidal and shallow subtidal habitats with a geographic range from central Baja 

California to Monterey Bay in central California (Eschmeyer et al. 1983). During this life 

history stage, G. nigricans feeds on both plant and animal diet items. As adults these fish 

are exclusively herbivorous feeding on both micro- and macro-algae (Norris 1963, Barry 

and Ehret 1993, Behrens and Lafferty 2006). Based on field observations and diet studies, 
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G. nigricans have been described as scrapers and biters feeding on the microalgae from 

the benthos and leafy algae suspended in the water column (Barry and Ehret 1993, 

Behrens and Lafferty 2006). Girella nigricans has an IMJ which allows it to effectively 

scrape the micro- and small macro-algae from the rocks in the subtidal and up into the 

intertidal. This is done by a flat tooth-bearing surface being applied to the substrate 

during feeding facilitated by the IMJ. 

The goals of this study were twofold, to describe the: 1) kinematics; and, 2) the 

morphology of G. nigricans during feeding. Specifically, in the laboratory I was 

interested quantifying differences in feeding kinematics elicited by two very different diet 

items, brine shrimp gelatin and VIva sp., which I hypothesized would induce differing 

degrees of IMJ activation. I then describe the morphology that facilitated the jaw rotation 

observed in G. nigricans and comment on its functional significance. 

MATERIALS AND METHODS 

Feeding 

Ten specimens of G. nigricans ranging from 9-14 cm standard length (SL) were 

collected using rod and reel in Santa Barbara, California. Once captured, the fish were 

placed in 50-gallon ice chests with a small amount of ice (to slow metabolic rate) for 

transport to Moss Landing Marine Laboratories (MLML). Once at MLML the fish were 

held in individual 10-gallon aquaria with flow-through seawater. All fish were taken 

under the California Department ofFish and Game permit number 9932 and were held 

and studied under San Jose State University IACUC protocol number 814. 

Prior to recorded feeding events, the fish fasted for 48 hours to standardize 

willingness to feed. Videos were recorded laterally at 250 frames S·l with a Fastec 
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handheld high-speed video camera. Illumination was created by two 650-watt lights. A 

ruler was placed behind (approximately 5.0 cm) the tanks for scale. 

The most consistent way to elicit a scraping behavior was to present the fish with 

a rectangle of Brine Shrimp gelatin. Brine shrimp was mixed in with K-Knox gelatin 

before the gelatin hardened. Hardness of the gelatin was controlled by the amount of 

water that was mixed in with the gelatin. A mixture of 10.0 g of gelatin and 100 ml of 

boiling water, with 5.0 g ofbrine shrimp, was prepared and allowed to harden. Optimal 

hardness was evaluated by the ability of a fish to remove a small amount of gelatin during 

the scrape without any part of the jaws disappearing from the lateral view of the camera. 

Rectangles were approximately 43.0 X 28.0 X 1.5 cm and were attached by threading the 

block to plastic mesh that was clamped to the side of the tank. Three videos were taken 

from each fish for a total of 30 videos for the gelatin feeding event. 

To compare the scraping behavior to a bite and tear method of food procurement, 

the leafy green alga VIva was chosen. VIva was collected from the Moss Landing jetty 

and transported back to Moss Landing Marine Laboratories. These algae were stored in 

flow-through seawater tables until needed for feeding events. In preparation for such 

feeding events, the VIva was attached to plastic mesh using a needle and thread. The 

plastic mesh was then clamped to the side ofthe tank. The algae needed to be attached to 

ensure the bite took place in the field ofview but it was not attached in such a way that 

would elicit a scraping behavior. The leafy edges of the algae were suspended in the 

water which would allow for a bite and tear. Three videos were taken of each fish for a 

total of 30 videos for the VIva feeding event. 
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Kinematic variables were extracted from the video images using NIH Image J. 

Measured kinematic variables included: maximum gape; premaxillary protrusion and 

rotation; cranial elevation; lower jaw depression; and intramandibular rotation (Fig. 1) 

(Konow and Bellwood 2005). Feeding events were analyzed and averaged to yield an 

average kinematic profile for both the gelatin and Uiva feeding events. Time zero was 

designated as the frame prior to jaw opening. Variables were measured every four frames 

which represented 0.016 s between measurements. The end of the feeding event occurred 

when the jaw had been fully retracted. Angular variables were evaluated by their 

variation from the resting or closed position. Linear variables were standardized to head 

length. In keeping with previous studies of fish feeding kinematics, an attempt to quantify 

the typical motions seen during suction feeding, such as hyoid depression and opercular 

rotation was made (sensu Motta 1984, Ferry-Graham and Lauder 2001). 

To test for significant differences between the kinematics elicited by the two food 

types a Principal Components Analysis (PCA) was used. Kinematic maxima were 

averaged within an individual for every variable. The outcome was 10 average maxima 

for each kinematic variable on both diet items. Principal components (PCs) were retained 

if they accounted for 2: 10% of the total variation. Variables were considered as 

informative with respect to their PCs if they had a loading score 2: 0.500. When creating 

the scatter plots, the factor scores were averaged S.B.). Comparisons between Uiva 

and gelatin-feeding events and their average factor scores were done using a single 

Analysis of Variance (ANOVA). Homogeneity of variances were tested with a Levene's 

test and normality was tested using a Kolmogorov-Smimov Test. 
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Anatomy 

The morphological portion of this study was conducted on frozen and defrosted 

specimens. Once defrosted, the fish were manipulated and drawn by hand. A ruler was 

used to ensure consistent proportionality throughout the figures. Once drawn by hand, the 

sketches were traced in Adobe Illustrator CS3. I was specifically interested in the 

mechanisms for jaw opening and jaw closing. Along with normal jaw structure I also 

looked for novelties that would potentially distinguish scrapers from suction feeders. 

RESULTS 

Feeding 

When G. nigricans approached both dietary items, they did so in a similar 

fashion. The gape was opened to maximum well before contacting the dietary item. 

While the gape was opened, they closed the distance (~l.O cm) on the diet item and 

finished the bite once in contact with it. Prior to contact with the dietary item, the 

premaxilla and dentary formed a flat tooth-bearing surface. Although approaches 

initially looked similar, procurement kinematics differed between gelatin- and Ulva­

feeding events (Fig. 2). On average, cranial elevation maxima were higher when G. 

nigricans fed on Ulva (approximately 2°). Maximum cranial elevation was reached 

around the same time during the course of a feeding event for both diet items (Fig. 2 A.). 

Larger lower jaw rotation was seen in the gelatin-feeding events (approximately 10°), 

however, again the maxima were reached at roughly the same time during the bite (Fig. 2 

B.). Larger premaxillary rotation was observed when G. nigricans fed on the gelatin 

dietary item when compared to feeding events on Ulva (approximately 10°). Average 

premaxillary rotation reached a peak in Ulva feedings prior to the peak seen in gelatin 
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feeding events (Fig. 2 C.). The range of average maximum premaxillary protrusions for 

both diet items combined was 11.00% - 12.00% (Fig. 2 D.). On average, when G. 

nigricans fed on the gelatin block they utilized a larger gape when compared to feeding 

on Viva (Fig. 2 E., approximately 0.15 ratio to HL). Flexion around the intramandibular 

joint only occurred when the fish scraped from the gelatin block with an average of 16° 

of rotation (Fig. 2 F.). 

Principal component one (PCI) accounted for 34.5% of the variation in my data 

set. PCl had significant component loadings for lower jaw rotation (0.789) and gape 

distance (0.816). Principal component two (PC2) accounted for 28.4 % of the variation in 

my data set. PC2 had significant loadings ofcranial elevation (0.809) and premaxillary 

protrusion (0.598). Principal component three (PC3) accounted for 13.04% of the 

variation in my data set. PC3 included premaxillary rotation (-0.840) alone. Based on the 

results of the ANOV A conducted using the factor scores as variables, gelatin- and Vlva­

feeding events differed significantly for PCl (p< 0.05, F=7.629) and PC2 (p<0.005, 

F=11.209) but not for PC3 (p>0.5, F=0.345) (Fig. 3 and 4). 

Qualitatively, G. nigricans displayed ram-feeding behavior on both diet items, 

producing little to no observable suction during feeding events. Small amounts of suction 

were detectable in some (but not all) Viva-feeding events, but only at the moment that the 

leafy portions of Viva were crossing the plane ofthe open mouth. There were no obvious 

regions of cranial expansion in G. nigricans during prey capture. 
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Anatomy 

In all of the videos it was apparent that G. nigricans was using a ram feeding 

method of feeding and that jaw opening and closing was qualitatively different than that 

seen in suction feeders. Duringjaw opening, prior to making contact with the diet item, a 

large amount of premaxillary rotation but almost no premaxillary protrusion was seen. 

This rotation was facilitated by potentially unique soft tissue in conjunction with the 

typical bony elements. 

In G. nigricans, the medial base of the maxilla connects with the articular in a 

manner similar to a ball and socket joint. When the lower jaw rotates ventrally the 

articular rotates in the anterior direction forcing the maxilla toward the anterior of the fish 

(Fig. 5). Along with the resting position of the maxilla, there is connective tissue that 

connects the medial face of the base of the maxilla to the lateral face of the articular (Fig. 

5 A., B., C.). The material properties of this tissue are unclear, but rotation in the maxilla 

is facilitated by this piece of tissue. Because the tissue between the maxilla and 

premaxilla is relatively stiff, movement seen in the maxilla translates to movement in the 

premaxilla. I also observed a tissue that assists in the last approximately 25% of 

premaxillary rotation during jaw opening (Fig 5 C.). Once the mouth is open to about 

75% of maximum gape, the dentary and articular rotate further while tightening a 

connective tissue that connects the dentary to the base of the premaxilla. As the dentary 

rotates, this tissue tightens and pulls the base of the premaxilla forward creating a flat 

tooth-bearing surface on the diet item. During closing, this flat surface is maintained 

through rotation of the dentary around the 1M] (Fig 6). 
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Based on the results seen in Fig. 2 F. and this dissection I concluded that the 1M] 

is a passive joint. There appeared to be no musculature associated with rotation of the 

dentary around the articular. The video suggests that no intramandibular rotation occurred 

during Ulva feeding events. Intramandibular rotation only occurred when a force was 

applied to the tip of the dentary. 

DISCUSSION 

During scraping events, G. nigricans displayed a feeding behavior similar to that 

seen in a typical ram feeder. While utilizing maximum gape in most strikes on the 

gelatin, G. nigricans attacked the gelatin with all kinematic variables at their maxima. 

1M] activity was seen during the scrape as the fish drew its mouth closed (Fig 2 F.). 

Rotation around the 1M] allowed for a larger tooth-bearing surface on the diet item for a 

longer period of time when compared to scrapers without the joint. Based on Fig. 2 D, 

very minimal amounts of premaxillary protrusion occurred throughout most of the bites. 

F or a scraper, this is very important. If the jaws were to protrude, the force that G. 

nigricans could apply to the substrate would be less than if there was no protrusion. By 

having very little distance between the premaxilla and the body, the fish can provide 

force to the scrape with the body rather than just the jaws. Instead of the force ofthe bite 

now being completely controlled by the jaws there is a significant contribution provided 

by lateral movement of the caudal fin. 

Based on the current study and video from Ferry-Graham and Konow (2010), it 

was clear that G. nigricans has lost the ability to produce suction during feeding events. 

Ferry-Graham and Konow (2010) offered their fish brine shrimp suspended in the water 

column and they produced very little suction. This result was similar to that seen in this 
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study with VIva-feeding events. Suction only occurred once the diet item was 

approximately halfway into the mouth. It is possible that this suction could simply be a 

product of the fish opening its mouth in water. Their feeding style on suspended algal and 

animal dietary items is similar to that seen in aquatic snakes (Drummond 1983, Alfaro 

2002). Aquatic snakes that cannot create suction during feeding, attack their prey with 

their gape held open to prevent a bow wave. Girella nigricans approached the suspended 

dietary item in a similar manner eliminating the effects of a bow wave on prey capture. 

Further evidence for the lack of suction during feeding events is the absence ofany 

recognizable pattern of cranial elevation, premaxillary protrusion, hyoid depression, or 

opercular rotation. All of these factors contribute to producing suction in the buccal 

cavity but are either absent or unrecognizable in G. nigricans. Based on these results, it is 

apparent that G. nigricans is specialized for scraping and has potentially lost the ability to 

generate the amount of suction necessary to feed on elusive mid-water prey. 

A number of morphological features of G. nigricans indicated that it has shifted 

towards an obligate reliance on scraping as a mechanism of food procurement. The most 

pronounced morphological modification is the deep jaws (taller than they are longer), 

which facilitate large amounts ofjaw rotation. The amount of premaxillary rotation is 

also critical in a scraping bite, as it allows for a flat tooth-bearing surface that can be 

placed on the substrate. With the lower jaw apparatus, rotation of the 1M] during closure 

effectively matched rotation of the premaxilla (Fig.2). This coupled rotation around the 

1M] and rotation in the premaxilla further created a flat tooth-bearing surface which is 

critical for fishes that scrape (Gibb et aL 2008). The functional importance of a flat tooth­

bearing surface was lost when feeding on Viva, yet G. nigricans produced a similar flat 
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bite surface. This suggests that the modifications to the anatomy of G. nigricans have led 

to trade-offs in terms of suction feeding and scraping as the method of food procurement. 

Such trade-offs are not apparent for all scrapers and biters. Tropical wrasses and 

temperate greenlings, for example, have been shown to bite at attached prey while 

increasing suction production (Nemeth 1997, Ferry-Graham et a1. 2002). Yet, in G. 

nigricans, the changes described here allow them to take advantage of an abundant food 

source that is virtually untapped in the eastern North Pacific. 

CONCLUSION 

The truly herbivorous kyphosid, Girella nigricans, utilizes a slightly different bite 

depending on the diet item that they are feeding upon. Based on the kinematics of the 

feeding events, G. nigricans used a different bite when feeding on a diet item that must 

be scraped versus a diet item that was suspended in the water column. Even when a diet 

item was suspended in the water column, G. nigricans did not appear to use any type of 

suction. This is surprising as suction is the basal method of fish feeding. By investigating 

the morphology ofjaw opening and closing, it was confirmed that this species is highly 

adapted for scraping, with pronounced premaxillary rotation in addition to rotation 

around the IMJ. During jaw closure, rotation around the IMJ allows for a flat tooth 

bearing surface until the gape has been fully closed. Functionally, this allows more algae 

per bite than if the joint was not present in this species. 
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Figure 1: Images taken from a feeding event on Ulva by Girel/a nigricans. Represented 

are the measurements that were taken during all feeding events. (A) PP= premaxilla 

protrusion which was measured from the nasal to the tip of the premaxilla and 1= 

intramandibular rotation which was measured from the lower jaw articulation to the 

intramandibular joint to the tip of the dentary. (B) PR= premaxilla rotation which was 

measured from the nasal to the tip of the premaxilla to the base of the premaxilla and C= 

cranial elevation which was measured from the pectoral fin to the origin of the opercula 

to the nasal. (C) LJ= Lower jaw depression which was measured from the nasal to the 

lower jaw articulation to the tip of the dentary and Gmax= Gape maximum which was 

measured from the tip of the premaxilla to the tip of the dentary. 
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Figure 2: Average kinematic profiles for gelatin and Viva feeding events (n=30 for each). 

Black diamonds are gelatin-feeding events and grey squares are Viva-feeding events. A. 

Cranial elevation, B. Lower jaw rotation, C. Premaxillary rotation, D. Premaxillary 

protrusion. E. Height of gape during a feeding event, F. Intramandibular rotation. 
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Figure 3: A graphical representation of PC 1 and PC2. PCI is represented by lower jaw 

rotation and gape distance both of which increase in the positive x direction. PC2 is 

represented by cranial elevation and premaxillary protrusion both ofwhich increase in the 

positive y direction. Significant differences were seen for both PC 1 and PC2 between 

feeding events. 
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Figure 4: A graphical representation ofPC 1 and PC3. PCI is represented by lower jaw 

rotation and gape distance both of which increase in the positive x direction. PC3 is 

represented by premaxillary rotation which increases in the negative y direction. A 

significant difference was seen in PCI but not PC3. 
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Max 
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Art. 

Figure 5: Line drawings from defrosted G. nigricans. Drawings were done from the 

closed position (A.) from the halfway open position (B.) and the fully open position with 

the last 25% of jaw opening assisted by the rectangle (C.). The Circle between the 

articular and maxilla represents the piece of tissue that allows for rotation between those 

two jaw elements. The rectangular line connecting the dentary to the premaxilla 

represents a piece of connective tissue that when pulled tight by ventral rotation of the 

lower jaw creates anterior rotation in the maxilla and premaxilla unit. 
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Figure 6: Modified after Ferry-Graham and Konow 2010. A drawing of G. nigricans jaws 

with intramandibular rotation occurring around the IMJ. The grey section of the drawing 

represents where the jaw naturally opens to and the white portion represents where the 

jaw extends to during rotation. For this species rotation only occurred when a force was 

applied to the dentary. 
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CHAPTER 2 


THEORETICAL BITE FORCE PRODUCTION IN THE COMMON 

EASTERN NORTH PACIFIC KYPHOSIDAE 


INTRODUCTION 

Marine herbivorous fishes seem to playa considerable role in the biological 

formation and structure of shallow water reef habitats (Gaines and Lubchenco 1982, 

Hom 1989, Vial and Ojeda 1990, Clements and Choat 1997). We know a great deal about 

the mechanics of herbivory (sensu Wainwright (Lewis and Wainwright 1985, 

Wainwright 1988, Price et aL 2010), Westneat (Westneat 1990, Alfaro et a12001, 

Westneat 2003), and Bellwood (Purcell and Bellwood 1993, Mantyka and Bellwood 

2007, Konow et al. 2008, Hoeyand Bellwood 2010)). Also, the physiology of herbivory 

(Gaines and Lubchenco 1982, Hom 1989, Vial and Ojeda 1990, Harmelin-Vivien 2002, 

Moran and Clements 2002, Behrens and Lafferty 2007, Clements et al. 2009) and the 

ecological niche formed by herbivorous fish species in both the tropical and temperate 

realms (Barry and Ehret 1993, Harris et al. 2002, Perez-Matus et al. 2007) have been well 

described. 

However, at temperate latitudes, herbivorous fishes do not playas big of a role in 

the biological formation of reef structure, and many herbivorous niches appear to exist 

and are virtually untapped (Barry and Ehret 1993, Harmelin-Vivien 2002, Floeter et al. 

2004, Perez-Matus et al. 2007, Mora 2008, Clements et al. 2009, Tolentino-Pablico et al. 

2008). Multiple theories exist on the causes of this difference between the temperate and 

tropical regimes. The predominant idea is that algal material cannot be digested in cold 

temperatures due to the high amounts ofenergy it takes to break down a low quality diet 
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item (Clements et al. 2009). Low temperatures cause slow enzyme function, which slows 

digestion. As a result, low quality dietary items such as algal material are generally not 

consumed at high latitudes (Clements et al. 2009). Another prominent theory is that algal 

material is of a different composition at higher latitudes, and therefore may be tougher to 

remove from the substrate (Clements et aL 2009). Because of this theory, many (Liem 

1978, Purcell and Bellwood 1993, Ferry-Graham and Konow 2002, Konow et al. 2008, 

Ferry-Graham and Konow 2010) have investigated the mechanics of removing tough 

algal material. 

The mechanics of algal removal by fishes is ultimately limited to the simple 

problem of fish muscles exerting forces on fish bones (i.e., the lower jaw), and ultimately 

causing rotation around a joint (i.e., the jaw articulation; Westneat 2003). Thus, a lever 

approach can be used to model force production and the subsequent ability to remove 

such food items. In the feeding apparati of fishes, the variation between and within a 

species has made modeling of lever systems a dynamic area of research (Delsman 1925, 

Alexander 1967, Liem 1978, 1980; Lauder 1980, Wainwright and Lauder 1986, Westneat 

1990, 1991). Modeling is invaluable as it provides testable hypotheses of the connection 

between morphology and ecology, while expanding exploration of structural and 

physiological variation (Westneat 1995). Biting as a mode of prey capture is less 

common than other modes such as ram or suction feeding, and is often associated with an 

additional increase in muscular and skeletal complexity when compared to phylogenetic 

relatives that use ram or suction feeding (Alfaro et al. 2001, Wainwright and Bellwood 

2002, Ferry-Graham and Konow 2010). 
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Feeding structure complexity can be seen in both the musculature and bone 

structure of herbivorous fishes. Characteristics such as well developed adductor 

mandibulae muscles accompanied by robust jaw bones in benthic feeding wrasses, 

(Westneat 1994, Wainwright and Richard 1995, Ferry-Graham 2002) and the 

intramandibular joint (IMJ) in the girellids (Vial and Ojeda 1990), pomacanthids (Konow 

and Bellwood 2005), and acanthurids (Purcell & Bellwood 1993) are examples of how 

biters and scrapers use their herbivorous benthic prey array. The IMJ is a novelty joint 

that allows for rotation between the articular and dentary. Flexion about this joint allows 

for increased performance of the feeding apparatus both in the form of force production 

and increased time of the tooth bearing surface contacting the diet item (Ferry-Graham 

and Konow 2010). 

In the temperate eastern North Pacific, a few intertidal and subtidal fish families 

such as the Kyphosidae, Pholidae, and Stichaeidae, have been able to exploit the huge 

and underused herbivorous trophic resource (Barry and Ehret 1993). A sub-family of the 

Kyphosidae that has occupied sub-tropical and temperate waters while maintaining 

herbivory and the IMJ is the Girellinae, specifically G. nigricans. Two other members of 

the Kyphosidae that exhibit herbivory but do not have the intramandibular joint are 

Hermosilla azurea (zebraperch) and Medialuna californiensis (halfmoon). All three 

species occupy the shallow rocky reef and kelp bed habitats and are considered to be 

multivorous; the levels of herbivory begin to vary as these fishes become juveniles and 

on into adulthood. Girella nigricans is considered to be a benthic grazer that scrapes the 

highly nutritious microalgae off of rocky substrates (Clements et al. 2009). Hermosilla 

azurea is considered to be a benthic browser constantly moving and feeding on small 
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macroalgae (Barry and Ehret 1993, Clements et a1. 2009, Hom 1989). Medialuna 

californiensis has a markedly different feeding behavior, picking out invertebrates from 

kelp stalks and feeding on newly settled macroalgae (Harris et a1. 1984). 

The aims for this study were to quantify and compare the theoretical forces 

created by G. nigricans, H. azurea and M californiensis. I compared mechanical 

advantages and physiological cross sectional areas of adductor mandibulae numbers two 

and three, testing the hypothesis that there is a quantifiable difference between the three 

species. I then compared, among species, the total theoretical force produced at the tip of 

the dentary to investigate the different potential output forces. I concluded this study with 

a comparison of force production during the course ofthe bite. To supplement the force 

data, I provided morphological descriptions to better understand the mechanisms of force 

production in each species. 

MATERIALS AND METHODS 

Animal Collection and Imaging 

All fishes were collected using a spear gun in Laguna Beach, California under the 

California Department ofFish and Game scientific collecting permit number 9932 and 

held under San Jose State University IACUC protocol number 814. Twenty six Girella 

nigricans (26.0-63.00 mm, head length (HL)), 10 Hermosilla azurea (54.00-69.00 mm 

HL), and 10 Medialuna californiensis (42.00-70.00 mm HL), were speared, then frozen, 

and transported to Moss Landing Marine Laboratories. The fishes were then defrosted 

and dissected. One side of each fish was dissected at a time. All dissections began by 

removing and weighing adductor mandibulae two (AM2) and three (AM3) to the nearest 

0.001 g. Each muscle was patted dry before weighing. AM2 and AM3 from the right and 

http:42.00-70.00
http:54.00-69.00
http:26.0-63.00
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left sides were averaged to yield a single weight value for each muscle from each fish. 

After the musculature had been removed, photos were taken using a Cannon digital SLR 

placed laterally over the fish's head with a ruler in view for scale. Digital X-ray was used 

on one specimen of each species to further assist in visualization of the lower jaw 

apparatus and associated anatomy. Digital X-radiography was provided by the 

Community Hospital of the Monterey Peninsula. 

Physiological cross-sectional Area 

Muscle physiological cross-sectional area (PC SA) can be used as a metric for 

comparison of the applied muscle mass (Powell et al. 1984). To calculate physiological 

cross-sectional area for all fishes, the following equation was used: 

PCSA= (muscle mass/muscle density) x (cos 8) x (l/fiber length) 

where e is equal to the average pennation angle from the central tendon. As described in 

Westneat (2003), pennation angle is the angle or orientation of the muscle fibers. The 

best estimation of fish muscle density is 1.05 g cm-3 (Powell et al. 1984 and Wainwright 

1988). Fiber length was observed by patting the muscle dry and measuring 10 muscle 

fibers and then averaging them to yield one fiber length per muscle. The average 

pennation angle for all individuals was zero. PCSA calculations were averaged for each 

side of the head to yield one value for AM2 and one value for AM3 for each fish. An 

analysis of covariance (ANCDY A) was used to test the hypothesis that there was no 

species effect on the PCSA for each muscle. Head length was used as the fixed factor 

with muscle PCSA as the dependent variable. 
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Modeling Lower Jaw Force Production 

Once photos were taken for all fishes, they were digitized using Image J (NIH). 

The lower jaw was modeled as a third order lever system and the biomechanics of the jaw 

were modeled in the program Mandiblever 3.3 (Westneat 2003; Fig. 1). The following 

measurements were taken to the nearest 0.00 I cm while the jaw was closed: (I) in-lever 

A2, from quadrate-articular joint to A2 insertion on the articular; (2) in-lever A3, from 

quadrate-articular join to A3 insertion on the medial face of the articular; (3) in-lever 

open, from quadrate-articular joint to the posteroventral margin of the articular; (4) out­

lever, from quadrate articular joint to dentary tip; (5) A3 length, from origin on 

preopercle to insertion on the ascending process of the articular; (6) A3 total length, From 

origin on preopercle and hyomandibular to insertion on the medial face of the articular; 

(7) A3 tendon, from tendon insertion on medial face of articular to tapering end into A3 

fibers; (8) A2-joint distance, from A2 origin at preopercle to quadrate-articular joint; (9) 

A3 joint distance, from origin of A3 to quadrate-articular joint; (10) A2-A3 ins, from A2 

to A3 insertion; (11) LJtop length, from the tip of the articular to the most distal part of 

the dentary; and (12) LjBot length from postventral margin of the articular to the tip of 

the dentary. These variables were used by Mandiblever to estimate the force produced in 

the closed position, open 10°, 20°, and 30° for each fish. Mandiblever calculated force 

using the equation: 

Foutput = Factingmusle x sin (a) x MA 

Where (a) is the action angle of the muscle and MA is the mechanical advantage of that 

muscle. A force calculation was made for each muscle and then added to yield a 

unilateral force produced at the tip of the dentary. This value was then added to the 
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opposite side of the head to yield a bilateral force produced at the tip of the dentary. 

Mandiblever was also used to provide the mechanical advantage for AM2 and AM3 for 

each fish. One rosy rockfish (Sebastes rosaceus), a generalized, non-modified species, 

was included as a baseline for my comparisons. 

To test the hypothesis that there were no significant differences in bite force 

production among species, an analysis of covariance (ANCOVA) was run in which HL 

was a fixed factor and force produced in the closed position was the dependent variable. 

To test the hypothesis that a species effect persisted in the mechanical advantages, the 

mechanical advantages for AM2 and AM3 were averaged for each species. An analysis 

of variance (ANOVA) was used to compare average mechanical advantage among the 

three species. In the case in which significant differences were detected, LSD post-hoc 

tests were used to further examine trends. To compare among species at each point in the 

bite, I averaged the force values for each individual in their respective bite phase. This 

yielded a single value for each species at open 30°, 20°, 10°, and closed. To control for 

the confounding variable of size, only individuals that were within the range of 42.0-70.0 

mm HL were included. This yielded a new sample size of 10 for each species. By doing 

this the smallest Girella nigricans were included. To test for significant differences 

between species during the bite, a one-way ANOVA was used for every measured point 

during the bite, followed by LSD post-hoc tests. 

IMJ and Force Production 

In this study, Girella nigricans was the only species that possessed the 

intramandibular joint. As rotation occured around the IMJ, the out-lever length shortened 

(Fig. 2). If the same force of the muscle was applied to a shortened out-lever, the result 
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was an increased force production at the tip ofthe dentary (Ferry-Graham and Konow 

2010). To determine the ramifications of this biomechanical property, the articular was 

held still with forceps while applying a force to the tip of the dentary. Rotation around the 

IMJ continued until the ventral section of the dentary made contact with the articular, 

which is where the rotation was stopped. Photos were taken at the point of maximum 

rotation and analyzed using Image J. The measurements that changed were: (4) out-lever, 

from quadrate articular joint to dentary tip; (11) LJtop length, from the tip of the articular 

to the most distal part of the dentary; and (12) LjBot length from postventral margin of 

the articular to the tip of the dentary, with all other variables staying the same (Fig. 1). 

This new information was added to the previous information in Mandiblever 3.3. The 

new output force, as predicted by Mandiblever, was recorded for the jaw in the 30° open 

position. 

Force was estimated for the fully open jaw position (the maximum angle of 

rotation around the IMJ) because this moment is when intramandibular bending is of 

most ecological and biomechanical significance. At maximum gape, the output force 

created by the lower jaw is necessarily the weakest, due simply to the mechanical 

advantage of the jaw in that orientation. Conversely, the shortened jaw lever arm created 

by intramandibular rotation may increase the force that can be applied to the substrate. 

Additionally, there are changes in the lateral forces during the bite. When the dentary first 

makes contact with the substrate the highest amount of lateral force will be applied to the 

substrate. This will necessarily occur at the onset of a scraping event, when the gape is 

likely maximally opened. As the scrape continues, the force of the jaw acts, in some part, 
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lateral to the body, thereby forcing the fish away from the substrate. As this occurs 

intramandibular bending is reduced (pers. obs.). 

To test the hypothesis that intramandibular bending increases force production at 

the tip of the dentary, a Student's t-test was used. The average force produced in the open 

position (30°) with no intramandibular bending was compared to the average force at the 

output in the same position with flexion around the joint. All individuals of Girella were 

used for this part of the study (n = 26). 

RESULTS 

Physiological Cross-Sectional Area 

For all the sampled species and all individuals, AM2 had a larger PCSA than 

AM3. Physiological cross-sectional area showed a linear relationship when plotted 

against head length. Of the three species tested, Girella nigricans had the largest PCSA 

for both AM2 and AM3 for a given unit ofhead length (Fig. 3). Medialuna californiensis 

and Hermosilla azurea had similar PCSAs for both AM2 and AM3. Based on the results 

of the ANCOV A, the slopes for AM2 and AM3 were not significantly different among 

species and among one another 

(Muscle effect for AM2: F 2.410, p > 0.05; Muscle effect for AM3: F = 2.272, P > 

0.05; Species effect for AM2: F = 0.75, P > 0.05; Species effect for AM3: F = .744, p> 

0.05). There were no species effects on adductor PC SA based upon the individuals 

sampled. 

Lower Jaw Force Production 

The differences seen in mechanical advantages of both AM2 and AM3 differed 

among species. With respect to AM2, G. nigricans and H. azurea were not significantly 
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different from one another, but both were significantly larger than M. californiensis 

(ANOV A: F 6.06, p < 0.05; Fig. 4). Conversely, for AM3, G. nigricans and H. azurea, 

again, did not differ from each other but had a lower mechanical advantage than M. 

californiensis (ANOVA: F = 37.96 p < 0.005; Fig. 4). 

The interpretation of species-effects in this model is difficult because when lower 

jaw maximum force production was plotted against head length (Fig. 5), the interaction 

term in the ANCOVA yielded a significant result (F = 9.114, p < 0.05). However, it was 

apparent that G. nigricans had higher forces per unit head length than the other species 

and Medialuna californiensis and Hermosilla azurea had similar force out-puts per unit 

head length with no recognizable trend between them. Based on the significant 

interaction term, the rate of change through ontogeny is different in the three species 

tested. Thus, they were not compared further statistically. 

In the bite sequence data, G. nigricans plotted significantly higher than both 

species tested. Differences occurred at all points during the bite (30°: F 10.996, P < 

0.005; 20°: F = 17.161, P < 0.005; 10°: F = 21.530, p < 0.005; Closed: F = 22.343, P < 

0.005; Fig. 6). The ANOVAs also revealed that H. azurea and M. californiensis were not 

significantly different from one another at any point during the bite (Fig. 6, P >.05). Note 

that S. rosaceus was not included in the statistical analysis because I only had one 

individual. However, this species clearly falls between M californiensis and H. azurea. 

IMJ and Force Production 

In Girella nigricans, on average, approximately 5 degrees of rotation around the 

IMJ occurred. This rotation resulted in a 20 to 25 percent decrease in the out-lever length, 

in keeping with the estimates of Ferry-Graham and Konow (2010). This consistently led 
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to an increase in force produced at the tip of the dentary (Fig. 7), though not statistically 

significant. 

DISCUSSION 

The collective findings documented here further support the theory that G. 

nigricans is a scraping specialist. Mandiblever revealed significantly higher forces 

generated by the lower jaw for this species. Examination of the dentition work (Norris 

and Prescott 1959) and jaw structure (Ferry-Graham and Konow 2010) had previously 

suggested this hypothesis. The Mandiblever findings detailed here add biomechanical 

credence to this notion. As seen in Fig. 4 the PCSA, for AM2 and AM3, per unit head 

length was larger in G. nigricans than any other species tested. This further suggested 

that G. nigricans can produce high forces that may assist in scraping. Based on the high 

(> 0.6) mechanical advantage of AM2 in G. nigricans and its large PCSA one might 

expect this to be the primary jaw closing muscle. Girella nigricans has a deep jaw that 

possibly assists in rotation rather than protrusion. As a result, the mechanical advantage 

of AM3 was small for a biter (~0.4) which may suggest AM3 is a supplemental closing 

muscle rather than contributing significantly to jaw closure. Although the force produced 

by G. nigricans was not significantly larger than the other species tested here, the force 

calculations produced a higher force in G. nigricans than any other species per unit head 

length. This further suggests that these fish are algae removing specialists as the force 

required to remove these diet items are high. 

Medialuna californiensis, by contrast, is a picker. This species is often found in 

the middle of the water column feeding on the invertebrates in the kelp (Harris et al. 

1984). As potentially expected, M. californiensis data tended to resemble those from the 
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generalized S. rosaceus (Fig. 6). Sebastes rosaceus is known to pick invertebrates from 

the benthos, which might lead to further similarity among the species. The low (~0.5) 

mechanical advantage for AM2 and AM3 suggested that the M. californiensis jaw is built 

more for speed than power. Ecologically, this is critical as a speedy suction feeding event 

is necessary to pick invertebrates from the kelp (Harris et al. 1984). Although the 

mechanical advantages were low in M. californiensis, they still possess what one would 

expect to be large enough adductor muscles to supplement their diets with algal material. 

Both the PC SA of AM2 and AM3 (Fig. 3) and the total forces produced (Fig. 5) plot H. 

azurea and M californiensis close to each other, but ecologically they are very different. 

Hermosilla azurea is an inshore species, often seen feeding on the benthos. 

Therefore, one might expect them to be able to produce forces more similar to Girella 

nigricans, both in terms of total bite force and forces produced during the course of a 

bite. Based on the analysis of the diet of G. nigricans and H. azurea in Barry and Ehret 

(1993), they eat similar algal dietary items, but with H. azurea feeding more on the 

'leafy' green algae. These softer green algae are likely more easily removed than the diet 

items that must be scraped by G. nigricans, and thusly weaker bite forces might result. It 

is also noteworthy that the dentition ofH. azurea is located more posteriorly within the 

oral cavity when compared to G. nigricans (Fig. 8). This suggests that H. azurea is not as 

well equipped for scraping as G. nigricans. In H. azurea the mechanical advantages for 

AM2 and AM3 were not statistically different from G. nigricans, which might suggest 

that they can produce similar forces. The results from Fig. 5 suggest that, per unit head 

length, H. azurea cannot match G. nigricans in force production and thus is not as well 
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equipped muscularly for scraping as G. nigricans. Ecologically, the results suggest that 

these fish are likely not scraping but picking or biting algae from the benthos. 

Morphological novelties such as the 1M] have been a growing topic in the field of 

functional morphology. This study adds to that knowledge base as it connects 

evolutionary developments to their functional implications. In the case of the 1M] in G. 

nigricans, flexion of the 1M] shortened the out-lever which increased the force at the tip 

of the output. Surprisingly, no significant difference was found in the force produced as a 

result of flexion around the IMJ. It is noteworthy that there appeared to be no 

musculature associated with the generation of rotational movement about the IMJ. Many 

researchers (Vial and Ojeda 1990,Yagishita and Nakabo 2003, Ferry-Graham and Konow 

2010) have suggested the possibility that flexion of the dentary around the 1M] could be 

facilitated by an intramandibular adductor in the genus Girella. This does not seem to be 

the case with G. nigricans as no such muscle inserts onto the dentary. Observations made 

on the insertion ofAM3 indicated that the insertion occurs on the most anterior surface of 

the articular. This, along with high-speed video events of the scraping behavior, suggests 

that intramandibular bending in G. nigricans is passive and only occurs once the lower 

jaw is pressed against the surface. Although I saw no significant increase in force 

produced as a result of intramandibular rotation, the functional significance of the IMJ 

remains imperative. As the fish scrapes the surface of a rock, rotation of the dentary 

around the IMJ allows for a larger tooth-bearing surface to remain on the substrate for a 

longer period of time compared to a situation where no bending occurred. The longer 

residence time of the dentition on the substrate means the individual may consume more 

food per bite than if rotation does not occur. Feeding efficiency can be functionally 
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significant to a species as it allows for less time feeding which is a time of low predator 

detection. Based on Fig. 6, G. nigricans had high force production when compared to 

different species in the same size range. One can imagine how different Girella nigricans 

theoretical force production becomes when intramandibular rotation is factored in. The 

out-put force production created by G. nigricans would make the gap between itself and 

all other species tested even larger. 

Based on mitochondrial DNA phylogenetics in Yagishita and Nakabo 2003, G. 

nigricans is most closely related to G. elevata and G. tricuspidata which are both native 

to the.south eastern coast of Australia. In the previously mentioned paper the authors 

made dentition morphological comparisons and found that the tricuspid shaped teeth exist 

in the three species. It is unclear as to how G. nigricans is related to H. azurea and M. 

californiensis as no phylogenies exist. Based on the arguments made in Yagishita and 

Nakabo 2003, I believe that G. nigricans is more closely related to their southern ocean 

relatives than to H. azurea or M. californiensis. Because M. californiensis and H. azurea 

belong to different families, I believe their evolutionary story is similar to G. nigricans. 

Phylogenies do not exist for either species but I believe they have a closely related 

relative in the southern Pacific. Over evolutionary time they found suitable habitat along 

the eastern North Pacific which is where they live today. 

CONCLUSION 

Girella nigricans is specialized for scraping and can produce more jaw closing 

force than any other eastern North Pacific kyphosid. Based on the location of the 

dentition and the high force production during the bite, G. nigricans is well equipped to 

scrape algal dietary from the benthos. The results of this study suggest that the 
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comparative kyphosid species, Medialuna californiensis and Hermosilla azurea, feed in 

different manners from each other and from G. nigricans. The jaw ofM. californiensis is 

built for speed rather than power normally exhibited by an herbivore. This result is 

supported ecologically as they pick invertebrates from the kelp stalks as adults while 

supplementing their diet with algal material. Hermosilla azurea is a benthic grazer and 

appears to fit in between the two previously mentioned species. These fish are commonly 

seen feeding on leafy algae growing on the benthos. This intermediate species has a deep 

jaw that appears to be well equipped for a bite and tear method of food procurement. 

Intramandibular bending occurred,only in G. nigricans. Based on the amount of flexion 

allowed around the joint there was not a significant force increase during the bite. This, 

however, does not deter from the functional significance of the joint as it allows for a 

longer residence time of the tooth bearing surface on the scraped surface. 
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FIGURES 


Figure 1: A visual representation of the morphometries used in the program Mandiblever 

3.3. Measurements are described on page 6. 
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Figure 2: A visual representation of intramandicular bending modified after Ferry­

Graham and Konow 2010. The gray illustration of the dentary is the lower jaw of G. 

nigricans without bending and the white illustration of the dentary represents bending 

around the IMJ. Lo: Original outlever, Loi : The shortened out-lever after the dentary 

rotates around the intramandibular joint. 
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Figure 3: Physiological cross-sectional areas for AM2 (A) and AM3 (B) relative to head 

length (HL). Each point represents the average for both sides of the head for one 

individual. Error bars were left off for clarity. Black squares represent G. nigricans, 

circles represent M. californiensis, and grey triangles represent H. azurea. 
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Figure 4: Mechanical advantages for AM2 (A) and AM3 (B) for each species tested. Data 

are represented by the average for all individuals tested (± S.E.). The asterisk denotes a 

significant difference (a 0.05). 
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Figure 5: Maximum force at the out-put for each individual sampled relative to head 

length (HL). Each point represents the average for both sides of the head for one 

individual. Error bars were left off for clarity. Black squares represent G. nigricans, 

circles represent M. californiensis, and grey triangles represent H. azurea. 

HL(mm) 



54 

8 

7 

•

• 
 OMedialuna 

A Hennosilla 

XSebastes 

X • Girella 

~ 

300 200 100 Closed 

Bite Phase 

Figure 6: Bite sequence data for all species tested inc1uding S. rosaceus (X marks). Each 

data point represents an average from individuals in the size range of42.00-70.00 mm 

head length within each species. Error bars were left off for c1arity of the figure. Black 

squares represent G. nigricans, circ1es represent M. californiensis, and grey triangles 

represent H. azurea. At every point during the bite G. nigricans had significantly higher 

force values than any species tested. There were no significant differences between the 

other three species. 
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Figure 7: Increased force production as a result of intra mandibular bending. Data were 

gathered from individuals in the species G. nigricans. Size range ofthe sample size was 

32.00-69.00 mm head length. Measurements were taken in the open position (30°). No 

significant difference was found. 
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Figure 8: Digital X-rays taken for each species tested in the study. LJJ: lower joint; 

AM2j: the insertion site for Adductor Mandibulae II; AM3 j: insertion site for Adductor 

Mandibulae III; 1M]: intramandibular joint. Notice the differences in insertion sites ofH. 

azurea and G. nigricans to that of M. californiensis. Insertion sites drive the differences 

seen in mechanical advantage ratios. 
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