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ABSTRACT 

HISTORIC GENETIC DIVERSITY OF THE ENDANGERED 

WHITE ABALONE (HALIOTIS SORENSEN!) 


by 

Heather L. Hawk 


Master of Science in Marine Science 

California State University Monterey Bay, 2010 


In the 1970's, white abalone populations in California suffered catastrophic declines due 

to over-fishing, and the species has been listed under the Endangered Species Act since 2001. 

Genetic diversity of a modem population of white abalone was estimated to be significantly 

lower than similar Haliotis species, but the effect of the recent fishery crash on the species 

throughout its range was unknown. In this investigation, DNA was extracted from 39 historic 

and 27 recent dry abalone shells from California, and 18 historic dry shells from Baja California, 

Mexico. The DNA from the shells was of sufficient quality for the reproducible amplification of 

580 bp of the mitochondrial COl gene and 219 bp of the nuclear Histone H3 gene. Two COl 

haplotypes were distinguished, and no difference (p>0.05) was found between the nucleotide or 

haplotype diversity ofCalifornia's recent (n=0.001O; Hd=0.501) and historic baseline (n=O.OOlO; 

Hd=0.505) wild populations ofH sorenseni. However, COl diversity in the historic Baja 

population (n=0.0004; Hd=0.209) was significantly lower (p<0.05) than in California. This 

study demonstrates the importance of appropriate historic reference groups for threatened or 

commercially important species, and can aid captive breeding programs manage broodstock and 

re-introduction design. Stringent controls and treatments to eliminate surface DNA advocate an 

endogenous source for DNA extracted from shells, but the hypothesis that abalone DNA in shells 

was remnant of trapped epithelial cells during shell formation could not be verified by 

histological and fluorescent staining of decalcified abalone shell. 
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INTRODUCTION 

The white abalone, Haliotis sorenseni, is the deepest-living of eight northeastern 

Pacific Haliotis species, occurring between five and 60 meters, with highest densities 

below 40 meters (Cox 1960; Butler et al. 2006). They can live up to 40 years, reaching 

maximum lengths of 25 cm (Cox 1960; Tutschulte 1976). However, there is little to no 

information on the genetic variability of contemporary and historical populations of this 

species (Gruenthal and Burton 2005). Based on landing data during the peak of the 

fishery, Rogers-Bennett (2002) estimated a pre-exploitation population size of360,476 

adult white abalone; another estimate that used the amount of suitable habitat and 

population densities during the peak of the abalone fishery was up to 2.12 million 

animals in California (Hobday et al. 200 I). 

Their massive body sizes made white abalone a prized food item along with other 

similar species, including H. rufescens, and H. cracherodii. While the species had been 

collected since the 1850's, commercial and recreational efforts in the late 1960's and 

1970's utilized more advanced technologies, making the fishery a valuable resource, 

especially when populations of shallower species began to decline (Lundy 1997). 

Commercial landings reached a peak ofup to 144,000 lbs. in 1972-1974, then dropped to 

less than 1,000 Ibs. by 1978 (Hobday and Tegner 2000). Population densities failed to 

recover when the California Department ofFish and Game (CDFG) attempted various 

commercial and recreational take restrictions, so in March 1996 the fishery was closed in 

California (Hobday and Tegner, 2000). 

In California, unsustainable fishing practices may have driven the population 

densities so low that successful reproduction in the wild became unlikely. White abalone 

reproduce by external fertilization and releasing gametes during winter (Leighton 2000). 

Field and laboratory studies on H. laevigata have shown that fertilization is most likely to 

occur only among animals less than 2 meters distant (1 abalone m-2) (Babcock and 

Keesing 1999). Diving and submersible surveys confirmed that current populations were 

orders of magnitude lower than this requirement, even after the closure of the fishery. 

During the most productive years of the abalone fishery, densities of857 abalone ha- I of 

1 



habitat (0.09 abalone m-2
) were reported around Santa Catalina Island (Tutschulte and 

Connell 1988), and surveys in 1996-1997 and 1999 recorded densities of 1.17 abalone 
2 2ha- I (1. 17xlO-4 abalone m- ) and 2.73 abalone ha- I (2.73xlO-4 abalone m- ) (Davis et al. 

1998; Hobday et al. 2001). These surveys report few or no juveniles or individuals 

smaller than 15 cm, indicating that no significant recruitment has occurred since before 

the 1970's; it was estimated that by 2010 most of the remaining individuals would have 

died or become senescent (Hobday et al. 2001). Due to critically low densities, apparent 

recruitment failure, and continued destruction of habitat from human activity, it is evident 

that this species will not survive or recover without human intervention. Therefore, in 

2001 Haliotis sorenseni was listed under the Endangered Species Act throughout its 

range, from Point Conception, California, USA, to Punta Abreojos, Baja California, 

Mexico (66 FR 29046). 

Low population densities and subsequent recruitment failure likely led to reduced 

genetic variability of the white abalone species in California. A great loss in genetic 

diversity can potentially affect the reproductive potential and mortality of current, and 

future white abalone populations on a large geographic scope. The NMFS White 

Abalone Recovery Plan (2008) established several goals that would ultimately ensure 

self-sustaining H. sorenseni populations in the wild in California. These are to assess, 

monitor, and protect wild white abalone and their habitat, and to breed, rear, and outplant 

captive brood stock. Among the recovery actions are those that will alleviate the threat of 

reduced genetic diversity for wild and captive populations (NMFS 2008). Assessing the 

current and historical genetic differentiation among wild populations can help design the 

best captive propagation, field planting and translocation efforts that will maintain or 

rebuild the genetic structure of wild abalone in California (NMFS 2008: Actions 1.4 and 

4.2). 

In Baja California, green and pink abalone (H. fulgens and H. corrugata) comprise 

99% of the commercial landings, but white abalone remain legally harvested as a 

secondary species (CONAPESCA 2004). This 1% reported landing value (H. sorenseni 

and H. cracherodii combined) translated to 75,000 lbs. live weight annually caught 
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during the 1960's fishery peak, and an average of 1,800 Ibs.live weight annually since 

the 1990's (CONAPESCA 2004). The US Endangered Species Act of2001 does not 

have jurisdiction in Mexico, but fishery restrictions on size, number, season, and location 

have been in place for all Mexican abalone species since 1994 (CONAPESCA 1994). 

The white abalone is considered rare, yet populations are not as closely monitored as the 

green and pink species. Therefore, molecular techniques offer valuable data for this 

alternatively fished species, as populations of other species continue to decline. 

Assessing the genetic variation of species over time and space has helped 

conservationists predict the recovered populations of other abalone species. Miller et al. 

(2009) compared the genetic diversity ofHaliotis rubra in Tasmania, Australia, among 

populations in highly productive areas and those that experienced severe fishery 

depletion in the 1980's. Using seven microsatellite loci, they found that the recovering 

populations actually had much greater genetic diversity than the healthy areas, likely due 

to migrant recruits making up the largest proportion of individuals. While few wild white 

abalone recruits have been documented, knowing what variation may exist or existed 

historically will shed light on the potential for the recovery of the genetic variability in 

this species. 

To date, the only study of the current genetic variability in white abalone used the 

mitochondrial DNA genes cytochrome c oxidase subunit I (COl) and cytochrome b 

(CytB), along with one nuclear gene and five micro satellite loci, to verify species identity 

and to measure the genetic diversity in 19 adult wild-caught abalone from Farnsworth 

Bank near Santa Catalina Island, California, USA (Gruenthal and Burton 2005). Only 

two haplotypes of COl, one haplotype of Cyt B were observed, and over both 

mitochondrial genes (663 bp) there were four nucleotide sites that were phylogenetically 

informative to distinguish H. sorenseni from the most similar species, H. kamtschatkana 

and H. k. assimilis. 

Mitochondrial DNA markers are commonly used to analyze population structure and 

phylogenetics and to design breeding programs due to its high per-cell copy number, high 

mutation rate, and high stability over time relative to proteins and nuclear DNA 
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(Maynard et a1. 2005). Jiang et a1. (1995) found fixed differences in mtDNA hap10types 

between neighboring populations of Taiwan abalone (H diversicolor) and relatively low 

genetic variation in cultured stocks; Maynard et a1. (2005) has outlined the mitochondrial 

DNA sequence and gene organization in the H rubra genome. However, H sorenseni 

has shown much lower variability at the COl gene than other Haliotis species (Figure 1). 

Gruenthal et a1. (2007) found 43 haplotypes over 483 bp of the COl gene among 309 red 

abalone (H rufescens). In 2008, Gruenthal and Burton found 32 haplotypes over 403 bp 

of the same gene among 238 black abalone (H cracherodii). Both of these species also 

experienced population declines due to disease and overfishing and the black abalone was 

listed as endangered in 2009 (74 FR 1937), but their populations did not fall to such low 

numbers as with white abalone, and recovery actions have been more timely and 

successful (Micheli et a1. 2008). On the other hand, Clark et a1. (2009) observed 3 

haplotypes over 473 bp of the COl gene among 28 pink abalone (H corrugata) at one 

location in California. 

This evidence leads to the question ofwhether white abalone populations were as 

diverse historically as these other California species before exploitation, or if the species 

has gone through a longer-term decline in variability. Until recently, it seemed unlikely 

that enough historic samples existed to attempt to answer this question. Very few whole 

white abalone or tissue samples were kept (and not eaten or exported) before the end of 

the fishery collapse. Therefore, a different source of mitochondrial DNA must be applied 

if historic genetic information is to be revealed. 

Although the flesh of the abalone was consumed, harvesters often retained the large, 

pearly shells as keepsakes or for morphological studies (Cox 1960), many ofwhich 

remain as dried whole shells in museum and municipal collections, such as the Natural 

History Museum of Los Angeles County, the Santa Barbara Museum ofNatural History, 

the California Academy of Science, the Channel Island National Park Service, and 

NOAA Fisheries Service. However, the mollusk shell is not cellular tissue and is not 

generally thought of as a source of DNA. In abalones, it is made of two calcium 

carbonate layers secreted by the mantle at the lip, where it is protected by the 
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periostracum (Dauphin et al. 1989). The outer colored layer is made ofprismatic calcite 

crystals and is crack- and puncture-resistant, while the pearly white nacreous layer is 

accreted on the inside of the shell as layered aragonite tiles that are ductile and fracture­

resistant (Su et aL 2002; Zhao et aL 2004) 

Geller and Hawk (in prep) hypothesized that during the process of biomineralization, 

mantle epithelial cells could become trapped among calcium carbonate crystals where 

DNA might remain intact, albeit in very low concentrations, preserved for many years. 

They developed a novel method to extract, amplify via peR and sequence this 

"entombed" DNA from the shells of various gastropods and bivalves, including several 

Haliotis rufescense and one Haliotis sorenseni, supporting the hypothesis of endogenous 

DNA within mollusk shells. 

Because the DNA found in abalone shell is degraded, present in low concentrations, 

and is from an "unusual source", it bears similarity to "ancient" DNA Therefore, it is 

necessary to follow certain preparation criteria used in ancient DNA analyses to 

maximize DNA extraction success and control against contamination (Piiabo et aL 2004). 

In the last two decades, the analysis of ancient DNA has greatly contributed to the fields 

of paleontology, anthropology, molecular evolution, and conservation genetics because it 

allows the inclusion of long-deceased individuals and extinct populations in order to 

directly examine spatial and temporal patterns of genetic variation. Sequences have been 

obtained from Pleistocene mammoths, ground sloths and cave bears to subfossil and 

recent rodents and birds from materials such as dried tissue, bones, teeth, feathers, and 

egg shells (reviewed in Paabo et al. 2004; Oskam et al. 2010); in one noteworthy study, 

subfossil remains were used to examine the genetic structure and the loss of genetic 

variation in the endangered kiwi species ofNew Zealand since the arrival ofhumans 

(Shepherd and Lambert 2008). 

Although amplifiable DNA has been extracted from such varied sources, no previous 

studies to date have attempted to do the same with mollusk shells, probably because such 

skeletal material, which has neither cells nor DNA-enclosing organelles, would be 

regarded as an unlikely source of genetic material. Numerous studies have sought to 
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characterize the ultrastructure and chemical composition of mollusk shell with the most 

common purpose of understanding the processes of protein-mediated biomineralization. 

The first biochemical analyses of shell nacre showed ultrastructure, mineralogy, and 

chemical composition variation among bivalve, nautiloid, and gastropod shells (Mutvei 

1978)-even differences among Haliotis species (Dauphin et al. 1989). Since then, most 

studies have used electron microscopy (Watabe, 1963; Zhao et al. 2004), amino acid and 

protein sequence analysis (reviewed in Evans 2008; Zhang and Zhang 2006), and 

epithelial tissue histology (Jolly et al. 2004) to answer questions about shell structure, 

composition and production. 

Histochemical investigations into the macromolecular organization of mollusk nacre 

(Crenshaw and Ristedt 1976; Nudelman et al. 2006) have applied diverse color and 

fluorescent stains to identify calcium binding sites, carbohydrates, cellulose, chitin, 

glycoprotein, insoluble proteins, and polysaccharide groups in decalcified mollusk shells, 

including Haliotis sorenseni (Bezares et al. 2008). However, there have been no 

attempts, to date, to use similar histological methods to detect DNA in shell. The 

histological labels hematoxylin and eosin (H&E) are commonly used to stain cell 

structures and genetic material (Lillie 1965), and the fluorochrome 4', 6-diamidino-2­

phenyl indole (DAP!) is highly sensitive to double-stranded DNA (Invitrogen 2010). If 

amplifiable amounts of DNA can be extracted from shell material (Geller and Hawk in 

prep), then it should be detectable using these DNA-specific stains. 

OBJECTIVES: 

The goal of this investigation was to apply a novel method of DNA extraction on 

dried shell specimens collected from the 1930's to 2000 in order to measure the historic 

genetic diversity ofwild populations of the endangered and data-deficient Haliotis 

sorenseni, at the mitochondrial DNA gene COl, and compare it to estimates of 

contemporary genetic diversity. 
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Rarefaction curves of haplotype richness in two other California abalone species 

(Gruenthal et al. 2007; Gruenthal and Burton 2008) provide a basis for comparison to 

large commercially exploited Haliotis populations (Gruenthal and Burton 2005). 

Rejection of the null hypothesis (no change in diversity over time) would indicate that the 

fishery collapse is likely to have been the primary cause of a major genetic bottleneck. 

Failure to reject the null hypothesis-that genetic diversity among historic samples is not 

significantly greater than observed in contemporary specimens-would be evidence of a 

longer-term population decline or an undocumented bottleneck that occurred before the 

fishery ramped up. 

A secondary goal was to investigate the phenomenon of endogenous DNA in 

mollusk shell material, which makes the primary aspects of the present study possible. 

Three assays were used to verify the source and origin of the shell DNA. First, external 

sources of DNA were eliminated by chemical cleaning of shell pieces, with the 

hypothesis that H. sorenseni sequences could be obtained from shells after treatment, 

indicating that the DNA extracted from shells had been entombed within the shell layers. 

Second, non-tissue samples (water and mucus) were collected from a living H. rufescens, 

with the hypothesis that abalone DNA is present at and near biomineralization sites. 

Third, methods for H&E histological staining and DAPI fluorescent staining were 

modified to visualize DNA in abalone shell. 

METHODS 

1. DNA Purification from Shell 

1.1. Samples 

Dry shell specimens with known collection dates and locations (N=94) were 

acquired from California archive collections: 55 from Natural History Museum of Los 

Angeles County (NHMLAC), 27 from Channel Islands National Park Service (CHIS), 
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and 12 from Santa Barbara Museum ofNatural History (SBMNH). Shells were the 

remnants of adult individuals, 10 - 24 cm maximum length. Museum shells had been 

collected live between 1940 and 2008 by commercial, recreational, and scientific diving 

expeditions. Collection sites of the museum specimens were distributed throughout the 

species range (Figure 2). The shells fell into three distinct temporal groups: 16 

specimens were collected before the commercial fishing industry ("Pre-Fishery" 1940­

1959), 42 shells were collected during the fishery ("Fishery" 1960-1979), and 31 

specimens were collected after the fishery collapse ("Recent" 1993-2008). Table 1 

summarizes the distribution of samples through time over the species range. Shells 

obtained from CHIS were collected in 2008, at depth, around Santa Catalina Island 

(Farnsworth Bank and Eagle Rock); these shells were dead, heavily bio-fouled and 

eroded. The known growth rates of Crassadoma giganteum (Leighton and Phleger 1977) 

and Balanophyllia elegans (Fadlallah 1983) found on the inside of the shells were used to 

estimate that the mortality dates for these abalone were between 2003 and 2008. 

1.2. Shell Preparation 

Whole shells were first examined to identify the cleanest and most inconspicuous 

sampling location along the shell margin in order to minimize processing and preserve 

the features of the specimen. An area of about 2 cm2 was cleaned of visible encrusting 

organisms and cut using a handheld rotary device (Dremel). All cleaning and cutting 

took place either inside a clean fume hood or in a clean, well-ventilated outdoor location. 

To minimize contamination between specimens, all shells were handled inside clean 

Ziploc bags and cut with clean disposable slicing wheels. Disposable respirator, eye 

shield and gloves were worn for protection from fragments and hazardous shell dust. 

Shells were rinsed thoroughly with deionized water to remove remaining dust; museum 

shells were cut and rinsed on-site then transported to MLML in clean plastic vials. 
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1.3. Decalcification 

Shell samples were decalcified in 0.5 M EDTA chelating solution (PH 8.0) in 

sealed vials. This step took between 5 to 20 days depending on the fragment thickness 

and the degree ofbio-erosion. To decrease decalcification time, vials were constantly 

agitated on a rotating plate at 80 rlmin, and EDTA was replaced as necessary. 

Decalcification was complete when shell fragments became flexible and wholly 

translucent. To reduce material loss, samples were not fixed, but instead stored in EDTA 

solution. 

Alternative methods for shell processing were compared to this method, including 

pulverizing and grinding shell nacre, with and without decalcification steps. However, 

these experiments resulted in lower PCR success rates, and were not used for analysis 

(Table 2). Similarly, PCR success rate also increased when fragment size was increased 

to 2 cmz• These phenomena may be explained by the extremely high temperatures, due 

to friction from the Dremel tool, which can damage or denature DNA. 

1.4. Contamination Controls 

Contamination controls were applied where appropriate, following Pfifibo et al. 

(2004). Both DNA purification and PCR were performed on separate bleach-cleaned lab 

benches where abalone templates had never been processed, and samples were processed 

in small batches that included blank extractions as negative controls. Independent 

redundant DNA extraction and PCR were performed to verify results. In addition, shells 

for templates for which PCR initially failed were independently re-sampled, extracted, 

and tested with optimized PCR conditions to confirm the results. 

1. 5. DNA Extraction 

Several methods of DNA extraction were employed and compared (Geller and 

Hawk in prep), and the following DNeasy Blood and Tissue protocol (© 2011 QIAGEN, 
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Valencia, CA) yielded the greatest PCR success and was used throughout the study. The 

manufacturer's protocol for animal tissue was followed, with the following 

specifications. DNA was purified from 15-25 mg of decalcified shell material 

(corresponding to 150-200 mg of raw dry shell); samples were homogenized with 

sterilized pestles in 180 ul of Buffer ATL and 20 III proteinase-K. After an incubation of 

3 hours at 50° C, samples were centrifuged for one minute at 9.200 x g to pellet 

remaining solid matter, and the supernatant was transferred to spin columns. No change 

was observed in amount of solid matter after longer or overnight incubation, so 3 hours 

was adopted as the standard time for proteinase-K treatment. Finally, two 100 III eluates 

of purified DNA solution were combined for maximum yield. Nucleic acid concentration 

was measured for each template using the NanoDrop spectrophotometer (Thermo Fisher 

Scientific Inc.). 

2. peR & Sequencing 

2.1. CO! 

Abalone-specific PCR primers from Metz et al. (1998) were used to amplify a 580 

base pair (bp) fragment of the mitochondrial cyctochrome oxidase subunit one (COl) 

gene (AB-COIF Forward 5'-TGATCCGGCTTAGTCGGACTGC; and AB-COIR 

Reverse 5'-GATGTCTTGAAATTACGGTCGGT). Reactions were carried out in 50 III 

volumes using 1.2 III DNA template, 25 III 2x GoTaq® Green Master Mix (© 2011 

. Promega Corporation, Madison, WI) augmented to 2.5 mM MgCh final concentration 

and 0.04 mg/ml BSA, and 0.14 uM of each primer. Reactions were incubated at 94° C 

for 3 min prior to a cycling program of 1 min at 94° C, 1 min at 56° C, and 1.5 min at 72° 

C for 36-40 cycles. Positive PCR products were sequenced by Elim Biopharmaceuticals, 

Inc. (Hayward, CA). Low quality sequences or those with ambiguities were rerun with 

independent PCR and sequencing reactions. 

Sequences were aligned and edited to 539 bp with CodonCode Aligner 


(CodonCode Corporation, Dedham, MA). BLAST searches compared sequences to 
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existing GenBank data and confirmed sequences as COl from Haliotis. Sequences were 

aligned to the complete COl coding sequences ofH. rubra and H. tuberculata 

tuberculata (NCBI GenBank Gene IDs 2846698 and 8690458) and translated using the 

invertebrate (Drosophila melanogaster) mtDNA code to verify lack of stop codons or 

missense mutations indicative of pseudo genes. Haplotype inference was performed in 

Arlequin 3.5 (Excoffier et aL 2005) and diversity indices-including nucleotide diversity, 

re, and haplotype diversity, Hd-were calculated in DnaSP v5 (Librado and Rozas 2009). 

A neighbor-joining phylogenetic tree (Tajima-Nei method) of representative cor 

haplotypes from 27 Haliotis species was created in MEGA 4 (Tamura et aL 2007) to 

confirm species identities. To compare observed haplotype richness among four Haliotis 

congeners, rarefaction curves were generated in EcoSim (Gotelli and Entsminger 2010). 

For temporal and spatial comparisons, Haliotis sorenseni sequences were grouped 

by location (along the latitudinal species range) and by time (1940-1959 "pre-fishery", 

1960-1979 "fishery", and 2000-2008 "recent"). Spatial and temporal variation in 

haplotype frequencies were analyzed in PASW® Statistics 18 (IBM Corporation). 

Differences among diversity estimates were measured by comparing the intervals of two 

standard errors from each diversity index. 

2.2. Histone H3 

Haliotis-specific primers for the nuclear Histone H3 PCR gene Fl 

(GGCTCGTACCAAGCAGACGGC), RI (TCCTGCAGAGCCATGACGGC) and R2 

(GGTGACACGCTTGGCGTGGA) were designed based on alignments of seven species 

(GenBank accessions A Y923952 - A Y923958) using Primer3 (Rozen and Skaletsky 

2000) and IDT SciTools Oligo Analyzer 3.1 (Owczarzy et al. 2008). They correspond to 

nucleotide positions 76-96, 338-357, and 411-430 in the complete Histone H3 coding 

sequence ofH. discus discus (GenBank accession EFI03400). 

Three shell-extracted DNA templates and two of each H. rufescens, H. walallensis, 

and H. assimilis tissue-extracted DNA templates were amplified using combinations of 
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the Histone H3 PCR primers. Two of the shell templates (MYC93 & SCAOO) were 

selected because the mtDNA COl sequences suggested that they were not white abalone; 

the third shell template was selected as an exemplar ofH. sorenseni because of the high 

quality of the COl sequence it yielded. Reactions were in 50 JlI volumes, using 1.2 Jll 

DNA template, 25 1l12x GoTaq® Green Master Mix (© 2011 Promega Corporation, 

Madison, WI) augmented to 2.5 mM MgCh final concentration, 0.04 mg/ml BSA, and 

0.14 uMof each primer. Reactions were incubated at 94° C for 3 min prior to thermal 

cycling of 1 min at 94° C, 1 min at 56° C, and 1.5 min at 72° C for 36-38 cycles. 

Amplified products were sequenced, edited to 256 bp with Codon Code Aligner and 

aligned with eight congeneric Histone H3 sequences from GenBank in MEGA 4. Species 

identification was performed by including the sequences with all other published Haliotis 

Histone H3 data on GenBank on a neighbor-joining (lukes-Cantor method) tree in 

MEGA 4. 

3. DNA Source Experiments 

To test the hypothesis that abalone DNA extracted from shell material is 

endogenous, external contamination and surface DNA sources were eliminated using 

three cleaning treatments to shell fragments. Three 2 cm2 fragments were cut from one 

shell which had been previously sequenced using the standard method described above. 

Fragments were rinsed and sonicated for one minute in deionized water to remove 

particles from the surface. Each sample was then treated with one of the following at 

room temperature: A) 2 h soak in 10% formalin (museum grade); B) 2 h soak in 20% 

bleach (Paabo et al. 2004; Kemp and Smith 2005); and C) 5 min soak in 20% HCI, 

resulting in 55% shell dissolution by mass. Samples were then removed from the 

chemical baths and rinsed under running deionized water until neutral pH was achieved. 

The three cleaned shell pieces were decalcified in 0.5 M EDTA (PH 8.0), then DNA was 

isolated using the aforementioned modified DNeasy protocol. A 580 bp segment of COl 

was amplified from the three DNA templates and product length and quality was verified 

12 




using agarose gel electrophoresis. Successful products were sequenced then edited and 

aligned with H. sorenseni and H. rufescens reference sequences in MEGA 4. 

The hypothesis that significant quantities of abalone DNA are available to 

become entombed in the vicinity of the growing shell margin was investigated using one 

live H. rufescens. First, the inside of the shell was swabbed with filter paper. 

Approximately 5 III of fresh mucus was collected from the region of the inner shell and 

smeared onto a glass slide for microscopy. The same animal was rinsed by pouring 400 

ml of filtered seawater over its underside and into a beaker. The rinse water was 

collected and filtered through a glass microfiber filter. The modified DNeasy protocol 

was used to purify DNA from I cm2 of each filter paper. DNA from filtered seawater 

inflow and fresh tentacle tissue from the same animal were also purified as negative and 

positive controls. The 580 bp fragment ofcal was amplified and visible products were 

sequenced. Sequences were edited in CodonCode Aligner and aligned with H. sorenseni 

and H. rufescens reference sequences in MEGA 4. 

4. Histology 

Rectangular sections about 4 cm2 were cleaned of encrusting organisms and cut 

from the outer lip of one H. sorenseni shell and one H. rufescens shelL The samples were 

decalcified inside embedding cassettes in 0.5 M EDTA (PH 8.0), constantly agitated at 80 

r/min. Paraffin embedding, microtome sectioning, and glass slide mounting steps were 

performed by the Community Hospital of Monterey Peninsula histology lab (CHOMP, 

Monterey, CA). Longitudinal slices resulted in stratified serial 4 cm2 subsamples. 

Two slides from each stratum were stained with H&E stains by the CHOMP 

histology lab, slides were examined with compound microscopy, and images were 

captured and with Leica DFG FireCam (Leica Microsystems). One slide from each 

stratum was stained with DAPI according to manufacturer protocols (Gallardo-Escarate 

et al. 2005; Invitrogen 2010). The slides were examined using an epifluorescent 

compound microscope fitted with a DAPT filter cube, and images were captured using 
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Spot Digital Camera (Spot Diagnostic Instruments). Photomicrographs were scaled and 

compared in ImageJ (Rasband 2009), and shell structures and microorganisms were 

identified (Vogel et a12000; Nudelman et al. 2006; Gektidis et al. 2007; Bezares et al. 

2008). 

RESULTS 

1 Shell DNA 

1.1 DNA and Molecular Markers 

The method of purifying mitochondrial DNA from 94 white abalone shell 

specimens yielded 90 positive PCR products and 86 high quality COl mtDNA sequences 

(539 bp), a success rate of91.5% overall. The DNA yields for shell extractions were low 

(x=1091.50 ng, SD=802.67) but were still within the expected range of yields for tissue 

extractions (Figure 3). It may be noted that this value is an overestimate of target 

molecule concentration because DNA extracted from shell can include non-target 

molecules, including those from microendolithic bacteria, fungi, and sponges. 

Homozygous sequences of 282 bp of the nuclear Histone H3 gene were obtained for three 

H. sorenseni shell templates using the FIIRI primers; and a 355 bp homozygous 

sequence was obtained for the H. rufescens tissue template using the FIIR2 primers. 

1.2 Control Experiments 

After treatment, the bleached shell appeared to have only slightly less color on the 

outer prismatic layer, and no change in mass. After 5 minutes in 20% HCl, 55% 

dissolution by mass was observed, and the outer layers of the shell were visibly 

diminished and bleached in color. No change was detected in either the color or mass of 

the formalin-soaked shell. Positive COl PCR products were obtained from all three 

treated shell fragments, and the sequences matched with the untreated, independently 

processed H. sorenseni shell (FB20). This experiment supports the hypothesis that DNA 
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obtained from shell samples originates from within the layers ofthe shell and not from 

surface sources. 

Verified COl PCR products were obtained from DNA purifications of H. 

rufescens tissue, shell swab, and seawater rinse; no product was observed from the inflow 

water extraction. The three successful products had the same sequence, which was one 

H rufescens haplotype not previously observed in our laboratory. In addition, the 

unstained mucus slide revealed several cell types under 20X magnification. While the 

cells were not qualified as abalone or otherwise, this experiment showed that abalone 

mucus harbors not only visible cells, but also high concentrations ofDNA in the 

immediate vicinity of shell mineralization sites. 

2 COl Analysis 

2.1 Identification & Phylogeny 

Using BLAST and phylogenetic methods, 84 ofthe shell COl sequences were 

identified as H. sorenseni, including five shells obtained from a Morro Bay shell shop in 

1966. However, one sequence from a shell collected in Monterey County in 1993 and 

morphologially identified as H. sorensensi most closely matched H. walallensis 

(GenBank accession A Y817716), which was different from H. sorenseni at 6 nucleotide 

sites (of539); and one sequence from a shell collected in "southern California" in 2000 

matched H. kamtschatkana or H. assimilis (GenBank accessions AF060845 and 

AY817709), which were different from H. sorenseni at 4 shared positions (Table 3). 

The neighbor-joining phylogenetic tree generated using representative COl 

haplotypes of 27 Haliotis species showed the close relationship of eastern Pacific abalone 

species, and distinguished three clades (Figure 4). The agreement ofthese relationships 

with previously published phylogenies using ITS (Coleman and Vacquier 2002), COl and 

16S (An et aL 2005), and COIl (Degnan et aL 2006), genetic markers and multi-gene 

Protein Gel Electrophoresis (Brown and Murray 1992) further confirm the white abalone 

species identity of the sequences produced in this experiment. However, the 
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phylogenetic relationships among the larger clades and other species worldwide could not 

be inferred with sufficient power (p > 0.5). 

2.2 Genetic Diversity 

In the full 539 bp sequenced, two haplotypes were observed among the 84 H. 

sorenseni shell samples, distinguished at site 236 by a single synonymous transition. For 

analysis, a 403 bp section (sites 84 - 486) was extracted in order to standardize sequences 

to published data of three congeners (Gruenthal et al. 2007; Gruenthal and Burton 2008; 

Clark et al. 2009). 

The null hypothesis of no difference in diversity (Figure 5) among the historic 

1940-1959 and 1960-1979 populations [n=0.S30 (n=12, S.E.=0.022) and n=0.513 (n=27, 

S.E.=O.007) respectively] and the 2000-2008 population [7t=O.SOI (n=27, S.E.=0.008)] of 

H. sorenseni in California could not be rejected (p»O.OS). No recent samples (after 

1971) were obtained from Baja California, Mexico, so regional comparisons were 

conducted for historic (1940-1972) populations only. The haplotype diversity was 

significantly greater (p<O.OS) in historic California populations than in historic Baja 

California populations [n=0.503 (S.E.=0.006) and n=0.209 (S.E.=0.027) respectively]. 

The difference in diversity estimates between California and Baja is explained in 

part by the small sample size from northern Baja and the observation of only one 

haplotype among samples (n=IS) south of30oN, which represents 38% of the latitudinal 

range of the species (Figure 6). In a hypergeometric distribution, the probability of 

collecting IS white abalone of haplotype C without encountering any other haplotype is 

2.72xl0-6
; therefore, the historic Baja California white abalone population represented a 

separate stock than the more northern populations. 

Among all 84 samples, the two haplotypes exhibited nearly equal frequency 

(nJ=40, nz=44) with low and even diversity (n=0.0012S; Hd=O.SOS). Within the 403 bp 

subsample, the nucleotide, n, and haplotype, Hd, diversity ofH. sorenseni was 

significantly lower (p<O.OS) than both H. rufescens and H. cracherodii (Figure 7). 

16 



To correct for unequal sample sizes among species, rarefaction curves were 

generated with 1000 iterations for haplotype richness (SH) as a function of sample size 

(Figure 8). Data from H. rufescens (n=309) and H. cracherodii (n=238) (Gruenthal et al. 

2007; Gruenthal and Burton 2008) predicted 14.4 and 18.5 haplotypes in a sub-sample of 

84 individuals. The curve for 28 H. corrugata (Clark et al. 2009) was fitted to a 

logarithmic model to predict 3.6 haplotypes in a sample of 84 abalone. 

This interspecies comparison suggests that larger sample sizes are needed for H. 

rufescens and H. cracherodii, as data for neither species approached an asymptote. An 

asymptote for a rarefaction curve would indicate a representative sampling of a 

population, when further sampling is unlikely to yield more variation. The population of 

H. sorenseni reached an asymptote of two haplotypes; further sampling of this species is 

unlikely to reveal additional haplotypes. The small sample ofH. corrugata suggests an 

asymptote of 3-4, but this may be because all samples were taken from one location. 

3 Histone H3 Analysis 

When edited to 256 bp and included with 8 worldwide congeners on a Jukes­

Cantor neighbor-joining tree (Figure 9), the eastern Pacific species clustered similarly to 

the COl phylogeny. The sequence for shell SCAOO was identical to both H. assimilis 

sequences and to that of the published H. kamtschatkana data. Therefore, SCAOO was 

clearly not a white abalone, and the museum specimen may be relabeled as such. 

The MYC93 shell sequence was identical to that of the H. sorenseni exemplar 

shell, and they were different from the two identical H. walallensis sequences by one 

transition (Table 4). More data are required to determine which relationship-COI or 

Histone H3-is more indicative of species identity, or whether the shell truly represents a 

rare hybrid. 
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4 Histology 

The H&E stain was used to color nuclei blue and other cellular structures red. 

This method revealed aspects of the shell intralamellar sheath as well as a diversity of 

microorganisms such as fungi, algae, sponges, bacteria, and Archaea (Figure lOa). 

Fluorescent microscopy using DAPI staining proved a more sensitive method to 

visualize microscopic details in decalcificed shell sections. When excited with ultraviolet 

light (~360nm), the blue emission (456-460 nm) revealed microorganisms with less 

obstruction from structural shell proteins (Figure lOb). Despite the high resolution for 

detecting micro-endolithic life forms, abalone cells and DNA were not specifically 

identifiable using this approach, as non-specific binding cannot be rejected. 

Certain structures, visible using both H&E and DAPI staining methods, remained 

unidentified (Figure lOc). They consisted of clusters of many 2 - 5 urn structures, 

possibly nucleated cells, surrounded by scale- or plate-like tiles, interpreted as 

undecalcified remains of nacre. It was beyond the scope of this assay to definitively 

identify the cells as animal, bacterial, or otherwise. Therefore, neither staining assay was 

able to support or refute the hypothesis that amplified DNA originates as sloughed-off 

cells, nuclei or mitochondria entombed within the shell matrix. This assay underlines the 

need for an abalone-specific fluorescent in situ hybridization (FISH) probe, which could 

be used with a DAPI counterstain to distinguish specific abalone genes from the 

microorganism "noise" encountered in this study. 

DISCUSSION 

1. DNA in Shells 

Mitochondrial and nuclear DNA was successfully extracted, amplified via PCR, and 

analyzed from fresh and historic abalone shell specimens-some as old as 70 years, 

others having decayed on the sea floor for several years. The low spectrophotometer 

readings and high number of cycles needed for PCR success imply that DNA in abalone 

18 




shell material is in very low quantity, yet this study shows that it still exists in sufficient 

abundance and quality to be useful for genetic analysis. The shell decontamination and 

chemical cleaning experiment, as well as precise matching ofhaplotypes in shell and 

tissue samples, indicate that DNA amplified from shell samples originated from within 

the shell and not from the shell surface or laboratory contamination. However, the 

presence of microorganisms within shells prevented the identification of stained DNA in 

shell sections as originating from abalone. The presence of abalone DNA swabbed from 

the inner shell of a living abalone, shown here, is a necessary precondition of the 

entombment hypothesis. Alternative methods using abalone locus-specific fluorescent in 

situ hybridization (FISH) probes may be the most effective means of visualizing the 

distributions of entombed abalone DNA. 

Only four of the 90 positive PCR products resulted in poor quality sequences, and it is 

suspected that this was caused by co-amplification of damaged or non-target molecules. 

Among the four additional shells for which PCR product was not obtained, two were 

collected dead at Eagle Rock near Santa Catalina Island and were among the shells with 

the highest levels of erosion and infestation ofboring organisms; the other two shells 

were museum specimens with no observable damage. Erosion and endolith load may not 

be the only factors responsible for extraction or PCR failure. Shell grinding and cutting 

experiments suggested that exposure to high temperatures could further damage 

entombed DNA molecules. Similarly, failed attempts at PCR using H. rufescens shells 

used decoratively in landscaping (data not presented) suggests that UV damage from sun 

exposure may also affect the success rate. Further investigation into variables affecting 

quality ofDNA in mollusk shells is needed to verify these speculations. On the other 

hand, this study sequenced DNA from several shells that had been in a museum for over 

60 years, yet it remains unknown how long genetic material may remain preserved in 

shells. 
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2. COl Phylogeny 

The relationship of the white abalone with closely related red and northern species 

is apparent in the COl cladogram, and other works using ITS (Coleman and Vacquier 

2002) and combined COl and CytB (Gruenthal and Burton 2005), agree that H. sorenseni 

and H. kamtschatkana are the most similar to each other. However, this COl phylogeny 

incorporates newly published COl sequences and offers several new perspectives of the 

Haliotidae of the eastern Pacific. Three main eastern Pacific clades were distinguished, 

. although hierarchical relationships were weakly supported. Green and black abalone 

grouped as one distinct clade (C), while pink abalone were found to be most closely 

related to four western Pacific species (B), H. gigantea, H. madaka, H. discus, and H. 

discus hannai. 

The close relationship between the two New Zealand species, H. iris and H. virginea, 

and the Australian species H. laevigata and H. rubra paralleled findings from latest COIl 

analysis of southern hemisphere species (Degnan et al. 2006). Outside ofNorth America, 

the COl tree grouped most species with less than 50% bootstrap support, but the Degnan 

et al. (2006) Bayesian MCMC COIl tree was better capable of defining the phylogenetic 

structure of many other Haliotis species. The COl sequence used in this study is only 3% 

of the length ofthe entire Haliotis mitochondrial genome, and longer sequence fragments 

or additional markers would add to the resolution of these relationships. 

3. Species Barcoding with COl 

COl is a commonly used "barcoding" marker because it can distinguish most 

invertebrate species (Hebert et al. 2003; Schander and Willassen 2005); in this study, 

forty shells were observed to have one H. sorenseni haplotype, and 44 shells had a 

second H. sorenseni haplotype. Both had been previously published, and no other COl 

haplotypes are known for this species. Alignment with all known abalone COl sequences 

showed that the two haplotypes were unique to the species, which is a premise of the 
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barcoding method. Mollusk shells could provide an important new source for such 

barcoding markers in situations where tissue cannot be sampled or when morphological 

characteristics are insufficient, such as poached shells, historic and museum specimens, 

and predator stomach contents. Shell sampling may also prove a less invasive sampling 

method for large scale sampling of historic and live populations of other threatened, 

endangered-such as California's black abalone (NMFS 2009)-and recently extinct 

mollusk species, (Regnier et al. 2009, IUCN 2010). 

4. COl Diversity 

New techniques for extracting and amplifying DNA from shell material were 

successfully applied to provide a historic baseline to which genetic diversity of recent 

endangered populations could be compared. This study also underlines the importance of 

using the most appropriate reference group when dealing with depleted and endangered 

species (Matocq and Villablanca 2001). Using only current populations of the two well­

studied congeners (H. rufescens and H. cracherodii) as references would have lead to the 

assumption that the recent fishery crash was the direct cause of the lack of genetic 

diversity in the white abalone. However, comparison ofhistoric and recent populations 

ofH. sorenseni indicates that low genetic diversity is historic and not associated with the 

most recent population decline. The red and black abalone were affected by the most 

recent anthropogenic overharvesting on an even larger scale than the white abalone, but 

both species occur at shallower depths and therefore have different histories of 

exploitation by humans and animals. Similarly, the historic lack of genetic diversity of 

the white abalone cannot be used to calibrate changes in genetic diversity of other 

species. Current diversity estimates among abalone species is variable, so comparable 

historic studies are needed in order to reach solid conclusions for each. 

A historic lack of diversity means that population declines will not be reflected in 

changed genetic diversity. Overharvesting caused a demographic crash in populations of 

H. sorenseni to the extent that successful reproduction may not have occurred since the 
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1970's (Hobday and Tegner 2001), but in the absence ofmtDNA diversity to erode, no 

genetic decline was observed. It is not known why or how long this species has been 

genetically depauperate, relative to similar species, and it may be indicative of a long 

term decline in population size and viability. Although Withering Syndrome has plagued 

other abalone species in recent times, it has not been found at significant frequency in 

white abalone; other undocumented events or cryptic bottlenecks may have governed 

modem genetic diversity (Luikart et al. 1998). Haliotis sorenseni relies on drift algae 

imported from shallower kelp forests, so populations of this sedentary species may have 

been susceptible to starvation events in response to climate-driven fluctuations in kelp 

forest resources known to have occurred over the last 20,000 years (Graham et al. 2010). 

Plausibly, prehistoric population bottlenecks may have diminished diversity 

without sufficient recovery time prior to recent over-exploitation. The historic viewing 

frame of this investigation spanned 70 years, but the species has been around for up to 2 

million years (Metz et al. 1998). It is possible that the populations considered "historic" 

in this study are the descendents of survivors of previous or ancient bottleneck events. In 

addition to bottlenecks, the same mechanisms that drive the habitat limits (Tutschulte 

1976; Leighton 1972; Davis et al. 1998) may have suppressed genetic diversity 

throughout this species' history by curbing population densities. Diploid nuclear markers 

might provide a better signature of the historic decline in popUlation size. This long term 

perspective may offer one reason for optimism: ifpre-fishery abundance estimates of 

white abalone are correct, then ancient populations apparently recovered to large size 

despite limited genetic diversity. 

The addition of data from nuclear gene or micro satellite markers would 

supplement this analysis, yet the low historical mtDNA diversity remains a significant 

pattern. Low genetic diversity in declining popUlations is associated with inbreeding and 

introgression, which can reduce a population's long-term survival (A vise 1994). The pre­

fishery baseline estimate of genetic diversity for this species underscores the importance 

of management programs that include genetic monitoring of threatened species and those 

of ecological and commercial importance. Today's monitoring data will be tomorrow's 
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baseline reference set, and the infonnation could prevent, or in any case record, genetic 

changes in populations. In particular, understanding humans' effects on the genetic 

diversity of commercially exploited species will help conservation and resource 

management programs make infonned decisions about restoration, protection, or 

sustainable use. Although amplification of microsatellites was not attempted using shell 

DNA, such markers have been studied using other non-traditional DNA sources and may 

provide potential markers to detect species bottlenecks (Menotti-Raymond and O'Brien 

1993) and aid in monitoring programs (Luikart et al. 1998). 

This study is one ofmany examples of the invaluable resources that museum 

collections supply for conservation genetics. However, the drawback of relying solely on 

museum specimens lies in uneven sampling due to sample availability; collections house 

representative specimens, but do not have the capacity to hold samples without limit from 

all collection dates and locations. The museum specimens used in this study were 

collected by scientific expeditions or recreational and commercial divers, and may have 

been biased toward adults within size ranges defined by landing requirements. However, 

white abalone habitat is not as cryptic as similar species (Laffertyet al. 2004) so ease-of­

capture bias is not considered likely. Growth rates based on bomb radiocarbon (6.C-14) 

analysis (Andrews et al. in prep) indicate that individuals between 10 and 24 cm were 

between 10 to 40 years old, which allows for the inclusion ofmUltiple generations within 

the any sample population. The groups of shells collected dead around Santa Catalina 

Island were no doubt biased toward larger specimens that were most readily detected by 

ROV surveys. The amount and source of sample bias in this study may be considerable, 

but the infonnation gained from the shells remains significant. 

Regardless of the small sample size, the observation of only one mtDNA 

haplotype in the southern one-third of the species' range is a significant finding, since 

elsewhere the haplotypes occur at nearly equal frequencies. More infonnation on the 

natural history and connectivity of white abalone in Baja California is necessary to 

understand this phenomenon; natural populations ofwhite abalone may exhibit cryptic 
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differences at southern latitudes, and this should be taken into account for recovery and 

re-introduction programs in both countries. 

5. Histone H3 

Two museum shells which had been morphologically identified as H sorenseni 

grouped with the sympatric species H kamtschatkanalH assimilis and H walallensis at 

the COl gene. Because the mitochondrial COl gene is known to be maternally inherited 

in white abalone (Gruenthal and Burton 2005), the marker could not be used alone to 

determine if the individuals were misidentified or if they were interspecific hybrids. 

Morphological features are known to vary within abalone species (Leighton 2000; Owen 

2005a,b) and many of the eastern Pacific abalones have been hybridized in the lab (Owen 

et al. 1970). As a nuclear gene, Histone H3 is expected to be biparentally inherited, and 

thus capable of distinguishing an FI hybrid individual with parents of different species. 

Both COl and Histone H3 sequences confirmed that the specimen SCAOO belonged to H. 

assimilislH. kamtschatkana. The museum shell MYC93 grouped with H walallensis at 

the COl but its Histone H3 sequence was identical to H sorenseni. 

With the help of additional morphologic examination, the two molecular markers 

succeeded in recognizing two museum collection oddities. The misidentification of 

mollusk species and hybrids poses threats to conservation efforts (Supernault et aL 2010), 

and the data collected from shell DNA may greatly increase the accuracy of future 

estimates of species abundance and diversity, poaching litigation, and museum studies. 
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TABLES & FIGURES 


Table 1. Distribution of shell samples through time and over the species range. 


I Samples 
Pre-Fishery 
1940-1959 

Fishery 
1960-1979 

Recent 
2000-2008 

Total 

California N 3 7 4 14 
California - S 10 16 27 53 

Baja N 
Baja- S 

1 
2 

3 
16 

-
-

4 
18 

! 

I 

Unknown 

Total 
-

16 
-

42 
-

31 
5 

94 
I 

I 

Table 2. Comparison of success rates among alternative methods of processing abalone 

shells. 

Amount Number Success
Amtount P'f NumberHali~tis Qt.Shell ID Method 	 EDTA? Extracted oSllve Rate

SpecIes i • Shell (mg) PCR Sequences(mg) (%) 
I 

Ground 15mg No 15 0 

Nelda Hl1lf i 1 

0 0Nelda Hl1lf 11 

0 

Nelda Hruf 

Ground 25mg No 25 0 0 

I 0Ground 50mg Yes' 50 I 0 

Cut 284 (0.2m2) Yes' <250Nelda Hl1lf I 00 0 

Cut 150 (0.2m2) Yes· <250SWCl,2 Hruf 2 1002 2 

EROI-06 Hsor Cut 150-200 (0.2m2) Yes· <2506 2 2 33 


EFB18-20 Hsor 
 Cut 150-200 (0:2m2) Yes' <2503 I 1 33 

Nelda Hruf I Cut 1,200 (2cm2) Yes' 15-25 I I 100 

EROI-06 Hsor 6 Cut ~730 (2cm2) Yes' 15-25 5 5 83 

FB12-16 Hsor 5 Cut -730 (2cm2) Yes· 15-25 1005 5 
i 

Museum & 
Hsor 94 Cut 580-800 (2cm2) Yes· 15-25 90 86 91CHIS Shells 

I I 
, 	 . . a. 	 DecalcificatIOn In 0.5 M EDT A reduces raw shell matenal to about 1/10 ,tn ofthe ongmal mass . 

b. 	 All of the decalcified shell was used for DNA extraction, biltamounts varied because the fragile 
material fell apart easily and significapt material was lost in some cases. 
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Table 3. Mitochondrial DNA cor sequence variation among four California Haliotis species. 

Species ID GenBank Accession I 
, 34 40 52 115 124 

COl site (of 539 bp) 

130 148 151 223 236 265 271 436 437 

H.sor 

H.sor 

SBC40a 

BMX47 

G A G T A T A G G C 

T 

T G C C 

H.wal 

H.wal 

" 

Hap! 

Hap2 

MYC93" 

AF060846 

AY817716 

G 

G 

A 

A 

C 

C 

G 

G G 

A 

A 

A 

G 

G 

G 

A 

H.assim 

H.assim 

H.assim 

H.kam 

H.kam 

" 

Hap! 

Hap2 

Hap3 

Hap! 

Hap2 

SCAOO" 

AY817708 

AY817713 

AY817709 

AY923920 

AF060845 A 

A 

C 

C 

C 

C 

A 

A 

A 

A 

T 

T 

T 

T 

T 

T 

T 

Table 4. Nuclear Histone H3 sequence variation among six California Haliotis species. The 

cor grouped MYC93* with H. walallensis, while its Histone H3 sequence is identical to H. 

sorenseni. The SCAOO* shell matches H. assimilislH kamtschatkana at both genes. H 

rufescens, H. corrugata, and H. virginea are used as outgroup species to illustrate the low level 

of variation at this locus. 

Histone H3 (256 sites) 

Species ID 62 158 209 251 

H. sor SBC40a T T C T 

" MYC93 " 

H.wal Hwa! & 2 C 

H.kam AY923920 C C 

H. assim Has! &2 C C 

" SCAOO" C C 

H. ruf HruITent C T C 

H. corr FJ977736 C C C 
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Figure 1. Comparison of nucleotide diversity estimates among recently published California 

abalone populations at COL Vertical bars indicate two standard errors ofthe means. X's 

correspond to the left-hand Hd axis, and red -'s correspond to the 1t axis on the right. 

Significantly lower diversity was observed at COl mitochondrial gene in the 2005 H. sorenseni 

population than in other species. *Note: estimates are not standardized to the same length, but 

all cover approximately the same gene region. 

0.006 

. e 

wX 
V')-	 0.005 
N 
+1 ...X 

0.004 	 t: 
>.......­
U') 

*
-
' ­0.003 	 Q) 

e-> 
0 
Q)

0.002 -C.­.....
t 	 0 

(1)-0.001 	 U 
::::l 
Z+ 

0.000 
H. sorensen i H. rufescens H. cracherodi/ H. corrugata 

n::: 19 n::: 309 n::: 238 n = 28 

~ &. o~ ~. 
~.....o b e,v", ~ ~~ ~4J e,v", ~~ Oy';;; Cj(J & 



35 

300 N 

200km 

Figure 2. Range map ofH. sorenseni along California and Baja California, Mexico. Light line 

indicates the range edges, including presumed locations based on depth and habitat availability. 

San Pablo & Isla La Asuncion (SPA) n=6; Isla Carlos.to Bahia San Bartolome (CSB) n=12; Isla 

San Geronimo (ISG) n=1; Islas San Martin (ISM) n=2; South of Ensenada (ENS) n=1; San 

Diego (SDC) n=2; San Clemente Island & outer banks (SCI) n=8; Santa Catalina Island (CTI) 

n=36; Santa Barbara Island (SBI) n=9; Northern Channel Islands & Mainland (NCI) n=9; Point 

Conception (PTC) n=3; Morro Bay Shell Shop (MRB) n=S. 

http:Carlos.to
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Figure 3. Frequency histogram of DNA extraction yield (ng) from abalone shells (H. sorenseni, 

H. rufescens; n=l25) and abalone tissue (H. rufescens, H. walallensis, H. assimilis; n=14). 

Frequency values for tissue samples are expressed on the negative axis. No H. sorenseni tissue 

samples were processed. 
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Figure 4. Mitochondrial COl 

cladogram of 27 Haliotis species. 

Tajima-Nei neighbor-joining 

consensus tree from 5,000 bootsrap 

replicates and 354 positions. Branches 

with agreement <50% are collapsed. 

Brackets indicate the common names 

of eastern Pacific species, and 

geographic range for all others. The 

boxes indicate the two shells of 

uncertain identity. Two haplotypes 

were observed in 84 H. sorenseni 

shells and two shells (MYC93 and 

SCAOO) grouped most closely with flat 

or pinto and threaded species, 

respectively. 
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Figure 5. Nucleotide diversity (n) and Haplotype diversity (Hd) ofH sorenseni across time in 

Baja, MX, and California, USA using 403 bp ofCGl mitochondrial gene. Vertical bars indicate 

two standard errors of the means. X's correspond to the left-hand Hd axis, and red -'s 

correspond to the n axis on the right. Overall, diversity in Baja remains significantly lower than 

in California, and no change in diversity was observed over time in California. 
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o Haplotype T 

• Haplotype C ShenShop ~ 

California 

Baja, MX 

Total 
H. sorenseni 200km 

Figure 6. Haplotype Distribution Map. Proportions of two H sorenseni COl haplotypes 

distributed along species range. Total of 84 shell samples was divided by country, and then by 

northern and southern regions of each. The five samples from a Morro Bay shell shop, located in 

San Luis Obispo County in California, were excluded from spatial comparison because 

collection locations were unknown, but since they were collected (legally) in 1966-prior to 

peak landing years-and most of them were haplotype I (blue), they were most likely collected 

in the southern Channel Islands, where this haplotype predominates. 
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Figure 7. Comparison ofnucleotide (TC) and haplotype diversity (Hd) of historic and present 

populations of H. sorenseni and recent populations of other Haliotis species. Vertical bars 

indicate two standard errors of the means. X's correspond to the left-hand Hd axis, and red -'s 

correspond to the TC axis on the right. Diversity estimates are based on sequences standardized to 

the same 403 bp COl gene sequence. 

Panel C shows the variability of levels ofdiversity among other California abalone, Haliotis 

rufescens (Hruf), H. cracherodii (Hcrach), and H. corrugata (Hcoer). 
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Figure 8. Haplotype richness rarefaction curves of four species of abalone, as a function of 

population size, n. For a sample size of 84 individuals ofH rufescens and H cracherodii 

(Gruenthal et al. 2007, Gruenthal and Burton 2008), an average of 18 haplotypes was predicted 

(X), with 95% confidence intervals extending from 13-22 haplotypes. A loglinear model fitted 

to one population of28 H corrugata from Point Lorna, CA (Clark et aL 2009) predicted 3.6 

haplotypes in a sample of 84 pink abalone. The solid Hsor line shows that in a sample size of 84 

white abalone, two haplotypes were measured, which is consistent in name and number with the 

findings of Gruenthal and Burton (2005), in a sample of 19 white abalone (0). 
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Figure 9. Nuclear Histone H3 Neighbor-joining cladogram of 12 Haliotis species over a 256 

nucleotide sequence length. Tajima-Nei method, 80,000 bootstrap replicates. Linearized 

assuming equal evolutionary rates in all lineages, and branch lengths are equal to the number of 

base substitutions per site. The placement of SCAOO with H assimilislH kamtschatkana 

concurs with the COl relationship, whereas the MYC93 Histone H3 sequence is identical to that 

ofH sorenseni rather than H walallensis. Nodes for H assimilis and H walallensis each 

represent two identical sequences from separate specimens. 
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BA 

• 

Figure lOa. H& ~ Stain. A) Red abalone shell, with algal cell and intralamellar membrane 

strucrure. B) Irregulari ties in intra lamellar membrane in red abalone shell. C) Diatoms and other 

organism amid bi -eroded prismatic layer ofwbite abalone shell . D) Boring algal and fungal 

cells within middle nacrcou layer ofwhitc abal ne shell E & F) Examples of possible boring 

sponge exploratory twmel . 
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Figure lOb . DAPI Stain. A & 8) Examples of boring organi ms including a mix of green 

algae, cyan bacteria, and fungal cells . C) Cross section of what is believed to be a small tunnel 

made by a boring sponge . D) Intralamell ar membrane with evidence of [nicro rganisma l bio­

erOSI.OI1. 



45 

Figure lOco Other stained strucnlres. Some strucures in the hell were not specifically 

distinguishable as belonging to any particlular taxon, and it is not known whether these common 

tructures are artifacts of the embedding or staining proce ses. 
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DNA SEQUENCES 
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Title: Haliotis sorenseni COl, haplotype C 
Gene: mitochondrial cytochrome c oxidase subunit 1, partial cds 
Length: 539 bp 
Source: mitochondrion Haliotis sorenseni 
Organism: Haliotis sorenseni. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
act cag tct ttt aat tcg ggc cga act tgg cca gcc agg agc act ctt ggg gga cga cca act cta taa cgt 
~~~~~~ttt~~~~~~~W~~~~~~ill~~~ 
act ggt ccc ttt aat att agg ggc acc aga cat agc ctt tcc ccg act aaa taa cat aag att ctg act cct 
tcc gcc atc ctt aac cct act cct aac atc ggg cgc tgt aga aag tgg agc ggg gac agg ctg aac agt 
cta tcc tcc cct ctc tag taa cct tgc cca cgc agg agc atc agt aga ctt agc aat ttt ctc cct aca cct 
~~~~~~ttt~~~~~W~~~~~Wq~~~~ 
gcc cct aga acg aat gcc att att tgt ttg atc agt aaa aat tac cgc cat cct act act cct atc act acc tgt 
tct agc agg tgc cat tac aat act cct aac cg 

Title: Haliotis sorenseni COl, haplotype T 
Gene: mitochondrial cytochrome c oxidase subunit 1, partial cds 
Length: 539bp 
Source: mitochondrion Haliotis sorenseni 
Organism: Haliotis sorenseni. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
act cag tct ttt aat tcg ggc cga act tgg cca gcc agg agc act ctt ggg gga cga cca act cta taa cgt 
~~~~~~ttt~~~~~~~W~~~~~~ill~~~ 

~~~ttt~ill~~~~~~~~~~~~~~ill~~~ 
tcc gcc atc ctt aac ctt act cct aac atc ggg cgc tgt aga aag tgg agc ggg gac agg ctg aac agt 
cta tcc tcc cct ctc tag taa cct tgc cca cgc agg agc atc agt aga ctt agc aat ttt ctc cct aca cct 
agc cgg aat ctc atc aat ttt agg ggc agt aaa ctt tat tac tac agt aat aaa tat acg tgt aaa agc aca 
gcc cct aga acg aat gcc att att tgt ttg atc agt aaa aat tac cgc cat cct act act cct atc act acc tgt 
tct agc agg tgc cat tac aat act cct aac cg 
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Title: Haliotis ?sorenseni Cal, MYC93 
Gene: mitochondrial cytochrome c oxidase subunit I, partial cds 
Length: 539 bp 
Source: mitochondrion Haliotis ?sorenseni 
Organism: Haliotis sorenseni. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
ttc ttc cta gtc ata cca ctg ata att gga gga ttt gga aac tgg cta gtc cct tta ata tta ggg gca cca 
~~pttt~~~~~~~~~~~~~~~~~~~~ 

~~~~~~WAW~~~~~~~~~~~~~P 
cac gea gga gea tea gta gae tta gea att tte tee eta eae eta gee gga atc tea tca att ~ ggg gea 
gta aae ttt att act aca gta ata aat ata cgt gta aaa gca cag cce cta gaa cga atg cca tta ttt gtt 
tga tca gta aaa att acc gce atc cta cta ctc cta tca ct 

Title: Haliotis assimilislH. kamtschatkana Cal, SCAOO 
Gene: mitochondrial cytochrome c oxidase subunit 1, partial cds 
Length: 539 bp 
Source: mitochondrion Haliotis assimilislH. kamtschatkana 
Organism: Haliotis sorenseni. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
~~~gtt~~~~~wwtttw~~~~~~~~WP~ 

~~pttt~~~~~~~~~~~~~~~~~~~~ 

~~~~~~WAW~~~~~W~~~~~~~p 
eac gca gga gea tca gta gae tta gea att ttc tcc eta eac cta gee gga ate tca tca att tta ggg gca 
~~ttt~~~~~~~~~~p~~~~~~~~tttgtt~ 
tea gta aaa att aec gce atc eta cta ete eta tca ct 

Title: Haliotis sorenseni Histone H3 
Gene: Histone H3 gene, partial cds 
Length: 256 bp 
Organism: Haliotis sorenseni. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
gta aat cca ccg gag gaa agg ctc cce gta aac age tgg cca cca agg etg ctc gta aga gtg cec cgg 
eta cag gag gtg tca aga aac ctc aca gat aca ggc cag gaa cag tcg ccc ttc gtg aga tcc gtc gtt 
acc aga aga gea ccg agc ttt tga tca gga age tge cat tcc agc gtc tgg t?c gtg aaa tcg ccc aag 
~~~~~~~~~~~~~~~~a 
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Title: Haliotis rufescens Histone H3 
Gene: Histone H3 gene, partial cds 
Length: 256 bp 
Organism: Haliotis rufescens. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
gta aat cca ccg gag gaa agg ctc ccc gta aac agc tgg cca cca agg ctg ctc gta aga geg ccc cgg 
~~N~~~~~~~~~~~~~~~~~~~~ 
~~~p~~m~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~a 

Title: Haliotis assimilis Histone H3 
Gene: Histone H3 gene, partial cds 
Length: 256 bp 
Organism: Haliotis assimilis. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
~~~~N~~~~~~~~~~~~~~~R~~ 
~~N~~~~~~~~~~~~~~~~~~~~ 
~~~p~~m~~~~~~~~~~~~~~~~ 
act tca aga ceg atc tcc gat tce agt ctt eag ccg tea tgg cee tgc a 

Title: Haliotis walallensis Histone H3 
Gene: Histone H3 gene, partial cds 
Length: 256 bp 
Organism: Haliotis walallensis. Eukaryota; Metazoa; Mollusca; Gastropoda; 

Orthogastropoda; Vetigastropoda; Haliotoidea; Haliotidae; Haliotis. 
Sequence: 
~~~~N~~~~~~~~~~~~~~~~~~ 
cta cag gag gtg tca aga aae ctc aca gat aca ggc cag gaa cag tcg cce ttc gtg aga tcc gtc gtt 
acc aga aga gea ccg age ttt tga tca gga agc tgc cat tcc agc gtc tgg tcc gtg aaa tcg ccc aag 
~~~~~~~~~~~~~~~~a 
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