
California State University, Monterey Bay California State University, Monterey Bay 

Digital Commons @ CSUMB Digital Commons @ CSUMB 

School of Natural Sciences Faculty Publications 
and Presentations School of Natural Sciences 

2010 

Decadal Variations in NDVI and Food Production in India Decadal Variations in NDVI and Food Production in India 

Cristina Milesi 

Arindam Samanta 

Hirofumi Hashimoto 

K. Krishna Kumar 

Sangram Ganguly 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.csumb.edu/sns_fac 

This Article is brought to you for free and open access by the School of Natural Sciences at Digital Commons @ 
CSUMB. It has been accepted for inclusion in School of Natural Sciences Faculty Publications and Presentations by 
an authorized administrator of Digital Commons @ CSUMB. For more information, please contact 
digitalcommons@csumb.edu. 

https://digitalcommons.csumb.edu/
https://digitalcommons.csumb.edu/sns_fac
https://digitalcommons.csumb.edu/sns_fac
https://digitalcommons.csumb.edu/sep
https://digitalcommons.csumb.edu/sns_fac?utm_source=digitalcommons.csumb.edu%2Fsns_fac%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csumb.edu


Authors Authors 
Cristina Milesi, Arindam Samanta, Hirofumi Hashimoto, K. Krishna Kumar, Sangram Ganguly, Prasad S. 
Thenkabail, Ashok N. Srivastava, Ramakrishna R. Nemani, and Ranga B. Myneni 



Remote Sens. 2010, 2, 758-776; doi:10.3390/rs2030758 

 

Remote Sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 
Article 

Decadal Variations in NDVI and Food Production in India  

Cristina Milesi 1,*, Arindam Samanta 2, Hirofumi Hashimoto 1, K. Krishna Kumar 3, Sangram 

Ganguly 4, Prasad S. Thenkabail 5, Ashok N. Srivastava 6, Ramakrishna R. Nemani 7 and  

Ranga B. Myneni 2 

1 Division of Science and Environmental Policy, California State University Monterey Bay / NASA 

Ames Research Center, MS 242-4, Moffett Field, CA 94035, USA;  

E-Mail: hirofumi.hashimoto@gmail.com 
2 Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, 

Boston, MA 02215, USA; E-Mails: arindam@bu.edu (A.S.); rmyneni@bu.edu (R.B.M.) 
3 Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India;  

E-Mail: krishna@tropmet.res.in 
4 Bay Area Environmental Research Institute / NASA Ames Research Center, MS 242-4, Moffett 

Field, CA 94035, USA; E-Mail: sangramganguly@gmail.com 
5 U. S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, USA;  

E-Mail: pthenkabail@usgs.gov 
6 Intelligent Systems Division, NASA Ames Research Center, MS 269-4, Moffett Field, CA 94035, 

USA; E-Mail: ashok.n.srivastava@nasa.gov 
7 Biospheric Science Branch, NASA Ames Research Center, MS 242-4, Moffett Field, CA 94035, 

USA; E-Mail: rama.nemani@nasa.gov 

* Author to whom correspondence should be addressed; E-mail: cristina.milesi-1@nasa.gov;  

Tel.: +1-650-604-6431. 

Received: 22 December 2009; in revised form: 4 March 2010 / Accepted: 5 March 2010 /  

Published: 11 March 2010 

 

Abstract: In this study we use long-term satellite, climate, and crop observations to 

document the spatial distribution of the recent stagnation in food grain production affecting 

the water-limited tropics (WLT), a region where 1.5 billion people live and depend on 

local agriculture that is constrained by chronic water shortages. Overall, our analysis 

shows that the recent stagnation in food production is corroborated by satellite data. The 

growth rate in annually integrated vegetation greenness, a measure of crop growth, has 

declined significantly (p < 0.10) in 23% of the WLT cropland area during the last decade, 

while statistically significant increases in the growth rates account for less than 2%. In 
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most countries, the decade-long declines appear to be primarily due to unsustainable crop 

management practices rather than climate alone. One quarter of the statistically significant 

declines are observed in India, which with the world’s largest population of food-insecure 

people and largest WLT croplands, is a leading example of the observed declines. Here we 

show geographically matching patterns of enhanced crop production and irrigation 

expansion with groundwater that have leveled off in the past decade. We estimate that, in 

the absence of irrigation, the enhancement in dry-season food grain production in India, 

during 1982–2002, would have required an increase in annual rainfall of at least 30% over 

almost half of the cropland area. This suggests that the past expansion of use of irrigation 

has not been sustainable. We expect that improved surface and groundwater management 

practices will be required to reverse the recent food grain production declines. 

Keywords: GIMMS NDVI; water-limited tropics; agricultural production; climate; irrigation 

 

1. Introduction 

In the last 40 years, global crop production has more than doubled, supporting an increase in 

population of 3.2 billion people. This growth has been mainly possible through the innovations 

introduced by the Green Revolution, such as the use of high-yielding varieties of grain, massive 

increases in chemical fertilization (≈700%) [1], in irrigated area (100%) [2], and mechanization, and a 

modest (12%) increase in global cropland area. In the next 40 years, humanity will be challenged to 

continue increasing global crop production to meet the dietary requirements of an additional 2.5 billion 

people and help achieve food security to the existing one billion hungry people, while at the same time 

limiting cropland expansion and containing damages to natural resources and other ecosystems [3,4]. 

A key aspect of this challenge is that nearly all of the said population growth will occur where the 

majority of the hungry live today, and where ongoing and future climate changes are projected to most 

negatively impact agricultural production; the water-limited tropics (WLT) [5]. The WLT span over 40 

developing countries, comprising a growing population of over a 1.5 billion people, many of which 

face problems of absolute poverty, and strongly depend on agriculture that is constrained by chronic 

water shortages. In spite of concerted international efforts to increase global food security [6], 

aggregated agricultural production statistics indicate that rates of food grain production have recently 

stalled or declined in several WLT countries [7,8], escalating concerns about matters of food 

security—the availability of food and access to it in a region where many people live in extreme 

poverty and depend on agrarian economies and local food production. 

Crop production statistics offer limited opportunities to attributing the causes of declines in crop 

production, in particular to environmental drivers, as they often lack adequate spatio-temporal 

information required for this task. Sub-national and seasonal crop production data are often difficult to 

access for the WLT countries. Satellite remote sensing offers an effective means to compensate for, at 

least partly, the lack of consistent spatially detailed ground reporting of agricultural conditions, thus, 

allowing to independently monitor large crop area and production—with the added advantage of 

providing spatial and temporal information on the location and state of crop vigor [9]. A number of 
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empirical relationships between various vegetation indices and yields have been developed to estimate 

and forecast crop conditions and production from remote sensing [10-13]. Among these, the most 

commonly used is the Normalized Difference Vegetation Index (NDVI), which is based on the 

property of the leaves of green vegetation to absorb incident solar radiation in the red (RED) spectrum 

band through the chlorophyll and scatter in the near-infrared (NIR) spectrum band through the spongy 

mesophyll [14], being calculated as: 

NDVI 
NIR  RED

NIR  RED
 (1) 

For large scale applications, time integrated series of NDVI offer a practical approach to measure 

crop production as they relate to the overall plant vigor, water stress, and photosynthetic activity 

during the growing season [15-17].  

In this study, we analyze the entire long term (1982–2006) record of the Normalized Difference 

Vegetation Index (NDVI) from the National Oceanic and Atmospheric Administration’s Advanced 

Very High Resolution Radiometer (NOAA/AVHRR), together with climate, land use, and aggregated 

crop production statistics to provide independent evidence of the agricultural deceleration in the WLT 

and improve our understanding of its environmental drivers. We discuss the prospects for reversing 

these trends by examining the deceleration in food grain production in India, the country with the 

world’s largest population of food-insecure people and largest WLT croplands.  

2. Data and Methods 

2.1. Study Region 

The analysis in this article is limited to irrigated and rainfed croplands in the WLT countries  

(Figure 1) and is carried out at a spatial resolution of 8 km by 8 km. In this study, we categorize all the 

grid cells where the precipitation has been found to be the primary climatic limitation to vegetation 

productivity and located between 40°N and 40°S as WLT. For this purpose, we use the dominant 

climatic controls on vegetation productivity [18]. These dominant climate controls were defined using 

long-term (1960–1990) monthly climate data of maximum/minimum temperatures, cloudiness, and 

rainfall [19], and developing scaling factors between 0 and 1 to indicate the reduction in growing 

potential from its maximum in each month. The maximum growing potential was determined through 

the comparison of monthly potential evapotranspiration (PET, estimated with the Priestley-Taylor 

method) with monthly rainfall, and assuming that when rainfall is greater or equal to PET, the 

maximum growing potential is reached. This method provides a biophysical definition of WLT rather 

than one based on precipitation amounts alone and includes areas that extend beyond the arid and 

semi-arid tropics (less than 800 mm of annual rainfall) but where, nevertheless, vegetation growth is 

primarily constrained by insufficient rainfall rather than low temperatures or insufficient solar 

radiation. The method also establishes a baseline of vegetation water-limitations against which we can 

compare the impacts of more recent changes in precipitation.  
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Figure 1. Map of the distribution of irrigated and rainfed croplands in the WLT. Irrigated, 

major refers to croplands irrigated with surface waters; Irrigated, minor refers to cropland 

predominantly irrigated with ground water, small reservoir, and tanks. The WLT where the 

land cover within the grid cell is not dominated by crops are shown in white. Areas outside 

of the WLT are colored in gray. 

 

We then defined the geographic distribution of the irrigated and rainfed croplands of the WLT by 

overlaying the global irrigated [20] and rainfed cropland area maps [21] with the WLT mask. In the 

calculations we include only the grid cells in which cropland is the dominant land cover (i.e., cropland 
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occupies more than 50% of the pixel). This region covers over 40 countries and represents 40% of the 

global cropland and rainfed area mapped by [20,21]. 

2.2. Food Production Statistics 

Spatially aggregated annual food grain production statistics were assembled for countries with at 

least 90% of the surface area of their irrigated and rainfed croplands within the WLT mask. This 

ensured that the food grain production statistics would be geospatially consistent with the gridded 

precipitation and NDVI datasets. Food grain production refers to the total production of rice, wheat, 

corn, coarse grains (sorghum and millet), and pulses (beans, dried peas, and lentils). The data were 

assembled from the FAOSTAT database [7]. For all-India, these data are available for the two main 

cropping seasons, namely kharif (June-October, rainy season), and rabi (November-May, dry season) 

for the period 1966–67 to 2006–07 from the Ministry of Agriculture of the Government of India [22].  

2.3. Climate Data 

We use precipitation data from different sources, since no single data set is available to cover the 

entire study period over the WLT. We assembled precipitation data from the CRU TS 2.0 (0.5° 

resolution) data [23] for the years 1966–2000 and TRMM 3B43 (v6, 0.25° resolution) data [24] for the 

years 2001–2006. These data sets were joined together at 0.5° resolution to create a time series for the 

period 1966–2006. Total annual precipitation was calculated for each year. Then trends in total annual 

precipitation for 1966–1996 and 1996–2006 were calculated by ordinary least squares. The 1966–1996 

trend was subtracted from the 1996–2006 trend and divided by the 1966–2006 mean total precipitation 

and aggregated over the WLT croplands.  

For India, we also obtained all-India rainfall [25] and surface temperature [26] monthly dataset. 

These data area available both as all-India aggregated monthly data and regional monthly data. We 

calculated 1960–2005 rainfall anomalies and 1960–2002 average surface temperature anomalies for 

kharif and rabi seasons. Annual rainfall anomalies during the two seasons were calculated for each 

year as the difference between seasonal total rainfall and 1960–2005 seasonal average total rainfall. 

Annual surface temperature anomalies during the two seasons were calculated for each year as the 

difference between seasonal average surface temperature and 1960–2002 seasonal average  

surface temperature. 

2.4. NDVI Data 

We used the Global Inventory Modelling and Mapping Studies Group (GIMMS) NDVI data set 

version G [27] for the period July 1981 to December 2006. To map the geographical distribution of 

crop production we calculated the annual sum of the 12 monthly values of maximum NDVI for each 

pixel (iNDVI). Bare soil pixels were excluded by including in the calculation only pixels with monthly 

maximum NDVI values larger than 0.1. For each pixel, linear time trends in iNDVI for the periods 

1982–1992 (b1) and 1996–2006 (b2) were estimated by ordinary least squares and used to calculate 

percent change in growth rates (GR) in iNDVI for the two periods as following:  
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GR


  

(2) 

We tested for significance of the change in trend over the two periods by calculating the Student’s t 

score for change in slopes, such as:  

t 
b2 b1 
Sb 2b1

 (3) 

where b2 and b1 are the linear time trends in iNDVI for the periods 1996–2006 and 1982–1992, 

respectively, and Sb2−b1 is the standard error of the difference between the trends. 

For India, the same procedure was applied to NDVI data seasonally integrated over the rabi 

(November–May, dry) and kharif (June–October, rainy) seasons to calculate the change in relative 

growth rate of rabi iNDVI and kharif iNDVI, respectively. 

2.5. Estimation of Relative Increase in Water Consumption Due to Increased Rabi Crop Production 

To grasp the magnitude of the impact on water consumption of past increases in dry season crop 

production, over India we calculated a conservative estimate of the relative NDVI-driven increase in 

actual evapotranspiration during the rabi season. For this purpose, we used a modified version of the 

FAO-56 model for crop water consumption assessment of wheat, based on a relationship between the 

basal crop coefficient (Kcb) and NDVI [28], where Kcb is the crop coefficient component that 

corresponds primarily to transpiration. First, Kcbm for each month m is calculated as: 

    54.084.0
minmaxmax0.107.1 NDVINDVINDVINDVIKcb mm   (4) 

where NDVImin and NDVImax are the minimum (bare soil) and maximum (dense vegetation) values of 

NDVI over the cropland area of India during the rabi season, and NDVIm is the monthly peak NDVI. 

1.07, 0.84 and 0.54 are coefficients empirically relating Kcb to NDVI [28]. 

For each grid cell, annual actual evapotranspiration, AET, was calculated as  







12

1

m

m
mm PETKcbAET  (5) 

where PETm refers to Thornthwaite Potential Evapotranspiration for month m. For each grid cell, the 

increase in water consumption WC during the rabi season was then calculated as a function of local 

annual precipitation as: 

    EPnyearsAETWC meantrend  (6) 

where AETtrend is the 1982–2002 linear trend in AET, Pmean is the 1982–2002 average annual 

precipitation calculated from the CRU TS 2.1 data set, and E is the irrigation efficiency. Irrigation 

efficiency changes by crop and during the growing season, and can range from 25–35% for canal 

irrigation and 80% for groundwater irrigation [29]. Here, for simplification, we conservatively assume 

a constant efficiency of 60%. WC represents the increase in water consumption required to sustain an 

increase in vegetation production as measured by the change in iNDVI. WC can be satisfied either by 

irrigation or by increases in precipitation.  
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3. Results and Discussion 

3.1. Patterns of Decline in Food Grain Production Growth Rates in the WLT 

Between 1996 and 2006, data from the FAOSTAT database show food grain production rates have 

decelerated in 31 of the 40 countries that hold 90% of the WLT croplands (Figure 2). The pattern of 

decline in food grain production rate is corroborated by trends of satellite records of iNDVI. During 

the period 1982–1992, 32% of the WLT had a significant trend in iNDVI (p < 0.10), with a mean trend 

of 0.062 and standard deviation of 0.032. During the period 1996–2006, 22% of the WLT had a 

significant trend in iNDVI, with a mean trend of 0.058 and standard deviation of 0.042. The difference 

in trends of iNDVI for the two periods expressed in terms of percent change (Equation 2), shows that 

during 1996–2006 the growth rate of iNDVI declined by more than half over 58% of the WLT 

croplands compared to the first period, most prominently in India, Pakistan, Australia, United States, 

Iraq and Thailand (Figure 3). A one-sided test of significance for the change in slopes (Equation 3) 

shows that for 23% of the area the decline is statistically significant (p < 0.10). In contrast, 16% of the 

WLT the growth rate of iNDVI over the last decade increased by more than half, of which less than 

2% is statistically significant (p < 0.10).  

Figure 2. Change (%) in rate of food grain production (left) and in trend of total annual 

precipitation (right) during 1996–2006 relative to 1966–1996 in major WLT countries. For 

each country, the change (%) in rate of food grain production is weighted by the relative 

cropland area in WLT (identified in Figure 1). 
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Figure 3. Distribution of changes in growth rate (%) of cropland iNDVI for the period  

1996–2006 compared to the period 1982–1992 in the WLT croplands. (A) All pixels with 

more than ±50% change in growth rate of cropland iNDVI. (B) Only statistically significant 

pixels (p < 0.10). 

           
 

The modest annual rainfall in these regions is delivered in the few months of the rainy season and 

the water-limited vegetation tends to respond rapidly to variations in precipitation [30]. Therefore, we 

may expect variations in precipitation trends (Figure 4) to be a key driver of changes in food grain 

production rates in the WLT. However, the lack of quantitative correspondence between variations in 

A B 
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food grain production rates and precipitation trends (Figure 2), suggests that factors other than rainfall, 

such as irrigation, soil fertility, and other climatic factors, have played a role in shaping the observed 

decadal declines in food grain production rates. 

Figure 4. Trend in wet season precipitation (peak precipitation, %) for the period 1982 to 

2006 for (A) all pixels of the WLT and for (B) statistically significant pixels only (p < 0.1). 

 

 

3.2. Decline in Food Grain Production Growth Rates in India 

India, with the world’s largest population of hungry people, is a particularly striking example of the 

recent deceleration in food grain production (Figure 2 and Figure 3), with one quarter of all the 

statistically significant declines in growth rate of iNDVI of the WLT occurring here. In India, 52% of 

the total area is devoted to croplands [7], of which close to 90% falls within the WLT region. There are 

two cropping seasons in India, namely, kharif and rabi. In Figure 5 we plot the time series of food 

grain (rice, wheat, maize, coarse grains, and pulses) production for the period 1966/67 to 2005/06 

along with the record of iNDVI anomalies available since the rabi season of 1981–82. Figure 5A,B 

show that the satellite data capture well the interannual variability in food grain production, with a 

strong correlation between the two time series (Pearson’s r = 0.87 during kharif and r = 0.82 during 

rabi). Food grain production has generally increased in both cropping seasons since the mid 1960s [22]. 

This increase has been made possible through the technological changes brought about by the Green 

Revolution, such as the diffusion of improved seeds, fertilizers and mechanization, which became 

widely accessible through increased government subsidies. However, the rate of increase has dropped 

by over 50% since the early 1990s during the kharif season. The rabi season rate has also flattened 

around the same period. These changes are also evident in the time series of satellite data shown in 

A 

B 
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these figures—the anomalies of kharif- and rabi-season integrated vegetation greenness are stalled 

around 0.05 and 0.1 units above the 25-year average.  

Figure 5. Total food grain production (rice, wheat, coarse cereals, and pulses) during the 

(A) kharif (summer, rainy) and (B) rabi (winter, dry) seasons in India over the past four 

decades. Food grain production (Million tons/yr; blue, left axis) and corresponding growth 

rates are displayed for the period 1966/67 to 2005/06. Also shown are anomalies of 

seasonally integrated satellite vegetation greenness (iNDVI) over the croplands of India for 

the kharif and rabi cropping seasons from 1981/82 to 2005/06 (green, right axis). The 

insets of A and B show the correlation between food grain production anomalies and 

rainfall anomalies (during kharif r = 0.76, rabi r = 0.11). (C) Annual cropped area under 

food grains during kharif (blue) and rabi (red) seasons, annual net irrigated area (green 

squares), and population (brown). (D) % of cropland irrigated across the main agricultural 

states of India and % of irrigated cropland area relying on groundwater use. 
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Figure 6. Geographical distribution of the change in growth rate (%) of (A) rabi and (B) 

kharif iNDVI for the decade (1996/97 to 2005/06) compared to the decade (1982/83 to 

1991/92). Land use and crop statistics [31] report recent decreases in wheat area over the 

portions with sharpest declines in rabi iNDVI growth rate in the states of Punjab (P), 

Haryana (H) and Rajasthan (R), and decreases in irrigated area in the states of Maharashtra 

(M), Karnataka (K), and Andhra Pradesh (A). Increasing rates of iNDVI are observed 

during the kharif season in Madhya Pradesh (MP) in proximity of the Gandhi Sagar Dam. 

(C) amount of water needed to support the observed greening during the rabi season in the 

period 1982/83 to 2005/06, expressed as % mean annual rainfall (see Data and Methods). 

The states of Punjab and Haryana do not show change in water requirements because here 

the greening preceded the satellite record of vegetation greenness. (D) Status of 

groundwater exploitation by geographic block in India as of March 2004 [32]. 

 

The advantage of satellite data, compared to coarse scale grain production statistics, is that they 

show the geographical patterns of changes, as in Figure 3. In most of the WLT countries, detailed food 

grain production time series are hard to assemble at the sub-national scale. In India, state-wise data of 

food grain production are consistently accessible only since 1995/96 [33], during which period none of 
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the major food producing states has recorded a consistent increase in production. We use the time 

series of iNDVI to infer the sub-national food grain production for the time period 1982/83 to  

2005/06, suggesting that the patterns of declining growth rate are present both in the rabi and kharif 

season across all the major water-limited food producing states of India (Figure 6A and 6B). Recent 

declining growth rates are seen in the main food grain producing states in the Indo-Gangetic Plain and 

in the central portion of the country (Rajasthan, Maharashtra, and Karnataka to Andhra Pradesh). A  

t-Student test for change in slope indicates that 30% of the declines during the rabi season are 

statistically significant (p < 0.10), while only 2% of the increases are statistically significant. During 

the kharif season, 18% of declines are statistically significant, and 3.5% of the increases are significant 

(Figure 6A). Statistically significant declines are also evident over 18% (p < 0.10) of the cropland area 

during the kharif season (Figure 6B), prominently in Punjab and in the southern portions of the 

peninsula. Recent district-wise land use and crop statistics [31] for the areas affected by the sharpest 

declines indicate distinct contractions in irrigated areas and shifts in cropping patterns for the more 

water demanding crops, i.e., declines in rabi wheat (for example, in Punjab, Haryana and parts of 

Rajasthan) and kharif rice areas (Tamil Nadu). On the other hand, a significant increase in kharif 

production can be observed over Madhya Pradesh in the Chambal valley, perhaps due to a recent 

expansion in irrigation with surface waters. Efforts to map yearly changes in crops distributions will 

allow to better understanding to what extent large shifts in cropping patterns rather than changes in 

yield are responsible for the declines in iNDVI growth rates. 

3.3. Climatic and Land Use Drivers of Declining Growth Rates 

Agricultural production is governed by a large number of economic, technological and 

environmental factors and determining the precise contribution of each factor is generally extremely 

difficult and beyond the scope of this study. For example, globalization and international trade leading 

to increases in food grain imports could have influenced the changes in production in some countries 

of the WLT. In India, FAOSTAT data [7] show that while pulses imports have increased over the 

studied period, the import of cereals has declined drastically. The net result is no change in imports, 

but could explain some of the seasonal patterns. While these factors will require a separate study, here 

we analyze the possible role of climatic and land use drivers in the deceleration in food grain 

production in India, considering this country a leading example of the challenges faced by agriculture 

in the WLT region.  

In India, the main increases in food grain production during the past four decades have been 

realized during the rabi season. The rabi season crops have gone from contributing a third of the food 

grain production in the mid 1960s to today’s capacity to produce as much as the kharif season on one 

third less cropped area (Figure 5C). Food grain production suffers major declines in occasion of 

widespread droughts during the kharif season, the occurrence of which can be tracked by the major 

dips in the time series of both production and iNDVI anomalies of Figure 5A and 5B in 1987, 1990, 

and 2001–2002 The impact of rainfall on food grain production is prominent during the Kharif season, 

when the two variables show a Pearson correlation coefficient (r) of 0.76 (inset, Figure 5A). While the 

rainfall during the rabi season is too little to influence rabi food grain production (r = 0.11) (inset, 

Figure 5B), this also has a modest correlation with the kharif rainfall of the previous season (r = 0.52), 
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suggesting that aquifer recharge is a relevant component of rabi production. However, the long term 

trend in rainfall over India does not reveal significant changes that could justify the strong increases in 

rabi food grain production up to the mid 1990s (Figure 7A,B). While a recent succession of droughts 

has certainly impacted food grain production, a similar period of below normal precipitation was 

present during the 1980s (Figure 7A). On the other hand, the rabi production boost is consistent with 

the expansion of irrigated area in India (Figure 5C), which has accelerated from the mid seventies 

through the late 1990s to take advantage of the higher yield potential offered by the availability of 

improved seeds and fertilizers. Currently, at least one third of the cropped area is irrigated in most 

Indian states, with 50-80% of the irrigated surface relying on groundwater [31,34] (Figure 5D), made 

possible through a massive expansion of private wells [35]. This facilitated cultivation of higher 

yielding non-rainfed crops during the rabi season and stabilized planting dates during the kharif season 

when monsoon rains are delayed.  

Figure 7. 1960–2005 all-India rainfall and temperature anomalies for kharif (A, C) and 

rabi seasons (B, D) [25]. Kharif season has mean annual rainfall of 911 mm and mean 

annual temperature of 27.09 °C. Rabi season has mean annual rainfall of 161 mm  

and mean annual temperature of 22.48 °C. The black line represents the 11-year  

moving average. 

 
 

Although groundwater irrigation has been one of the primary drivers of increased food grain 

production in rapidly developing countries such as India as well as in the other countries of the WLT, 

there is increasing evidence that its use has been unsustainable [36]. Countries with high groundwater 

use such as India, Pakistan, United States, Iran and Mexico are located in regions with low aquifer 
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recharge rates [37], and may have reached a limit in the groundwater-based expansion of food grain 

production. Although estimates of regional groundwater extraction are not easily available for India, a 

number of sources document a widespread decline in water tables [32,38]. Our conservative estimates 

of the amount of water required to sustain the rabi season production rate in India (Figure 6C) 

indicates that large portions of the peninsula (49% of the mapped cropland area) would require from 

30% to 150% increase in local annual rainfall to sustain the greening measured by the trend in iNDVI 

for the period 1982–2002 in the absence of irrigation. Given the massive expansion in wells 

documented in India over the past decades [39], this water requirement has been likely largely satisfied 

with groundwater irrigation. Our calculations of increase in crop water demand are greatest over the 

northwest and central-southern peninsula and coincide to a good approximation with areas mapped as 

suffering from groundwater overexploitation and at risk of salinization [32] (Figure 6D). Thus, we may 

expect the number of overexploited aquifers to further increase, eventually pushing farmers to revert to 

less productive rainfed crops if measures to increase water productivity are not implemented in the few 

coming years. Moreover, depleting reserves of groundwater effectively eliminates one option of 

mitigating climatic change impacts on agriculture in these countries [40,41]. There are several 

opportunities for improving water productivity, especially through better use of green water sources 

(infiltrated rain) during years of normal rainfall. However, it has also been estimated that limits in the 

total water availability for future agricultural production in a number of WLT countries of Africa, the 

Middle East and South Asia will severely hinder future self-sufficiency in food grain production even 

if all sources of water both from rivers and aquifers, as well as from naturally infiltrated rain, will be 

well managed [42].  

Another climatic factor that may be substantially contributing to the declining relative rates of food 

grain production is accelerated warming since the mid 1990s (Figures 7C,D). Over the past decade, 

average temperatures have increased by 0.25 °C during the kharif and by 0.6 °C during the rabi season. 

It is not clear whether the recent stalling of food grain production in the rabi season is related to the 

rabi increase in temperature. If the agricultural deceleration in this season is due to a stalling in the 

expansion of irrigation, then the warming could be, in part, due to a reduction in evaporative cooling 

effect of irrigated areas, suggesting that in the absence of further irrigation expansion this season will 

continue warming. Studies suggest that the recent warming has potentially reduced crop yields by 6% 

percent in the rabi season [43,44], also contributing to the flattening of food grain production. Based 

on the relationship between temperature and PET, we estimate that the recent rabi season warming 

could have increased evaporative demand by about 5%, exerting additional pressure on water 

resources. Projected warming over the WLT is likely to further depress crop yields and exacerbate 

water scarcity, constraining attempts to increase food grain production [5,45]. El Niño-Southern 

Oscillation (ENSO) also impacts WLT climate and crop production [46]. However, the recent 

weakening of the relationship between Indian monsoon and ENSO [47] precludes the role of ENSO in 

the flattening of recent food grain production trends, but this may change in the future.  

A third major environmental driver involved in the decline in relative growth rate of food grain 

production is the slow down in cropland area expansion. Spare arable land for boosting agricultural 

production is limited in most WLT countries. For example, in India land available for kharif 

cultivation, after peaking at 84.1 million hectares in 1983, has been declining since the early 1990s and 

is down to 72.4 million hectares by 2006 (Figure 5B). The area under cultivation during the rabi 
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season, after expanding from 37 million hectares just before the Green Revolution, has not grown 

much since the late 1990s, when it stabilized around 50 million hectares. Further expansion of rabi 

crops and cropping intensification during the kharif season may likely be constrained by the current 

limits in the exploitation of existing water resources. Additionally, as urban population continues to 

increase, more land is converted from agricultural to housing and other urban uses [48,49] and so does 

competition for water from household and industrial consumers. 

There are a number of other environmental factors that could also be involved in the deceleration of 

food grain production and that have not been analyzed here. For example, overcoming nutrient 

limitations is essential for increasing food grain production in the WLT [3] and recent constraints in 

fertilizer availability and management could also be playing a significant role in the recent 

deceleration of food grain production that need to be further analyzed. Reductions in rice yields in 

India have been also linked to declines in solar radiations due to increasing atmospheric  

pollution [50,51], but it is not clear how spatially extensive this effect is. The future availability of 

longer time series of satellite observations may help better understand the impacts of air pollution on  

crop production. 

4. Conclusion 

In this study we provided a satellite-based, independent assessment of the declines in growth rates 

of food grain production in the countries of the WLT reported by crop statistics. We also analyzed 

some of the major environmental drivers involved in this decline, focusing on the case of food grain 

production of India, which shows the largest declines in the WLT.  

Agriculture in the WLT is strongly constrained by the availability of water, but long term changes 

in trends of precipitation cannot be consistently linked to the declining rates in food grain production, 

suggesting that other environmental factors, both known and unknown, play a major role. In India, 

time series of iNDVI along with land use and climate data suggest that there is a strong link between 

the deceleration of food grain production and the unsustainable use of water for irrigation. High 

population growth rates and rapidly developing economies demand ever increasing rates of food 

production. In India alone, a 50–100% increase in yields of major crops is required to achieve food 

security by the middle of the 21st century under the current population projections [52]. This will be a 

challenge for India and other WLT countries currently experiencing declining rates of production. The 

increasing competition for water foreshadows a growing food security concern that could be worsened 

by continued warming, the possibility of future increases in drought frequency, competing use of water 

from non-agricultural sectors, and loss of croplands to salinization, urbanization, and other uses.  

Observed increasing average temperatures and declines in cropland area are also found to 

temporally match the declines in relative growth rates of food grain production in India. Other 

important environmental factors such as limits imposed by nutrient deficiencies and pollution-induced 

decreases in solar radiation could also be involved in the decline. A similar country-wide spatially 

explicit comparison between data on fertilizer use and aerosols concentrations and patterns of declines 

of growth in vegetation greenness should be done to elucidate the roles of these factors on the 

stagnation of agricultural production in India.  



Remote Sens. 2010, 2                    

 

 

773

Acknowledgements  

We thank P. Aggarwal for critical discussion and comments on the manuscript. We thank C. J. 

Tucker for making available the GIMMS NDVI data. We are grateful for the reviewers’ comments 

which greatly helped improved the manuscript. This research was funded by NASA’s Earth  

Science Program. 

References and Notes 

1. Matson, P.; Parton, W.; Power, A.; Swift, M. Agricultural intensification and ecosystem 

properties. Science 1997, 277, 504-509. 

2. WRI. EarthTrends: Land: Irrigated Land, 2007. Available online: http://earthtrends.wri.org/ 

searchable_db/index.php?step=countries&ccID%5B%5D=0&theme=8&variable_ID=195&action

=select_years (accessed on 8 August, 2009). 

3. Cassman, K.G. Ecological intensification of cereal production systems: yield potential, soil 

quality, and precision agriculture. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5952-5959. 

4. Falkenmark, M.; Rockström, J.; Karlberg, L. Present and future water requirements for feeding 

humanity. Food Security 2009, 1, 59-69. 

5. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II 

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M.L., 

Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University 

Press: Cambridge, UK, 2007.  

6. The World Bank Group. Millennium Development Goals, 2004. Available online: http://ddp-

ext.worldbank.org/ext/GMIS/home.do?siteId=2 (accessed on 10 January, 2010). 

7. FAOSTAT, FAO Statistical Databases; Food and Agriculture Organization of the United Nations: 

Rome, Italy, 2009. Available online: http://faostat.fao.org. (accessed on 2 March, 2009). 

8. Funk, C.C.; Brown, M.E. Declining global per capita agricultural production and warming oceans 

threaten food security. Food Security 2009, 1, 271-289. 

9. Kumar, M.; Monteith, J. Remote sensing of plant growth. In Plants and the Daylight Spectrum; 

Smith, H., Ed.; Academic: London, UK, 1982; pp. 133-144. 

10. Kogan, F.N. Global drought watch from space. Bull. Amer. Meteorol. Soc. 1997, 78, 621-636. 

11. Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop 

production in the Yaqui Valley, Mexico: estimates and uncertainties. Agr. Ecosyst. Environ. 2003, 

94, 205-220. 

12. Hatfield, J.L. Remote sensing estimators of potential and actual crop yield. Remote Sens. Environ. 

1983, 13, 301-311. 

13. Quarmby, N.A.; Milnes, M.; Hindle, T.L.; Silleos, N. The use of multi-temporal NDVI 

measurements from AVHRR data for crop yield estimation and prediction. Int. J. Remote Sens. 

1993, 14, 199-210. 

14. Rouse, J.; Haas, R.; Schell, J.; Deering, D.; Harlan, J. Monitoring the vernal advancement and 

retrogradation (greenwave effect) of natural vegetation. In NASA/GFSC Type III Final Report; 

NASA: Greenbelt, MD, USA, 1974. 



Remote Sens. 2010, 2                    

 

 

774

15. Hill, M.J.; Donald, G.E. Estimating spatio-temporal patterns of agricultural productivity in 

fragmented landscapes using AVHRR NDVI time series. Remote Sens. Environ. 2003, 84, 367-384. 

16. Rasmussen, M.S. Assessment of millet yields and production in northern Burkina Faso using 

integrated NDVI from the AVHRR. Int. J. Remote Sens. 1992, 13, 3431-3442. 

17. Hochheim, K.P.; Barber, D.G. Spring wheat yield estimation for Western Canada using NOAA 

NDVI data. Can. J. Remote Sens. 1988, 24, 17-27. 

18. Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, 

R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 

1982 to 1999. Science 2003, 300, 1560-1563. 

19. Leemans, R.; Cramer, W.P. The IIASA Database for Mean Monthly Values of Temperature, 

Precipitation and Cloudiness of a Global Terrestrial Grid; IIASA Research Report RR-91-18; 

International Institute of Applied Systems Analyses: Luxemburg, Austria, 1991; p. 61. 

20. Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, 

M.; Reddy, G.P.O.; Turral, H.; Cai, X.L.; Vithanage, J.; Schull, M.; Dutta, R. Global irrigated 

area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote 

Sens. 2009, 30, 3679-3733. 

21. Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; 

Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; 

Gunasinghe, S.; Mohideen, S. A global map of rainfed cropland areas (GMRCA) at the end of last 

millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114-129. 

22. Season-Wise Area, Production and Yield of Foodgrains from 1966–1967 to 2007–08; Agricultural 

statistics at a glance 2008, Government of India: India, 2008. Available online: http://dacnet.nic.in/ 

eands/At_Glance_2008/pcrops_new.html (accessed on 10 January, 2010). 

23. Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate 

observations and associated high-resolution grids. Int. J. Climatol. 2005, 25, 693-712. 

24. Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, 

E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, 

multiyear, combined-sensor precipitation estimates at fine scales. J. Hydromet. 2007, 8, 38-55. 

25. Homogeneous Indian Monthly Rainfall Data Sets (1871–2006); Indian Institute of Tropical 

Meteorology: Maharashtra, India, 2008. Available online: http://www.tropmet.res.in/static_page.php? 

page_id=53 (accessed on 1 March, 2009). 

26. Homogeneous Indian Monthly Surface Temperature Data Sets (1901–2003). Indian Institute of 

Tropical Meteorology: Indian Institute of Tropical Meteorology: Maharashtra, India, 2008. Available 

online: http://www.tropmet.res.in/static_page.php?page_id=54 (accessed on 1 March, 2009). 

27. Tucker, C.J.; Pinzon, J.E.; Brown, M.E. Global Inventory Modeling and Mapping Studies; 

NA94apr15b.n11-VIg, 2.0; Global Land Cover Facility, University of Maryland: College Park, 

MD, USA, 2004. Available online: glcf.umiacs.umd.edu/data/gimms/ (accessed on 1 March, 2009). 

28. Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining 

FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops 

in a semi-arid region. Agr. Wat. Manag. 2007, 87, 41-54. 

29. Mid-Term Appraisal of 10th Five Year Plan (2002–2007); Planning Commission: New Delhi, 

India, 2005; p. 273. 



Remote Sens. 2010, 2                    

 

 

775

30. Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall 

in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. 

Climatic Change 1990, 17, 209-241. 

31. Land Use Statistics (District-Wise) 1998–1999 to 2005–06; Government of India: India, 2007. 

Available online: dacnet.nic.in/lus/dt_lus.aspx (accessed on 1 March, 2009). 

32. Dynamic Ground Water Resources of India (as on March 2004); Central Ground Water Board, 

Ministry of Water Resources: Faridabad, India, 2006; p. 126. 

33. State Wise Area Production & Yield Statistics (1996–97 to 2005–06); Government of India, 2008. 

Available online: http://dacnet.nic.in/eands/APY_96_To_06.htm (accessed on 15 July, 2009). 

34. Naraynamoorthy, A. Indian irrigation: five decades of development. Water Resour. J. 2002, 212, 

1-29. 

35. Shah, T.; Singh, O.; Mukherji, A. Some aspects of South Asia’s groundwater irrigation economy: 

analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh. Hydrogeol. J. 2006, 14, 

286-309. 

36. Shah, T. Groundwater: A global assessment of scale and significance. In Water for Food, Water 

for Life; Molden, D., Ed., Earthscan: London, UK, 2007; pp. 395-423. 

37. Döll, P.; Flörke, M. Global-scale estimation of diffuse groundwater recharge. Frankfurt 

Hydrology Paper 2005, 3, 26. 

38. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in 

India. Nature 2009, 460, 999-1002. 

39. Shah, T.; Roy, A.D.; Qureshi, A.; Wang, J. Sustaining Asia’s groundwater boom: an overview of 

issues and evidence. Natur. Resour. Forum 2003, 27, 130-141. 

40. Brown, L.R. Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables 

and Rising Temperatures; W. W. Norton and Company: New York, NY, USA, 2005; p. 239. 

41. Rosegrant, M.W.; Cai, X.; Cline, S.A. World Water and Food to 2025: Dealing with Scarcity; 

IFPRI: Washington, DC, WA, USA, 2002; p. 322. 

42. Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water 

availability for global food production: the potential of green water for increasing resilience to 

global change. Water Resour. Res. 2009, 45, W00A12, doi:10.1029/2007WR006767. 

43. Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, 

G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. 

Proc. Natl. Acad. Sci. USA 2004, 101, 9971-9975. 

44. Lobell, D.B.; Field, C.B. Global scale climate-crop yield relationships and the impacts of recent 

warming. Environ. Res. Lett. 2007, 2, 1-7. 

45. Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. 

Warming of the Indian Ocean threatens eastern and southern African food security but could be 

mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081-11086. 

46. Cane, M.A.; Eshel, G.; Buckland, R.W. Forecasting Zimbabwean maize yield using eastern 

equatorial Pacific sea surface temperature. Nature 1994, 370, 204-205. 

47. Kumar, K.K.; Rajagopalan, B.; Cane, M.A. On the weakening relationship between the Indian 

Monsoon and ENSO. Science 1999, 284, 2156-2159. 



Remote Sens. 2010, 2                    

 

 

776

48. Dowall, D.E.; Monkkonen, P. Urban Development and Land Markets in Chennai, India. Int. Real 

Estate Rev. 2008, 11, 142-165. 

49. Fazal, S. Urban expansion and loss of agricultural land—a GIS based study of Saharanpur City, 

India. Environ. Urban. 2000, 12, 133-149. 

50. Pathak, H.; Ladha, J.K.; Aggarwal, P.K.; Peng, S.; Das, S.; Singh, Y.; Singh, B.; Kamra, S.K.; 

Mishra, B.; Sastri, A.S.R.A.; Aggarwal, H.P.; Das, D.K.; Gupta, R.K. Trends of climatic potential 

and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crops Res. 2003, 80,  

223-234. 

51. Auffhammer, M.; Ramanathan, V.; Vincent, J.R. Integrated model shows that atmospheric brown 

clouds and greenhouse gases have reduced rice harvests in India. Proc. Nat. Acad. Sci. USA 2006, 

103, 19668-19672. 

52. Kalra, N.; Aggarwal, P.K.; Chander, S.; Pathak, H.; Choudhary, R.; Chaudhary, S., M; Rai, H.; 

Soni, U.; Sharma, A.; Jolly, M.; Singh, U.; Ahmed, O.; Hussain, M. Impacts of climate change on 

agriculture. In Climate Change and India: Vulnerability Assessment and Adaptation; Shukla, P., 

Sharma, S.K., Ravindranath, N.H., Garg, A., Bhattacharya, S., Eds.; University Press: Hyderabad, 

India, 2003; pp. 193-226. 

© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


	Decadal Variations in NDVI and Food Production in India
	Authors

	Decadal Variations in NDVI and Food Production in India 

