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Abstract: Using evapotranspiration (ET) data for scheduling irrigations on vegetable farms is
challenging due to imprecise crop coefficients, time consuming computations, and the need to
simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in
vegetables has historically been limited by sensor accuracy and cost, as well as labor required for
installation, removal, and collection of readings. With recent improvements in sensor technology,
public weather-station networks, satellite and aerial imaging, wireless communications, and cloud
computing, many of the difficulties in using ET data and soil moisture sensors for irrigation
scheduling of vegetables can now be addressed. Web and smartphone applications have been
developed that automate many of the calculations involved in ET-based irrigation scheduling.
Soil moisture sensor data can be collected through wireless networks and accessed using web browser
or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance
and Bowen ratio, provide research options for further developing and evaluating crop coefficient
guidelines of vegetables, while recent advancements in surface renewal instrumentation have led
to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote
sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools
for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation
system performance.

Keywords: evapotranspiration; crop coefficients; soil moisture sensors; NDVI; web application;
decision support tools; UAV; remote sensing

1. Introduction

1.1. Water Scarcity and Commercial Vegetable Production

Most economically important vegetable production regions of the world have Mediterranean,
semi-arid, or desert climates in which supplemental irrigation is required to maximize yield and
quality. Efficient irrigation management has become a major concern for vegetable farmers in these
areas as water supplies have become more restricted and environmental impairments to ground and
surface water from agricultural run-off and drainage has received more attention from regulatory
agencies. Agricultural water resources have become increasingly stressed in the vegetable producing
regions of Australia, Southern Europe, Chile, the Middle East, North Africa, China, and the western
United States. California has been under severe drought conditions for four years since 2012 [1,2],
and ground water supplies have been depleted to historically low levels on the central coast, where
most of the salad vegetables are grown for the US and export markets. Lowering of the ground
water table below sea-level through agricultural pumping has caused salt water to intrude into
coastal aquifers and threatened the sustainability of thousands of hectares of prime farmland used
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for vegetable production [3]. Australia also experienced a severe decade-long drought during the
early 2000’s that impacted vegetable farmers in the Murray-Darling Basin in New South Wales and
Queensland [4]. The vegetable production regions of Chile [5] and Spain [6] have also experienced
recurring multiyear droughts.

Since many vegetables require high rates of nitrogen fertilizer and have shallow root systems,
leaching of nitrate during the irrigation season and during periods of heavy precipitation has resulted
in nitrate contamination of aquifers in many key vegetable production regions [7–9]. Irrigation run-off
from vegetable fields also contaminates surface water bodies such as rivers, creeks, estuaries, and lakes
with nutrients and pesticides [10–12]. Growers in California and Europe must report on the amount
of fertilizer nitrogen that they apply to their crops to comply with environmental regulations [13,14].
They are also required to implement best practices to minimize nitrate losses, which will require
improving irrigation management.

1.2. Challenges for Irrigation Scheduling in Modern Vegetable Operations

Vegetable production poses several unique challenges in managing irrigation water efficiently.
One of the major challenges for growers is the number of fields that must be concurrently managed
in a medium to large size vegetable operation. Fields sizes for vegetable crops tend to be small
(<5 ha) relative to agronomic crops, especially fields planted with leafy green, crucifer, and other
salad vegetables. Large vegetable growing operations in the Salinas valley of California manage
1–2 thousand ha of vegetables, with an average field size of just 4 ha. Small fields permit intensive
management, allowing plantings to be staggered so that a steady supply of vegetables can be delivered
to buyers and shippers. However, smaller field sizes means that farming decisions must be coordinated
for many fields that may vary with respect to maturity, soil texture, cultural practices, microclimate,
or other site-specific conditions.

In addition to field size, the diversity of vegetables and number of crop rotations per season
increases management complexity. Most diversified operations will produce more than 30 types of
vegetables, each with unique nutrient and water requirements. Many vegetables are grown over short
cropping cycles. Leafy green salad mixes like leaf and crisphead lettuce, for instance, reach maturity
over just 30–65 day intervals during the summer. As a result, farmers in Mediterranean climates often
grow two to three rotations of vegetable crops per year. Fields often are intensively tilled between
crops to remove compacted zones caused by traffic from harvest machinery and to prepare raised beds
for seeding or transplanting the next crop. These activities require that crews retrieve drip tape or
sprinkler pipe after each crop is harvested.

Another irrigation scheduling challenge is the number of field operations that must be coordinated
during a crop cycle. Fields are typically sprayed to protect against insect and disease pests several
times per crop cycle, and must be periodically cultivated to control weeds. Fertilizer applications
are made several times during the growth cycle to satisfy the nutrient requirements of vegetables.
Irrigations must be timed to accommodate access for tractor and hoeing crews so that activities can
be completed on schedule. There may be several extended periods when a vegetable crop cannot be
irrigated to permit the soil to dry sufficiently to allow tractor access. Irrigation equipment, such as
sprinkler and mainline pipes, may need to be moved before each pass of a tractor through a field.

Irrigation scheduling is also complicated by the numerous methods that vegetable growers use
to supply water to their crops. Depending on the crop type, plant density, development stage, water
source, and field and soil characteristics, growers may choose to irrigate using overhead sprinklers,
drip, furrow, or a combination of methods. In California, leafy green vegetables harvested for salad
mixes are seeded at high densities (8.5 million plants per hectare) [15] on 2 m wide raised beds and are
irrigated almost exclusively with sprinklers. Small seeded vegetables such as crisphead and romaine
lettuce are typically germinated with sprinklers, and after several weeks, irrigated with surface drip
until harvest. Celery transplants may be established using overhead sprinklers, then drip irrigated,
and occasionally flood irrigated to rewet the shoulders of raised beds.
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Since vegetable production is frequently characterized by short crop cycles, intensive crop
rotations, and numerous small fields at different stages of maturity, farm managers are challenged
to schedule and coordinate all the field activities while taking time to carefully schedule irrigations
to optimize water use. Consequently, many farm managers may follow predetermined irrigation
schedules to simplify water management and make small adjustments during the cropping season
depending on their observations of the crop, soil, and weather conditions. Usually the amount of
water applied to high value vegetables exceeds crop evapotranspiration (ET) to avoid water stress.
In the Salinas Valley of California, for example, applied water amounts on broccoli, cauliflower, and
cabbage averaged >200% of the estimated crop evapotranspiration (ETc) requirement [16]. While these
applications rates may avoid water stress so that yield and quality are maximized, over-irrigating may
strain water supplies and result in the leaching of nitrate and/or generate run-off that degrades the
quality of receiving surface water bodies.

Considering the numerous challenges and limitations of managing vegetables, growers, farm
managers, and irrigators need convenient methods to schedule irrigations so that they can better
determine how much water to apply to match the requirements of their crops. During the past few
decades, significant improvements and lower costs for wireless communications, computing power,
sensor technology, and aerial and satellite imagery have increased the potential to develop accurate
and intuitive approaches for scheduling irrigations in vegetables.

2. Advances in Soil Moisture Sensor Technology

2.1. Recent Developments in Soil Moisture Sensing

The monitoring of soil moisture has long been a standard way to determine when crops need to
be irrigated. Growers and farm managers typically evaluate soil moisture by probing with a shovel or
auger or monitoring with sensors. Sensors for volumetric moisture content and soil water tension have
been commercially available for more than 40 years but were originally used more in research than for
commercial crop production. Volumetric soil moisture sensors provide readings in units of m3·m−3,
and tension-based sensors readings are typically in units of kPa, where a greater absolute value
corresponds to drier soil conditions [17]. In the past, the primary barriers to more widespread use of
soil moisture sensors in irrigation management have included both cost as well as labor required for the
installation, removal, and collection of readings [18]. In recent years, there has been a proliferation of
commercially available soil moisture monitoring systems for agriculture. Many sensors interface with
dataloggers and wireless communication systems to provide near real-time status of soil moisture from
several depths and locations within a field. Data are automatically uploaded by radio or cell phone
communications to cloud-based computer servers and are accessible through apps on smartphones
and tablet computers. These communication advancements greatly improve the convenience of
accessing data and can be configured to provide timely alerts when crops require irrigation. Many of
these wireless communication systems for soil moisture sensors also support on-farm weather stations,
digital flow meters, and control valves, which facilitates the monitoring of irrigation system operations.

Soil moisture sensors have also evolved during the last few decades in terms of size, cost,
and accuracy. Electromagnetic (EM) soil moisture sensors, used to determine volumetric soil moisture
content, include time domain reflectometry (TDR) and capacitance sensors. These were once bulky and
expensive instruments. With improvements in electronic manufacturing and better designs, current
EM sensors (Figure 1A,B) are generally much smaller, cheaper, and more accurate than earlier models.
Some versions are integrated with soil temperature and salinity sensors (e.g., Model 5TE, Decagon
Devices Inc., Pullman, WA, USA). Others are integrated with dataloggers and radio communications
(e.g., Model gStake, gThrive Inc., Santa Clara, CA, USA) to facilitate field installation and removal.
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Figure 1. Examples of various soil moisture sensors: (A,B) capacitance sensors; (C) tensiometer with
an electronic gauge; (D) tensiometers with electronic gauges installed in a lettuce field and interfaced
with a datalogger and radio communications; (E) tensiometer integrated with pressure transducer,
datalogger, and radio communications; (F) granular matrix sensor and reader.

Tension-based soil moisture sensors have been considered the best method to determine if a crop
needs water since most vegetables experience reductions in yield and quality under prolonged periods
of high soil water tensions. Tension thresholds that optimize production have been determined for
many vegetable species [17,19], including broccoli [20], cabbage [21], cauliflower [22], lettuce [23,24],
potato [25], and tomato [26]. An advantage of tension thresholds is that they are less influenced by
soil texture than volumetric moisture thresholds. Tensiometers can accurately measure soil water
tension in a range of 0–85 kPa using a mechanical vacuum gauge attached to a water filled tube with
a porous ceramic cup [17] (Figure 1C). Tensiometers must be installed without air gaps between the
ceramic cup and soil to function properly. To reduce labor for collecting readings, several recent
models have sensitive electronic pressure transducers that measure vacuum pressure and can be
interfaced to dataloggers and wireless communication services (Figure 1D,E) so that data may be
monitored remotely (Figure 2) (e.g., Hortau Inc., Lévis, QC, Canada). Though tensiometers do not need
calibration, they usually require periodic maintenance to assure that they are functioning properly.
Entrapped air that develops at high tensions must be replaced with de-aired water. Adding a weak
solution of algaecide or bleach can prevent biological growth inside the tensiometer tube, which may
potentially clog the ceramic cup [26].

Granular matrix sensors (GMS) (Figure 1F) indirectly measure soil water tension using electrical
resistance and are often used as an alternative to tensiometers (e.g., Model watermark 200SS, Irrometer
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Company Inc., Riverside, CA, USA). Most GMS can be interfaced to dataloggers and wireless
communications [26]. An advantage of GMS compared to tensiometers is that they do not require
regular servicing. These sensors retain sensitivity at higher soil moisture tensions (up to 200 kPa) but
are less accurate at low soil moisture tensions (0–15 kPa) than tensiometers [17,26]. GMS readings are
also affected by fluctuations in soil temperature [17]. Another limitation of GMS is that the response
time to wetting and drying cycles is slower compared to tensiometers [26,27].
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Figure 2. Fifteen minute readings (kPa) from tensiometers installed in a lettuce field at 8 (20 cm) and
18 inch (46 cm) depths are displayed in an online irrigation scheduling application.

A number of studies have evaluated automated irrigation scheduling based on soil moisture
readings for improving the water use efficiency of vegetables irrigated with drip tape. Automatic
controllers used in these studies irrigated crops for short durations several times per day when soils
dried below a predetermined threshold [28,29]. Some control systems have relied on tension based
sensors [26,28], while others have used volumetric soil moisture sensors [28,30–34] to determine
when to irrigate. The use of TDR soil moisture sensors for triggering irrigations in sub-surface
drip irrigated sweet corn resulted in an 11% savings in water use with similar yields compared to
a standard sprinkler irrigated treatment [30]. Small plot trials have demonstrated water savings,
reduced nitrate leaching, and improvements in yield in drip irrigated fresh market tomatoes, bell
peppers, and zucchini squash using capacitance soil moisture sensors to trigger irrigations [31–35].
Using tensiometers, Mũnoz-Carpena et al. [26] were able to reduce water use in fresh market tomato
by 67% compared to the grower standard practice without significant reductions in marketable yield.
Most of the water savings were during the early crop stages when evapotranspiration rates were
low. Capacitance soil moisture sensors were generally found to be more reliable for automated
irrigation scheduling than tensiometers and GMS. As discussed earlier, tensiometers require regular
maintenance, and the GMS response to changes in soil moisture was too slow to use these sensors
for triggering irrigations. While these studies have demonstrated the potential for water savings in
small plots, automated irrigation scheduling may have several limitations in commercial vegetable
fields. The optimal volumetric soil moisture threshold for triggering an irrigation would need to be
empirically determined for different soil types. Pressurized water would need to be continuously
available to accommodate frequent short irrigations. In large fields, short irrigation cycles could lead
to significant drainage at the lower end of a field when drip lines depressurize.

2.2. Limitations of Soil Moisture Sensors for Irrigation Scheduling in Vegetables

While much progress has been made in improving the accuracy and utility of soil moisture
sensors, several factors still limit their use for irrigation scheduling of vegetables. Though costs for
individual sensors may be less than in the past, the addition of dataloggers, cell phone modems,
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and radio communications, which facilitate real-time monitoring, has added to the total costs. Labor
for installation and removal of sensors remains a significant cost, especially in vegetable crops with
short production cycles. Considering labor and capital costs, many growers elect to use soil moisture
monitoring equipment in a small percentage of their vegetable fields.

Though soil moisture sensors are useful for determining when to irrigate vegetables,
they are less useful for estimating how much water to apply. Soil moisture tension readings must
be converted to volumetric moisture to estimate soil water depletion since a previous irrigation
or rain event. Volumetric soil moisture sensors may also need calibration. Most capacitance
sensors use the manufacturer’s calibration equations to convert readings to volumetric water content.
Clay content, organic matter, salinity, bulk density, and temperature can affect the accuracy of
capacitance sensors [36–40]. The effect of these factors on water content readings can vary in different
soil types. For example, Kargas and Soulis [38] evaluated the accuracy of the 10HS capacitance
sensor, and found that temperature had a larger effect on soil water content readings in clay than
course textured soils. They concluded that calibration for specific soil types was needed to achieve
accurate readings.

Even with accurate sensors, spatial variability can limit the reliability of soil moisture estimates if
readings are collected from only a few locations, especially if soil hydraulic properties vary within
a field or the irrigation system applies water unevenly. Soil maps can be useful for guiding the
placement of soil moisture sensors in locations that represent the dominant soil properties of fields.
In drip-irrigated fields, determining the optimal location to accurately monitor soil moisture depletion
can be particularly challenging. Soil moisture is typically higher under drip tape than adjacent
to the plants, where root activity is concentrated. Placing sensors too close to a drip line may
lead to under-irrigating a crop, and placing sensors too far away may result in over-irrigating [41].
Through computer modeling experiments, Soulis et al. [42] concluded that the optimal positioning
of soil moisture sensors in drip-irrigated crops was influenced by soil hydraulic properties, crop
evapotranspiration rate, and the configuration of the irrigation system. An additional consideration is
the ideal depth at which to place sensors relative to the crop root zone. Broccoli roots can reach depths
greater than 1.2 m at maturity [16], while roots of many leafy greens such as spinach may reach less
than 0.5 m by harvest [43].

3. ET-Based Approaches to Scheduling Irrigations in Vegetables

Water requirements of vegetable crops can also be determined from estimates of
crop evapotranspiration (ETc). Using Penman-Monteith [44,45], or similar equations [46],
evapotranspiration (ET0) of a well-watered reference crop, such as grass, or alfalfa, is commonly
estimated from measurements of air temperature, relative humidity, wind speed, and solar
radiation [47]. The evapotranspiration of a well-watered vegetable crop can be estimated relative to a
reference crop by multiplying ET0 by a crop coefficient (Kc). Crop coefficients for most major vegetable
crops were summarized by Allen et al. [48], Guerra et al. [49], and Grattan et al. [50].

Networks of public weather stations to monitor reference ET have been established in many
vegetable production regions of the world where irrigation is commonly used. The California Irrigation
and Information System (CIMIS) is operated by the Department of Water Resources in California and
consists of more than 145 weather stations sited on reference crops throughout the state. ET0 and other
meteorological data, including precipitation, air and soil temperature, wind speed, solar radiation,
and relative humidity, are available for users to download from the state operated website. Similar
networks have been developed for other states including Arizona (AZMET), Colorado (CoAgMet),
Florida (FAWN), Nevada (NICENET), Oklahoma (MesoNet), Oregon (AgriMet), and Washington
(AgWeatherNet). Most European countries also have weather station networks that provide daily ET0

data through public websites (e.g., Spain [51], Italy [52]). In addition, CIMIS offers a satellite based
product that estimates ET0 at a 2 km resolution based on data from the Geostationary Operational
Environmental Satellite [53].
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Many commercial companies also offer affordable weather stations (e.g., ET107, Campbell Sci. Inc.,
Logan, UT, USA; WatchDog 2900ET Weather Station, Spectrum Technologies, Aurora, IL, USA; HOBO
U30-NRC Weather Station, Onset Computer Corp. Bourne, MA, USA) that can be used to estimate
ET0 on a farm. These systems offer a way to monitor ET0 in regions not covered by a public network,
or for farms that are not located reasonably near an established station. However, in practice, few
growers site or maintain stations in accordance with World Meteorological Organization standards for
reference evapotranspiration measurements. Many growers site weather stations near trees, buildings,
or parking lots, which limits the fetch and can influence the micro-climate, and potentially bias
estimates of ET0. Stations are infrequently sited on a suitable well-watered reference crop. Most
farmers do not allocate time to regularly maintain and calibrate meteorological instrumentation on
their stations. Commercially available atmometers (ETgage Co., Loveland, CO, USA) can be used to
monitor ET0 but must also be sited over a reference crop.

Although ET0 data have been useful for water agencies to estimate the seasonal water use of crops
at a regional scale, growers have generally considered this approach to be impractical for scheduling
irrigations in vegetable systems. A major difficulty is that the Kc value can change daily as vegetables
grow and leaf area increases. During the establishment phase, when crop foliage covers a small
percentage of the soil surface, ET is mostly from soil evaporation rather than from crop transpiration.
For many vegetable crops, such as leafy greens and brassicas, the canopy cover is less than 10% until
halfway through the crop cycle. The Kc during this early stage will depend on factors influencing
evaporative losses from the soil, such as method and frequency of irrigations, and soil physical
properties [48]. Later, in the rapid growth phase, Kc values increase daily as the canopy cover develops
and covers the soil.

Solutions for calculating a daily Kc for lettuce were proposed by Gallardo et al. [54] in which soil
evaporation from unshaded soil (E) is estimated separately from the water lost by transpiration and soil
evaporation under the crop canopy (T). Using this approach, Kc is proportional to the fractional cover
(Fc) of the leaf canopy shading the soil, and E is related to the hydraulic properties of the soil and the
time since the crop was irrigated. The general approach is consistent with Allen et al. [48,55], who also
proposed separating the Kc of crops that have a significant period of minimal canopy cover into dual
components consisting of a basal crop coefficient (Kcb) that represents water loss by transpiration and
an evaporation coefficient (Ke), representing loss from soil evaporation. Direct relationships between
Fc and Kcb have been reported for several crops such as broccoli [56], wheat [57], cotton [58], sugar
beets [58], and grapes [59].

Both Gallardo et al. [54] and Allen et al. [48] describe calculations for estimating soil evaporation,
which divide Ke into stage 1 and stage 2 periods. Stage 1 occurs immediately following an irrigation
or rain event that saturates the soil to field capacity. During stage 1, water loss is limited by the
energy available for evaporation. Stage 2 occurs after the soil is visibly dry and water loss is limited
by soil hydraulic properties. The Stage 2 rate of evaporation diminishes with time as the soil water
content declines.

4. Software for ET Based Scheduling of Vegetables

4.1. Overview of Sofware Tools

Even with publicly available ET0 data and accurate Kc models, the implementation of ET-based
irrigation scheduling at the scale of a commercial vegetable farm may be difficult for growers. Daily ET0

values need to be retrieved from a location representative of the field of interest. An estimate of canopy
cover is needed to determine the average Kc for each irrigation event. Soil evaporation calculations
require knowledge of the soil properties of the field, irrigation method, and interval between irrigations
or rainfall events. To convert crop ET into an irrigation recommendation, the application rate and
distribution uniformity of the irrigation system, and in some cases the leaching fraction, also needs to
be integrated into the calculations.



Horticulturae 2017, 3, 28 8 of 20

Recognizing that most growers have limited time to dedicate to making decisions on water
management, several universities and public institutions have developed computer programs to
facilitate ET based scheduling. Spreadsheet and Windows-based irrigation scheduling programs,
such as CROPWAT [60], KanSched 2.0, Basic Irrigation Scheduling (BIS) [61], and consumptive
use program (CUP) [62] automate the irrigation scheduling calculations but require users to
retrieve and enter daily ET0 values. Since separate spreadsheet files maybe needed for each
crop, these programs may be difficult to implement in large growing operations that manage
many fields. Washington Irrigation Scheduling Expert (WISE) [63,64] is a downloadable JavaScript
application that runs on personal computers. More recently developed web-based applications
such as Irrigation Scheduler mobile (Washington State University) [65], Irrigation Management
Online (Oregon State University) [66], Wateright (Fresno State University) [67,68], and CropManage
(University of California, Division of Agriculture and Natural Resources) [69,70] were developed to
automatically retrieve ET0 data from weather station networks such as AgWeatherNet and CIMIS
and support irrigation scheduling of multiple fields. These applications are accessed through web
browsers, some of which automatically resize the user interface to smartphone screens. Colorado
State University WISE Irrigation Scheduler [71] and SmartIrrigation (University of Florida, University
of Georgia) [72–74] have similar capabilities but can operate exclusively on smartphones through
downloadable applications. Outside of the United States, several public agencies have developed
online irrigation scheduling services including IRRINET in Italy [75], ISS-ITAP in Spain [76], IRRISA
in France [77], and IrriSatSMS [78] in Australia. In addition, a growing number of ET-based software
tools are commercially available. Two examples are Probe Schedule (IRRinet LLC, Dalles, OR,
USA) and Irrigation Advisor (PowWow Energy Inc., San Mateo, CA, USA). Further details of these
commercial products are not provided here since they are proprietary and usually not documented in
the scientific literature.

Most online irrigation scheduling tools have cloud-based databases that retain information
associated with each planting, such as soil type, planting and harvest dates, weather station name,
and irrigation system application rate, so that the user does not need to reenter critical information
for each irrigation event. After entering the information required to initiate a new planting, users
can quickly look up how long to irrigate their crops. Some scheduling software provides weekly or
daily summaries of how much water to apply (e.g., IrrigationScheduler, Wateright, SmartIrrigation,
etc.), while others such as CropManage enable the user to input specific dates for each irrigation [70].
The online format facilitates automated retrieval of current and forecasted weather data in advance
of planned irrigation events, so that growers can be alerted when a field will need water. In addition
to linking with weather station networks, decision support tools can also incorporate other online
services such as UC Davis SoilWeb for identifying the soil physical properties of a field using the
United States Department of Agriculture (USDA) Soil Survey Geographic (SSURGO) database [79]
or Google Maps, which can be customized for determining the longitude and latitude of a field or
viewing locations of nearby weather stations. CropManage can also be customized to automatically
retrieve flowmeter and soil moisture data from internet-accessible dataloggers.

While many of these irrigation-scheduling programs will provide recommendations for multiple
commodities, few have been developed or tested specifically for vegetables. Most irrigation scheduling
applications use single Kc values for the four crop growth stages described by Doorenbos and Pruitt [80]
to simplify calculations of ETc. CropManage was initially developed for vegetable irrigation and
employs a dual crop coefficient approach for estimating crop ET similar to Gallardo et al. (1996),
as described in Johnson et al. [81] and Smith et al. [16]. The vegetable crops currently supported
include broccoli, cabbage, cauliflower, lettuce, and spinach. Since the user enters the date of each
irrigation event, CropManage adjusts watering recommendations for the frequency and method of
irrigation. Empirical models of fractional cover are included for each supported vegetable crop so that
the user can customize the Kcb curves for a specific season, bed width, and planting configuration.
Replicated field trials demonstrated that the CropManage irrigation recommendations using the ET
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based algorithm with a dual crop coefficient optimized water use and yield in crisp head lettuce and
broccoli [81].

4.2. Achieving Widescale Adoption of Irrigation Software

Despite significant progress in developing ET-based irrigation scheduling software for commercial
vegetable farms, many challenges exist that will need to be addressed to achieve large-scale adoption
by growers. Although public ET weather station networks have been established in many vegetable
producing regions of the US and Europe, they are less common in other regions such as India, China,
and Latin America. In areas where ET0 data are available, the density or siting of weather stations may
not provide sufficient resolution to fully capture regional variation in microclimates. In these instances,
growers may choose to install and operate their own weather stations, as described above.

Another challenge is to deliver accurate irrigation recommendations without requiring users
to provide excessive details about their crop, irrigation system, and field conditions. Morrison [82]
found that time constraints and concerns about data entry errors were factors that deterred grower
adoption of the irrigation scheduling software. Irrigation scheduling apps also need to be intuitive for
irrigators and farm managers to use in the field. The user-interface displayed on smartphones and
tablet computers must be easy to read and to understand, while providing sufficient detail for the
user to verify that the values for ET0, Kc, and other variables used in the scheduling calculations are
accurate. Also, since the principal language of many irrigators in the western US is Spanish, irrigation
scheduling applications need to support multiple languages.

The cost of computer programming services is also a major barrier to developing and maintaining
irrigation scheduling software. As software has become more sophisticated, and needs to be compatible
with personal and tablet computers and smartphones, the complexity and consequently costs of
development have increased. Software products will incur annual costs associated with updating
to new technology, introducing new features, and troubleshooting identified errors. Most publicly
available irrigation scheduling applications were initially developed under research grants, and need
either continued grant funding or income generated from user subscriptions to support updating
and maintenance costs. Several online irrigation scheduling services that were initially funded by the
European Union became inactive after grants ended [83]. It may be cost-effective for institutions to
collaborate on the development of software products that are sufficiently flexible to be customized
for different growing regions and commodities. SmartIrrigation is an example of such collaboration
between the University of Florida and University of Georgia. There also may be opportunities for public
agencies, commodity boards, and commercial companies to partner on the development of commercial
irrigation scheduling software. For instance, SureHarvest Inc. (Santa Cruz, CA, USA) recently
developed an online irrigation-scheduling tool for almonds in collaboration with the University of
California and the Almond Board of California.

5. Field Measurements of Crop ET

Field measurements of crop ET are needed to develop and verify crop coefficients as well as
to investigate the interaction of water stress on crop yield and quality. Several reviews detail the
advantages and disadvantages of various methods of measuring crop ET [84,85]. Weighing lysimeters
have often been used to measure crop water use [85,86]. While considered the most accurate ET
measurement method, the expense of these instruments limits their use to research stations and
constrains the range of sites, crops, and management practices that can reasonably be evaluated.
Energy balance methods such as Bowen ratio [85], eddy covariance [85], and surface renewal [87] are
more affordable alternatives to lysimetry for evaluating crop ET and can be deployed in commercial
fields for evaluating crop water use under a wide range of growing conditions. Instrumentation
costs for these methods can exceed $10,000 USD per station, which has limited their use primarily
to research studies. Energy balance methods involve monitoring of net radiation, soil heat flux,
and sensible heat flux to estimate the latent heat flux (Wm−2), which can be converted to water flux
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or evapotranspiration rate through the latent heat of vaporization. Generally, the sensors used for
energy balance measurements have become more reliable, cheaper, and more accurate in recent years.
The capabilities of dataloggers used for operating the instrumentation have also improved, with
more memory and faster computation speeds, while post-processing software modules have become
more accessible. Energy balance methods have been used for evaluating the water use of vegetable
crops in commercial fields, including artichokes, broccoli, beans, lettuce, onions, and processing
tomatoes [50,88–92]. These methods have been useful for reevaluating existing crop coefficients, as
production practices and varieties have improved during recent years [93]. However, considering the
diversity of vegetables and production methods, relatively few ET studies have been published using
these techniques during the last decade. Surface renewal, which uses thermocouples to measure rapid
changes in air temperature, has greatly reduced the costs of estimating sensible heat flux and may
be well suited to vegetable fields due to a smaller fetch requirement compared to eddy covariance.
Advances in surface renewal methodology [94] have culminated in a commercial service that provides
growers with ET estimates and irrigation recommendations via a web application (Tule Technology
Inc., Oakland, CA, USA). However, this tool has primarily been used in perennial crops such as trees,
grapes, and strawberries.

6. Satellite-Based Crop ET Determination

6.1. Energy Balance

Researchers have developed satellite-based energy balance models to estimate ET at
various spatial and temporal scales (e.g., reviews of Courault et al. [95]; Kalma et al. [96];
Gonzalez-Dugo et al. [97]). The Surface Energy Balance Algorithm for Land (SEBAL) and the Mapping
EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) are two widely used
approaches [98,99]. Optical and thermal band data from Landsat or other satellites is used to help
parameterize the energy balance equation [100]. At the moment of satellite overpass, latent heat
flux (LE) is retrieved through the calculation of surface energy balance that is based on radiative,
aerodynamic, and energy balance physics. LE is converted to ET for the corresponding hour and
subsequently to reference ET fraction (ETrF) by comparison with the measured reference ET for the
hour. Finally, daily (2) ET is derived as the product of ETrF and reference ET for the day, under the
assumption that ETrF approximates the average daylight evaporative fraction. The energy balance
approach accounts for the effects of ET reduction in water-stressed crops, due to stomatal regulation
and increased ET due to bare-soil evaporation. Linear or spline interpolation can be used to estimate
ETrF (hence daily ET) between satellite overpasses, which occur every eight days in the case of
Landsat, assuming clear-sky conditions. Manual intervention is used to calibrate the sensible heat
flux computation by identifying portions of the image (hot and cold ‘anchor’ pixels) that represent
extreme ET conditions, where ET can be estimated and assigned a priori. In a typical agricultural
situation, cold pixels are associated with well-irrigated agricultural fields with high Fc and hot pixels
with bare dry fields. Overall the ET retrieval error for the satellite-based energy balance is typically
5–15%, when estimates are produced by an experienced operator, and rises to 30–40% when operated
by non-specialists or novices to the fields of hydrologic science, environmental physics, remote sensing,
or agricultural systems [85]. An automated calibration method has been recently developed to facilitate
and improve operation by non-specialists [101].

6.2. Vegetation Index

Hybrid approaches estimate fractional cover (Fc) from remote sensing and use ground-based ET0

data. Fc is a good indicator of light interception, which is a strong driver of ETc [48]. Weighing lysimeter
observations by Bryla et al. [102] revealed a strong relationship between Fc and ETc for vegetable
crops in California’s San Joaquin Valley, and the potential for using satellite-based Fc to estimate ETc
in vegetable crops was demonstrated by Johnson and Trout [103]. Fc can be estimated from various
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spectral visible-region bands, where chlorophyll absorption dominates, combined with near-infrared
(NIR), where vegetation is highly reflective. A common formulation is the normalized difference
vegetation index, or NDVI, which is derived as (NIR − red)/(NIR + red) [104]. Trout et al. [105] and
Johnson and Trout [103] found a strong relationship between NDVI and Fc for vegetables and other
crop types in California’s San Joaquin Valley. NDVI began to lose sensitivity above 80 percent cover, a
point generally regarded as effective full cover for water management applications [106]. As above,
interpolation can be applied to estimate NDVI, and hence ETc, for days between satellite overpasses
as needed.

7. Satellite Based Irrigation Management Services

7.1. Prototype Systems

By furnishing field scale estimates of Fc, a key factor for estimating Kcb and basal ETc (ETcb),
optical remote sensing may potentially improve the accuracy of ET estimates in vegetables. Several
satellite-based models have been developed for irrigation management. An early proof-of-capability
satellite demonstration on wheat and corn was undertaken by the DEMETER project in Europe,
which involved timely delivery of Landsat-based crop coefficients to agricultural end-users, with
available online visualization and analysis capabilities [107].

More recently, the fully-automated Satellite Irrigation Management Support (SIMS) [108] uses
atmospherically corrected Landsat data to map NDVI, Fc, and Kcb for multiple crop types, including
vegetables across about eight million acres of California irrigated farmland [109]. These variables are
updated every eight days at 30 m spatial resolution (cloud cover and data availability permitting) from
2010 to the present. The SIMS uses daily 2 km ET0 statewide grids produced by the California Irrigation
Management Information System [53] to generate basal crop ET. Web data services allow users to
display annual time-series graphs and download data for any given location (Figure 3). An application
programming interface (API) enables on-demand transfer of SIMS data products to support external
irrigation advisory services such as CropManage and also allows the user and other software tools to
specify the crop type via the API and retrieve crop-specific Kcb data from SIMS. Where information is
available on applied water, an FAO56 based soil water balance model can be used to adjust for soil
evaporation and crop stress and to retrospectively derive agricultural water use fractions at the field
scale for the evaluation of irrigation management and system performance [110].
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IrriSAT [111] is a weather based irrigation management and benchmarking technology that uses
satellite remote sensing to generate crop water management information in Australia, primarily for
grape and cotton growers at present [112,113]. As with SIMS, Landsat is used to estimate Kc at a
30 m resolution. Unlike SIMS, Kc is derived directly from a single linear relationship with satellite
NDVI. Daily crop water use is determined as the product of Kc and ET0 observations from nearby
weather stations, and a seven-day ET0 forecast is also produced. The delivery platform, which is built
on the Google App Engine helps irrigators track soil moisture and better manage irrigation schedules.
In addition, IrriSAT facilitates the calculation of seasonal agronomic performance metrics, including
the irrigation water use index and gross production water use index.

Additional satellite-based services have been implemented Europe and Australia [114]. These
include IRRISAT-Italy (as distinct from IrriSAT-Australia described above), EO4Water (Austria),
and IrriEye (southern Australia). These services generally involve the use of optical DEIMOS 20 m
satellite imagery to generate and deliver leaf area index with derived Kc and related map overlays
within a browsing and querying toolbox [115]. Personalized irrigation guidance regarding crop water
requirement is dispensed through a secure website, SMS, and email. End-users are able to provide
evaluative feedback. A variety of crops are being tested, including vegetables, sugar beet, corn, alfalfa,
and orchards.

Earth Engine Evapotranspiration Flux (EEFlux) [116] is a METRIC implementation on the Google
Earth Engine cloud computing platform [117]. Landsat scenes from 1984 to the present are combined
with gridded weather data to allow the analysis of most land areas worldwide. The products
include maps of ET, associated energy balance flux components, and land cover. A time-series
can be constructed by processing several scenes and interpolating between image dates. Automated
image calibration for anchor pixels is offered in a Level 1 version to accommodate operation by
non-experts, with some sacrifice in accuracy. A Level 2 version, which allows custom calibration by
the operator, requires an annual license fee. EEFlux is a general tool that operates on both agricultural
and non-agricultural land cover types.

7.2. Satellite Remote Sensing Considerations for Irrigation Scheduling

Satellite observation is recognized as a useful tool that will continue to support crop coefficient
development and ET monitoring for new types and varieties of crops, as facilitated by the wider
availability of gridded weather data and continued advancement in convenient and user-friendly
mapping technologies [118]. The use of public domain satellites with open-data policies, i.e., the data
source is available at no charge, is an advantage of this approach, as is the capability to collect data
for many fields simultaneously. Vegetable crops, however, do present some unique challenges for
satellite-based evaluation. The frequency of satellite overpasses, presence of cloud cover, and added
time needed to perform custom atmospheric correction (e.g., Vermote and Saleous [119]) may
limit the use of remote sensing for real time irrigation scheduling of fast-growing vegetable crops.
As more satellite platforms become available, such as the European Space Agency Sentinel-2 system,
the observation interval between images may soon decrease to four to five days for NDVI-based ET
models. Also, upon further testing, it may be shown that use of a simplified atmospheric correction
approach (e.g., Tasumi et al. [120]) may be adequate for application in some or most regions. Where
real-time irrigation scheduling operations are unsupported, remote sensing may still prove useful
for the retrospective evaluation of irrigation system performance or compilation of water use metrics.
Another challenge is the typically small field size for vegetables as noted above (4–5 ha), which is near
the minimum land area recommended for evaluation by Landsat or other public Earth observation
satellites. An additional challenge is posed by leaf color, especially for crops such as red lettuce
that depart widely from the green-leaf norm. A recent study has also shown that while NDVI was
strongly related to Fc in both leafy greens (r2 = 0.88) and cole crops (r2 = 0.93), the relationships were
different [121]. Thus, the development of customized relationships between NDVI and Fc by crop
category is recommended to increase the accuracy of Fc estimates.
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8. Remote Sensing Using Manned Aircraft and Unmanned Aerial Vehicles (UAV)

The use of manned aircraft and UAVs for monitoring vegetables has become a viable alternative or
complement to satellite observation. Image resolution is generally much finer than that of Landsat or
other open-data satellites, and passes over fields can be scheduled on a more frequent and flexible basis.
However, data calibration to assure image consistency in support of time-series observations may be
lacking. Several commercial companies offer NDVI and thermal spectrum images at <1 m resolution
taken at weekly intervals using small planes in California and elsewhere (e.g., CERESimaging Inc.,
Oakland, CA, USA; TerrAvion Inc., San Leandro, CA, USA). Images can be accessed from the web
generally within 24 h of collection. The high resolution of these scenes can provide enhanced
information about within-field spatial variability in crop growth and water stress and for determining
Fc used to parameterize ET equations. Patterns can show when a crop is under-irrigated such as in
Figure 4, where the NDVI values for a romaine lettuce crop are lowest midway between sprinkler
lines, presumably caused by poor irrigation distribution uniformity.
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Figure 4. NDVI image of a romaine lettuce field irrigated with sprinklers on lateral pipes (A) spaced
12.2 m apart; Plants were frequently smaller in areas midway between pipes (B) where the NDVI
values were low. Photo credit: CERESimaging Inc., Oakland, CA, USA.

The acquisition costs of UAVs and the training needed for mission planning, flight operation,
and image processing have diminished significantly during recent years. A number of studies describe
the use of UAVs for monitoring water stress [122,123] and vegetative cover [124,125] of crops, though
few have specifically focused on vegetables. Due to the ease of operation, arranging flights at specific
times and locations with UAVs may be simpler than with manned aircraft, which usually need to
image a minimal number of fields to justify flight costs. This flexibility may be useful in vegetables
when timely field scouting is needed to make decisions or diagnose a problem with a fast-growing
crop. UAVs can fly at very low altitudes and carry sensor packages that can provide high-resolution
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imagery in the order of a few centimeters. A disadvantage of UAV operation, in the case of an owned
system, would be a higher up-front cost than the engagement of a manned aircraft provider and
additional time required for data retrieval and image processing.

9. Conclusions

Water scarcity will most likely continue to be a significant problem in many of the important
vegetable production regions of the world [126]. Improving water use efficiency through more
accurate scheduling of irrigation can conserve water and address water quality impacts associated
with commercial vegetable operations. However, irrigation scheduling in vegetables presents some
unique challenges due to the diversity of crop types, intensive rotations, and number of fields
that must be managed, as well as competing cultural operations that are involved in growing
marketable crops. Advances in soil moisture sensors, wireless communications, ET measurements,
remote sensing, computer technology, and cloud computing offer many potential opportunities
to develop robust irrigation advisory tools to help farmers accurately determine and meet crop
water needs. While much progress has already been made in soil moisture sensing and ET-based
irrigation scheduling, achieving wide-scale adoption in the vegetable industry will require continued
innovation. Continued collaboration between public research institutions, universities, commodity
boards, and commercial firms will likely be needed to develop simple-to-use tools that will be broadly
accepted by vegetable growers.
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The following abbreviations are used in this manuscript:

API application programming interface
BIS basic irrigation scheduling
CIMIS California irrigation management and information system
CUP consumptive use program
EEFlux earth engine evapotranspiration flux
EM electromagnetic
ET evapotranspiration
ET0 reference evapotranspiration
ETc crop evapotranspiration
Fc fractional cover
GMS granular matrix sensor
Kc crop coefficient
LE latent heat flux
METRIC mapping evapotranspiration at high resolution with internalized calibration
NDVI normalized difference vegetation index
NIR near infra-red
SEBAL surface energy balance algorithm for land
SIMS satellite irrigation management system
SSURGO soil survey geographic database
UAV unmanned aerial vehicle
UC University of California
USDA United States Department of Agriculture
WISE Washington irrigation scheduling expert
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