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ABSTRACT 

 

DIET AND ECOMORPHOLOGY OF THE SANDPAPER SKATE, BATHYRAJA 

KINCAIDII (GARMAN,1908) FROM THE EASTERN NORTH PACIFIC 

by Christopher Scott Rinewalt 

To determine diet, the stomach contents of sandpaper skates, Bathyraja kincaidii 

(Garman, 1908), were examined from a limited depth and geographic area off central 

California and from a wider depth and area range along the eastern North Pacific (ENP).  

The overall diet was dominated by euphausiids and shrimps, but polychaetes, squids, and 

gammarid amphipods were important secondary prey.  Shrimp-like crustaceans, 

polychaetes, and teleosts were of similar importance in both data sources, but small 

benthic crustaceans and crabs were comparatively more important in the diet of skates 

from the ENP whereas cephalopods were more important in central Californian samples.  

A three-factor MANOVA demonstrated significant differences in the importance of 

major prey categories by sex, maturity status, and oceanographic season in the central 

California data.  These three main factors explained more variation in diet than 

interactions between the factors, and season explained the most variance overall.  A 

detailed analysis of the seasonal variation among the prey categories indicated that 

environmental abundance changes in the most important prey, euphausiids, were coupled 

with changes in the importance of other prey.  Differences in the diet by sex, maturity 

status, and geographic zone of capture occurred in the ENP.  Geographic zone explained 

the most variance in the diet, though much less than that explained by the central 

California data.  Information on prey availability for these samples was limited, but it 



appears that latitudinal variation in euphausiids, again the most important prey, may be 

correlated with changes in the importance of other prey categories. 

An ecomorphological study of the oral and dental morphology of B. kincaidii was 

conducted to determine if the intra-specific differences in diet could be linked with 

associated differences in morphology.  Many of the structures associated with feeding 

grew allometrically, both positively and negatively, and the growth relationships were 

often different between the sexes.  The results of a three-factor MANCOVA revealed that 

there were frequent significant differences by all of the factors (sex, maturity status, and 

geographic zone) and their interactions among all of the measured variables.  However, 

variation between the sexes explained approximately one third of all the variance in the 

measurements in both data sets.  The sex*maturity interaction explained the second most 

amount of variance, indicating that relational differences in the morphology of male and 

female skates further changed as they matured.  The differences among the factor levels 

in oral and dental morphology were compared with the differences among the same 

levels determined from the diet study and it was concluded that intra-specific variation in 

morphology did not correlate well with intra-specific differences in diet.  Based on the 

lack of a relationship, I suggest that intra-specific differences in the morphology of 

skates, as with other batoids, are related more to mating.  The increased mouth width, 

amount of palatoquadrate protrusion, shorter pre-oral length, and teeth with higher and 

longer cusps of mature males allows them to better capture and hold females during 

courtship but such differences do not satisfactorily account for differential exploitation of 

any prey category.  
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INTRODUCTION 

The trophic ecology of a species, determined through diet analysis, gives insight 

to the place of both predator and prey in the food web.  Diet studies can provide 

information on habitat use of predator and prey as foraging habitat may be different than 

where an animal has previously been observed.  This kind of study also can help to 

understand how a predator could influence its prey populations, and vice versa. Without 

this knowledge, problems could arise from changes to the food web when the abundance 

of one or more species is altered, such as those caused by overfishing. 

Skates (Rajiformes) are common demersal fishes, and are the most speciose 

elasmobranch order, occurring in nearshore temperate environments and deep-water 

tropical and boreal regions (Compagno 1990).  Skates are frequently taken as bycatch 

around the world in important fisheries that target hake (Merluccius spp.), whiting 

(Micromesistius australis australis), cod (Salilota australis), monkfish (Lophius 

gastrophysus) and shrimp (Pleoticus muelleri), and in research trawls (Walmsley-Hart et 

al. 1999, Alonso et al. 2001, Brickle et al. 2003, Cedrola et al. 2005, Perez and Wahrlich 

2005).  Skates also may compete with commercial species by sharing the same food 

resources (Berestovskiy 1990, Pedersen 1995, Orlov 1998a, Dolgov 2005).  As with other 

elasmobranchs, these fishes are usually upper trophic level predators (Berestovskiy 1990, 

Orlov 1998a, Alonso et al. 2001, Dolgov 2005).  Smale and Cowley (1992) concluded 

that because of their wide breadth of diet and their biomass, skates are likely to have a 

significant influence on the benthos.  These varied trophic interactions indicate that 
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thorough dietary studies are needed to determine their place in the ecosystem (Stevens et 

al. 2000).  

Elasmobranchs, including skates, are relatively long lived and late to reproduce 

relative to teleosts (Compagno 1990, Camhi et al. 1998, Frisk et al. 2001, Zorzi et al. 

2001).  Because of these life history attributes, they face problems related to overfishing, 

such as the reduction of breeding biomass and slow recovery to pre-fishing levels when 

overfished.  These biological attributes, coupled with a lack of species-specific fishery 

data and unregulated bycatch, could lead to overfishing in certain skate species (Holden 

1977, Jennings et al. 1998, Dulvy et al. 2000, Musick et al. 2000, Zorzi et al. 2001).  

The commercial catch of skates has increased dramatically along the Pacific coast 

of the United States during the past decade (Camhi 1999).  Though skates have been 

fished commercially off California since 1916, only recently have the fishery landings 

grown by an order of magnitude (Zorzi et al., 2001).  From 1995 to 2003, annual skate 

landings undifferentiated by species, in California ranged from 2 to 10 times the landings 

for each of the years from 1981-1994, and were often greater than the combined landings 

of all other elasmobranch species (PacFin Database 2006).  Additionally, landings have 

fluctuated greatly, increasing from 199 metric tons (mt) in 1995 to 1372 mt in 1997 then 

falling to 141 mt in 2003.  Though not as strong, fluctuations were also indicated from 

landings within the Monterey Bay National Marine Sanctuary (Starr et al. 2002). 

Landings peaked in 1983 with 91 mt, followed by twelve years of relatively stable 

landings below 48 mt, to an increase of 110 mt in 1997, decreasing to 46 mt landed in 

2000.  In Oregon, commercial skate landings have displayed the same trend in both 
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increase and fluctuation over the same time period, with a high of 938 mt in 2003 (Camhi, 

1999; PacFin Database 2006).  The total landings of skates in Oregon from 1995-2003, 

undifferentiated by species, was greater than thirteen times the combined total 

commercial landings of all other elasmobranchs.  In Washington, the skate landings have 

remained comparatively low, ranging from < 100 mt to just over 300 mt over the same 

two decades.  This catch never surpassed the remaining elasmobranch catch, which was 

predominantly spiny dogfish, Squalus acanthias (PacFin Database 2006).  However, the 

skate catch has shown a fluctuating trend, most notable since 1997.  It should be noted 

that no effort data were available for these landings.  Prior to the current landings 

increase, skates were frequently discarded and it is unknown whether these increased 

landings are the result of increased catch retention or if fishermen are collecting a greater 

number of skates than before (Camhi 1999; Zorzi et al., 2001).  In either case, this 

increase in landings indicates that skates have become an important component of 

commercial fisheries in the eastern North Pacific (ENP), yet these are some of the least 

studied elasmobranchs. 

The sandpaper skate, Bathyraja kincaidii (Garman 1908), is a deep-water 

elasmobranch endemic to the ENP.  This species occurs between 55 and 1372 m (most 

commonly between 200 to 500 m) from the Gulf of Alaska to northern Baja California 

(Miller and Lea 1972, Ebert 2003).  Bathyraja kincaidii is the smallest skate along the 

ENP, growing to 635 mm total length (TL) with a longevity of at least 18 years (Perez 

2005).  Currently there is some question as to the validity of the species (Ebert 2003).  

Ishihara and Ishiyama (1985) synonymized B. kincaidii with Bathyraja interrupta based 
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on morphometrics and meristics, claiming that geographic variation may account for the 

differences between them.  However, the authors did note that there were differences in 

the size of egg cases between the two species, something they noted may not be due 

solely to geographic variation.  Craig (1993), in a later examination of the Bathyraja 

genus, concluded that there were sufficient meristic and qualitative differences between 

the two species to separate them.  Few studies have been conducted on its life history, yet 

it is frequently caught in trawls in the ENP.  Wakefield (1984) examined stomach 

contents from two individuals off the coast of northern Oregon and found seven prey taxa, 

including shrimp in the genus Crangon, the teleost Citharichthys sordidus, a pinnotherid 

crab and the mysid, Acanthomysis nephrophthalma.  Ebert (2003) reported anecdotal 

information on the diet, listing polychaetes, amphipods, crabs, and shrimp.  

This study serves to increase the knowledge of an important aspect of the life 

history of B. kincaidii by identifying the prey items of this species and describing its 

place in the ENP food web.  The diet of B. kincaidii is described and statistically tested 

for differences between sexes, maturity stages, and among oceanographic seasons for 

skates from the Monterey Bay area and between sexes, maturity stages, and among 

geographic zones from the slope waters of northern Washington to southern California. 
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MATERIALS AND METHODS 

Sample sources, general sorting and measurements 

Sandpaper skates, Bathyraja kincaidii, were collected during approximately 

monthly trawl surveys along the central California coast from March 2002 to February 

2005 by the National Marine Fisheries Service (NMFS) Santa Cruz Lab (SCL) (Figure 1) 

and from the NMFS Northwest Fisheries Science Center West Coast Groundfish Survey 

(WCGS) trawls from June to October 2003 (Figure 2).  Specimens from SCL surveys 

were collected from 24 hauls among four varying depth strata per cruise with average 

depths of 395 m (1), 285 m (2), 226 m (3) and 146 m (4).  Specimens from the WCGS 

trawls were collected during 118 hauls of varying depth.  

Skates from both sources were frozen on board the vessel and later processed at 

which time the stomachs were removed and frozen for later sorting.  Stomach contents 

were sorted without sieving at 6.3 to 16x magnification using a dissecting microscope.  

Prey items were identified, counted, and weighed wet to the nearest 0.001 g.  Any prey 

item < 0.001 g was given a mass of 0.0005 g for use in calculations.  Any material that 

was not identifiable to any taxonomic level was excluded from enumeration and 

weighing.  An “unidentified digested material” category was not included in this analysis 

because it does not enhance the understanding of an animal’s diet, but only gives 

evidence to the rate of digestion and gastric evacuation, which was not examined in this 

study.  The importance of non-biological categories, such as gravel, was not recorded.  

Prey taxa were grouped into nine taxonomic categories: polychaetes, cephalopods, small 
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benthic crustaceans, shrimp-like crustaceans, crabs, unidentifiable crustaceans, teleosts, 

molluscs and echinoderms.  

Diet description 

The importance of prey was described by their component indices: number, mass 

and frequency of occurrence.  %N¯¯¯¯  is the mean percentage number of a given prey 

category (j), %M¯¯¯¯  is the mean percentage mass of a given prey category, and %FO is the 

percentage frequency of occurrence of a given prey category from all stomachs. To 

estimate precision for %N and %M of the prey, mean importance and standard error were 

calculated based on importance values from each stomach examined (Tirasin and 

Jørgensen 1999).  Along with the component indices of importance, a mean Index of 

Relative Importance (IRI¯¯¯¯) was used to describe the diet (Pinkas et al. 1971, Hyslop 1980).  

This index was chosen because it easily conveys all the important aspects of a prey 

category into a single metric (Cortés 1997, Cortés 1998).  Also, the IRI is the most 

widely used feeding index (Hahn and Delariva 2003), allowing for comparisons with 

other studies of diet, provided care is taken when assigning prey categories for 

comparison.  This index was modified to incorporate percentage mass instead of 

percentage volume: 

IRI¯¯¯¯
j= (%N¯¯¯¯

j + %M¯¯¯¯
j) * %FOj 

%IRI¯¯¯¯¯  was further calculated to provide the easiest measure to visualize the importance of 

any given prey: 

%IRI¯¯¯¯¯
j= (IRI¯¯¯¯

j/ Σ IRI¯¯¯¯)*100 
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A randomized prey curve was generated using 100 resamplings (Ferry and Cailliet 1996), 

which plots the cumulative number of stomachs analyzed against the cumulative number 

of prey taxa encountered.  A leveling of the curve and a reduction in variance indicates 

that enough stomachs have been examined to describe the taxonomic richness of the diet.  

A curve employing the number of prey taxa was used as it appears to be more 

conservative than a curve based upon diversity values (Robinson 2006). 

Diet analysis 

The monthly SCL samples were divided among three defined oceanographic 

seasons that characterize the study area, as described by Skogsberg (1936), Skogsberg 

and Phelps (1946) and Bolin and Abbott (1963).  The Upwelling Season (UPS) (March to 

July) is characterized by the upwelling of cold, nutrient-rich water that can move far 

offshore due to strong southbound winds.  This is followed by the Oceanic Season (OCS) 

(August to November), when the winds and upwelling weaken.  During this weakening, 

oceanic water from the California Current moves close to shore.  The Davidson Current 

Season (DCS) (December to February) is characterized by the continued weakening of 

the California Current, the development of an inshore northward current, a negligible 

thermocline and warm upper waters.    

Similarly, the WCGS samples were divided among four geographic zones.  

Rather than divide the sampled area via political boundaries, previously described faunal 

breaks were used.  The northernmost zone extends from the Canadian border to Cape 

Blanco (approximately 42.8° N- zone 4).  Oceanic copepods and intertidal mussels and 

barnacles have significantly different assemblages and recruitment rates, respectively, 
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north and south of the Cape (Connolly et al. 2001, Peterson and Keister 2002).  

Additionally, Cape Blanco is the northernmost boundary of the California Current; north 

of the Cape, cold, nutrient rich upwelled waters remain nearshore while south of the Cape 

these upwelled waters can be transported far offshore, over the deep shelf/ slope region 

(Barth et al. 2000).  The third zone consists of the waters south of Cape Blanco to the 

northern edge of Monterey Bay (approximately 37.0° N) whereas the second zone 

extends from 37.0° N to Point Conception (approximately 34.4° N).  Previous researchers 

have found that this division of the California Current is supported by faunal range 

cluster analyses of various crab, ascidian, mollusc, and fish taxa (Valentine 1966, Hayden 

and Dolan 1976, Horn and Allen 1978).  Zone 1 consists of the area south of Point 

Conception to the Mexican border.   

 A three factor MANOVA was used to test the null hypothesis that there were no 

differences in the diet between sexes, maturity stages (mature versus immature) and 

among the three oceanographic seasons/ four geographic zones for each data set 

(Somerton 1991, Paukert and Wittig 2002).  Compound indices should not be used 

because they can conceal the information of individual measurements, so number and 

mass of the major prey categories were used separately in the analysis (Tirasin and 

Jørgensen 1999).  The proportion of each category was arcsine transformed (Zar 1999, eq. 

13.8) to more closely meet the assumptions of homoscedasticity and normality.  These 

assumptions were tested with Levene’s Test (variance across groups for a single variable), 

Box’s M test (covariance matrix across groups for all variables), and by examination of 

residual plots for each variable.  Pillai’s Trace was chosen as the reported test statistic as 
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it is the most robust to violations of parametric assumptions (Olson 1974).  A sequential 

Bonferroni comparison test was used to determine which geographic zones were 

responsible for the detected differences in diet categories (Rice 1989).  This test was 

chosen as it has more power than the standard Bonferroni test, but is more conservative 

than the Least Significant Difference test.  Except for these multiple comparisons, all 

other statistical tests were conducted with SPSS 11.0.1 for Windows.  The two data 

sources, WCGS and SCL, were considered different populations a priori as there was no 

spatio-temporal overlap, and therefore were analyzed separately.   

The diet data were tested based upon the major prey categories previously 

described.  Without grouping prey, there will almost certainly be significant differences 

in food items simply because of the variation among individual predators and/or an 

excessive amount of variables (food taxa).  Six of the taxonomic categories (polychaetes, 

shrimp-like crustaceans, small benthic crustaceans, crabs, cephalopods and teleosts), 

accounting for the twelve variables (number and mass), were used in the statistical tests.  

Unidentifiable crustaceans (pieces of crustaceans that could not be placed into any of the 

other crustacean categories), molluscs and echinoderms were excluded as they 

contributed little to the diet (Olson 1974).  Additional randomized cumulative prey 

curves were created for each level of the three factors (e.g. immature females in the OCS, 

etc.) using these taxonomic categories.  Because only major prey categories were 

statistically tested, a further qualitative examination of the importance of prey at lower 

taxonomic levels was included for each of the three main factors. Taxa were considered 
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to be important if they comprised > 5% of %N¯¯¯¯ , %M¯¯¯¯  or %IRI¯¯¯¯¯ . These percentages should 

not be confused with the transformed proportions used in the statistical tests. 

A multivariate factor fit model using the three fixed factors (sex, maturity status, 

and oceanographic season/ geographic zone) was approximated from the univariate two 

factor fixed model provided by Graham and Edwards (2001).  By describing how much 

of the observed variance is explained by these factors, the fit of these factors can often 

give more information about the model than their significance in the test itself.  Because 

the data set was multivariate, the variance component for a single factor was calculated 

using the mean square and mean square error for each response variable as in the 

univariate model.  These components were then averaged, with negative variances set to 

0.   The number of replicates per cell was not equal for this analysis, so the mean number 

of samples per cell was used for analysis.  That averaged variance component for the 

factor was then used to calculate the magnitude of effects (ω2), the percentage of the 

variance explained by that factor, which is analogous to the r2 of regressions (Graham 

and Edwards 2001). 
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RESULTS 

Sample sources 

In total, 140 B. kincaidii stomachs were collected from the SCL trawls, of which 8 

(5.7%) were empty.  Additionally, 2 (1.4%) specimens had incomplete haul tag 

information, which precluded their use in certain statistical analyses.  The number of 

skates collected per haul ranged from 1 to 26 individuals (mean 5.4 ± 1.3 SE) and they 

ranged in size from 327 to 585 mm TL (mean 482 ± 4.6 SE mm TL, Figure 3). Examined 

by season, 21 skates with stomach contents were collected during the UPS, 78 from the 

OCS and 31 in the DCS.  The majority of samples, however, were collected in January 

(22%), October (17%), and November (41%).  The depth distribution of the specimens 

also was clumped, with most collected from the two deepest hauls at average depths of 

395 m (46%) and 285 m (31%).  The randomized cumulative prey curve revealed that 

enough stomachs had been collected to describe species richness accurately, averaging 

only three unique new prey taxa from the final 50 stomachs (Figure 4).   

In total, 368 specimens were examined from the WCGS trawls, 6 (1.6 %) with 

empty stomachs. There were 2 (0.5 %) stomachs from the WCGS that contained only 

unidentifiable crustacean prey or items considered incidentally ingested and another 7 

(1.9 %) that had incomplete haul tag information, which precluded their use in any 

analysis other than general diet description.  Between 1 and 14 skates were collected per 

haul (mean 3.1 ± 0.2 SE).  Fourteen skates were collected in zone 1, 44 from zone 2, 136 

from zone 3, and 159 from zone 4.  Skates from the WCGS trawls had a greater TL range 

than those from SCL trawls, 195 to 660 mm TL (mean 479 ± 4.2 SE mm TL, Figure 5).  
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Skates were collected as shallow as 70.6 m to as deep as 1162.2 m (mean 347.2 m ± 17.7 

SE m).  There was a leveling in the randomized cumulative prey curve, requiring 

approximately 310 samples to describe prey richness (Figure 6).   

Diet description 

Bathyraja kincaidii consumed a wide variety of invertebrates and teleosts (Table 

1).  Taxonomically, with 67 of 94 lowest identifiable taxa (LIT), the majority of the prey 

items were crustaceans, most of which were amphipods (23) and shrimp or shrimp-like 

crustaceans (27).  Amphipods from 12 families were ingested whereas the shrimp-like 

crustaceans were taxonomically dominated by hippolytid shrimps of the Eualus and 

Spirontocaris genera.  To a lesser extent, crangonid shrimps and the euphausiid 

Thysanoessa spp. were consumed. Crabs also were well represented, with 13 LIT, the 

majority of which were Pagurus spp.  Teleosts were the second most taxonomically 

diverse group with 12 LIT, which were composed mostly of the myctophids Diaphus 

theta, Tarletonbeania crenularis, and Stenobrachius leucopsarus.  Various groundfish 

such as Sebastes spp., Citharichthys sp., and Eopsetta exilis comprised the remaining 

identified teleosts.  Polychaetes ranked third with 9 LIT.  Within this group only one 

family, Onuphidae, had more than one identifiable species present.  Cephalopods were 

the least abundant group taxonomically, with 4 LIT.  They were composed primarily of 

three identifiable squid, Abraliopsis felis, Gonatus sp., and Loligo opalescens, with a 

single identifiable octopod, Octopus rubescens.  However, the low taxonomic diversity of 

this group could be attributed to the digestion of cephalopod beaks, which allowed the 

prey to be identified to this taxonomic level, but not any further. 
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  The mean number (62.7 %), mass (46.2 %) and IRI (69.1 %) indicated the overall 

diet of Bathyraja kincaidii was dominated by shrimp-like crustaceans (euphausiids, 

mysids and shrimps), which were found in > 96 % of the stomachs examined (Figure 7, 

Table 2).  Polychaetes were the second most important prey and were slightly more 

important by mass (20.1 %) than number (14.9 %) and IRI (16.6 %), and displayed a 

large frequency of occurrence (72 %). Cephalopods (4.4 %N¯¯¯¯ , 9.2 %M¯¯¯¯ , 39 %FO and 3.5 

%IRI¯¯¯¯¯ ) and teleosts (5.3 %N¯¯¯¯ , 10.1 %M¯¯¯¯ , 46 %FO and 4.7 %IRI¯¯¯¯¯ ) also were more important 

by mass, but were consumed by much less of the sampled population.  Small benthic 

crustaceans were of nearly equal importance by number and mass (8.9 %N¯¯¯¯ , 6.8 %M¯¯¯¯ , 43.8 

%FO and 4.5 %IRI¯¯¯¯¯ ).  Based on %IRI¯¯¯¯¯ , the remaining four prey categories, crabs (1.6 %), 

unidentifiable crustaceans (0.05 %), molluscs (0.01 %), and echinoderms (< 0.01 %) 

comprised a minimal portion of the diet.   

Examination of the minor groups in the overall diet indicated what lower taxa 

were most important to Bathyraja kincaidii.  The inseparable conglomerates of 

euphausiids, shrimps, and mysids collectively dominated the shrimp-like crustacean 

group, of which the euphausiid/ shrimp mix was the most important.  Following these 

mixes were shrimps, of which unidentifiable shrimps made up the greatest portion.  

Onuphidae was the most important polychaete family and were found in 32.5 % of the 

stomachs examined.  There were no lower taxa of teleosts that were considered important 

in the diet, but were primarily unidentifiable remains followed by the family 

Myctophidae.  Gammarid amphipods comprised the majority of small benthic 

crustaceans, with only trace amounts of the remaining taxa.  Cephalopods mainly 
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consisted of squid, most of which were unidentifiable.  The remaining prey categories, 

like teleosts, had no important lower taxa.  The majority of the crab category, however, 

was unidentifiable remains along with pagurids and axiids, the molluscs were mostly 

gastropods and the echinoderms were predominantly the urchin Strongylocentrotus sp. 

When the sample sources were examined separately a similar pattern emerged.  

The majority of the diet of both sources, by mean number, mass and IRI, was comprised 

of shrimp-like crustaceans and a large portion of the diet, again by all three measures, 

was composed of polychaetes (Tables 3 and 4).  The importance of cephalopods by mass 

was much greater in the SCL samples as was the frequency of occurrence, which led to 

their increased overall importance in those samples.  The importance of teleosts in the 

diet of WCGS samples was slightly less by mass and frequency of occurrence, indicating 

a lower overall importance compared with the SCL data.  Small benthic crustaceans and 

crabs were more important to skates from the WCGS based on all measures of 

importance (Figures 8 and 9).   

Differences were found in the importance of minor prey groups between the two 

sources.  In the stomachs from the WCGS samples, the euphausiid, shrimp, and mysid 

mixes dominated the diet.  However, the diet of SCL skates was dominated by 

euphausiids rather than the mixes and were composed mainly of unidentifiable remains 

with Thysanoessa spinifera the most important identifiable species; unidentifiable shrimp 

were of secondary importance.  Onuphid polychaetes were the most important family for 

both data sources.  Nephtyids were, however, the second most important family to SCL 

samples, because of their comparatively greater mean mass and frequency of occurrence,  
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whereas unidentifiable polychaetes ranked second in the WCGS samples because of their 

comparatively greater mean mass and high frequency of occurrence.  The importance of 

myctophid fishes was somewhat greater in the SCL samples by all measures, but this 

category was only important by mass.  The sources differed markedly in their importance 

of lower cephalopod taxa.  Squids were more important to the diet of SCL samples, but a 

large percentage of skates from both sources consumed them.  Though not important, 

octopods were consumed more by skates from SCL trawls by all measures.  Gammarid 

amphipods were consumed similarly by skates from both sources, but were more 

frequently consumed by WCGS skates.  No lower taxa of crab prey were considered 

important to the diet from either source, but each were more important to WCGS samples.  

These samples also displayed a greater taxonomic diversity than those collected in the 

SCL, of which axiid crabs were the most important. 

Diet analysis 

The additional randomized cumulative species curves for each level of the three 

factors examined in the SCL data indicated two groups for which there were not enough 

stomachs collected.  There were only two stomachs from immature females during the 

UPS, which was not enough to test statistically (Figure 10a).  Additionally, the curve for 

immature males in the UPS was inconclusive (Figure 10c).  Removing only those 

samples would have made the design non-orthogonal, so all stomachs from the UPS were 

removed from the quantitative analysis.  The diets of these stomachs were qualitatively 

compared with the diets of skates from the other two seasons.  The remaining randomized 



 17

curves indicated enough stomachs were collected to describe the richness of the diet for 

the remaining combination of factors (Figure 10). 

There were groups from WCGS trawls for which there were not enough stomachs 

collected.  There was only a single mature female and immature male stomach each from 

zone 1 (no curve generated).  By the same reasoning as above, all stomachs from this 

zone were removed and qualitatively examined in relation to the other zones.  The 

randomized curves generated for the remaining combinations revealed an adequate 

amount of samples were collected to describe their prey richness (Figure 11).   

Santa Cruz Lab 

The assumptions for parametric tests were violated in the SCL data set.  Levene’s 

test on the prey groups was significant only for polychaetes (p= 0.004) and Box’s M also 

was significant (p< 0.01) for mass data. Testing of the numeric data revealed only 

teleosts were not significant by Levene’s test (p=0.189) and Box’s M was again 

significant (p< 0.01) indicating that overall the data set did not have equality of variances 

or covariances.  An examination of the residuals indicated that both data sets were 

distributed normally.   

The proportional mass data indicated significant differences in the diet by sex 

(p=0.028, df= 6, 96), maturity status (p<0.01, df= 6, 96) and oceanographic season 

(p<0.01, df= 6, 96) with a significant interaction of maturity-season (p= 0.014, df =6, 96).  

Pairwise comparisons revealed that male B. kincaidii ingested a significantly greater 

proportion of shrimp-like crustaceans, small benthic crustaceans, and crabs than females.  

Immature skates consumed more small benthic crustaceans and crabs than mature 
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individuals.  Greater proportions of small benthic crustaceans and crabs were ingested 

during the DCS than in the OCS.   

Although there was a significant maturity*season interaction, no prey category 

had significant interactions when examined by univariate tests (Figure 12a).  Most likely 

this was the combination of all prey categories that caused the interaction, but two prey 

groups stood out.  The consumption of shrimp-like crustaceans by mature skates did not 

change from the OCS to the DCS, but there was a sharp decrease in their consumption by 

immature skates.  The proportion of small benthic crustaceans consumed by both 

maturity stages increased from the OCS to the DCS, but immature skates had a greater 

increase than mature skates.   

Aside from the significant interaction of maturity*season, there were significant 

sex*maturity interactions for three prey groups, though overall that interaction was not 

significant (p=0.13, df= 6, 96, Figure 12b). All three crustacean prey categories were 

significant for this interaction (p<0.03 for each).  In all cases (and for teleost prey, 

p=0.051 for this interaction), immature males and females consumed nearly equal 

proportions of each of the respective categories but mature males consumed significantly 

more of each than mature females.   

The proportional mass of prey consumed by B. kincaidii during the UPS was 

qualitatively similar to the diets of the other two seasons.  Predation on polychaetes, 

teleosts and cephalopods was nearly equal among all three oceanographic seasons, 

though for the latter two categories the mean proportion consumed during the UPS was 

least but with a greater standard error.  Shrimp-like crustaceans, however, were 
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consumed in a greater proportion during the UPS than the other two seasons, which were 

similar to each other.  Consumption of small benthic crustaceans and crabs during the 

UPS was greater than that during the OCS; for the former prey category this was less than 

the proportion ingested during the DCS, whereas for the latter the UPS and DCS were 

similar.  The sex*season interaction revealed that males and females consumed small 

benthic crustaceans in equal proportions during the UPS, whereas in the other 2 seasons 

males had a greater proportion of this prey in their diet than females.  Male and female 

skates ingested an equal proportion of teleosts in the UPS and DCS, but during the OCS, 

males ingested a significantly greater proportion than females.  For the remaining prey 

groups, the diets of male and female skates were either the same among all three 

oceanographic seasons, or if different, they had the same trend among the three seasons.  

There did not appear to be a maturity*season interaction in the UPS.  When the UPS data 

were included in the analysis there was not much difference in the consumption of 

shrimp-like crustaceans between the maturity levels.  The consumption of small benthic 

crustaceans and crabs by skates differed between maturity stages each season.  Immature 

skates ingested more of these prey than mature skates, and both prey categories were 

consumed in nearly equal proportions during the UPS and DCS, which were greater than 

the proportion consumed during the OCS. 

Testing the numeric data revealed significant differences in the diet by maturity 

status (p<0.01, df= 6,96) and oceanographic season (p<0.01, df= 6,96) with significant 

sex*season (p= 0.037, df= 6,96) and maturity*season (p<0.01, df= 6,96) interactions.  

Shrimp-like crustaceans and teleosts were consumed in a greater proportion by mature 
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skates, whereas immature individuals consumed more polychaetes and small benthic 

crustaceans.  Between seasons, shrimp-like crustaceans were consumed more in the OCS, 

whereas polychaetes, teleosts, small benthic crustaceans and crabs were consumed in 

greater proportions in the DCS.   

The sex*season interaction was driven by the shrimp-like crustacean and 

polychaete prey categories (Figure 13a).  Both sexes decreased their consumption of 

shrimp-like crustaceans from the OCS to DCS, but females decreased more, having the 

greater consumption of the two sexes in OCS, but the lesser of the two during the DCS.  

Female skates greatly increased consumption of polychaetes from OCS to DCS, whereas 

males decreased slightly.   

The significant maturity*season interaction was caused by teleost, small benthic 

crustacean, and cephalopod prey (Figure 13b).  Mature skates greatly increased their 

consumption of teleosts from the OCS to the DCS, whereas that of immature skates 

increased only slightly.  Predation on small benthic crustaceans by immature skates 

increased from the OCS to DCS, however, the consumption of these prey by mature 

skates displayed a much greater increase between the seasons.  Mature skates ate more 

cephalopods in the OCS than the DCS, though immature skates consumed slightly less.  

In a qualitative examination of the numeric data, shrimp-like crustaceans were 

consumed in nearly equal proportion by B. kincaidii during the UPS and the OCS; 

polychaetes and teleosts had a similar pattern but the proportion ingested in the UPS was 

slightly less than the OCS but with a greater variance.  The consumption of shrimp-like 

crustaceans in each of these two seasons was greater than during the DCS, whereas 
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predation on polychaetes and teleosts was less than during the DCS.  Crab consumption 

during the UPS was in between and qualitatively similar to the other two seasons.  The 

proportion of cephalopod prey taken was least in the UPS.  There was a unique pattern in 

the proportion of small benthic crustacean prey, where consumption during the DCS was 

greater than during the UPS which was in turn greater than during the OCS.  The 

maturity*season interaction revealed that small benthic crustaceans were consumed in 

greater proportion by immature skates in all seasons, but in the DCS the difference was 

much greater.  Cephalopods were ingested in the same proportions by mature and 

immature skates during the UPS and the OCS, but in the DCS mature skates consumed a 

significantly greater proportion than immature skates.  Mature skates consumed a greater 

proportion of shrimp-like crustaceans than immature skates in the OCS and DCS, but 

during the UPS there was no difference between maturity stages.  Polychaetes were 

ingested more by mature skates in the UPS (but with a greater standard error), which was 

the opposite pattern of the other two seasons.  Qualitatively, there appeared to be a 

significant sex*season interaction due to shrimp-like crustacean, polychaete, and crab 

prey.  Though the sexes fed equally on shrimp-like crustaceans during the UPS, females 

had a greater proportion in their diet during the OCS whereas males consumed more in 

the DCS.  Polychaetes had the same interaction as in the quantitative analysis, as the 

proportion ingested during the UPS by males was nearly equal to that of females.  Male 

skates consumed a greater proportion of crab prey during the UPS, but as before this 

proportion did not differ between the sexes in the other two seasons. 
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Factor fit revealed that seasonal variation explained the most variance by mass 

and number in the diet of B. kincaidii (Table 5).  By proportional number, oceanographic 

season explained 17 % of the variance, which was greater than the total amount of 

variance explained by all variables in the mass model.  Maturity status was the second 

greatest factor by number and ranked third in importance by mass.  This factor explained 

14% of the variance by number, again more than the total explained in the mass model.  

Sex, which was a significant factor only for mass, explained the second most amount of 

variation in that model, but the second least amount numerically.  Except for the 

maturity*season and sex*season interactions by number and the sex*maturity interaction 

by mass, the remaining interaction terms explained little of the variance in the diet.  

Though some factors differed by only 1 rank, the only agreement between factor fit and 

p-value for the mass data was for the sex*maturity*season interaction, which ranked last 

for both.  By number, all factors but maturity status and oceanographic season, which 

were switched, agreed between p-value and fit. 

The qualitative examination of lower taxa indicated some fine scale differences 

among the main factors.  Nephtyids were the only polychaete prey important to the 

female skate diet, whereas only onuphids played an important role in the diet of males.  

Squids were the primary cephalopod prey for both sexes.  Gammarid amphipods were the 

only important small benthic crustacean taxon for both female and male skates.  

Euphausiids were the most important lower taxon of the shrimp-like crustacean category 

for both sexes, followed by the unidentifiable shrimp-like mix, also for both sexes.  

Additionally, unidentifiable shrimp were important to both males and females.  
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Myctophid fishes were important in the female diet and unidentifiable teleosts in the 

male’s.  There were no important lower crab taxa consumed.   

When examined by maturity status, additional patterns were revealed.  Immature 

skates preyed mostly on onuphid and opheliid polychaetes, whereas mature individuals 

primarily consumed nephtyid and onuphid polychaetes.  Squids remained the single most 

important cephalopod prey, and of nearly equal importance to both maturity stages.  

Gammarid amphipods were again the only important small benthic crustaceans, but only 

to the diets of immature skates.  Euphausiids dominated the diet of mature skates, with 

the unidentifiable mix and unidentifiable shrimp secondarily important.  The 

unidentifiable shrimp-like mix, however, was the most important group to immature 

skates, followed by euphausiids.   Myctophids were the single important teleost group 

and only to mature skates.  Again, there were no important crab taxa. 

Qualitatively, the diet of B. kincaidii displayed some of the greatest qualitative 

differences by oceanographic season.  There were two important polychaete taxa among 

the 3 seasons surveyed, onuphids in the UPS and DCS and nephtyids during the OCS and 

DCS.  Cephalopod taxa also were mixed among seasons, with squid being the only taxon 

ingested in the UPS, and also important in the other two seasons.  Octopods, however, 

were important during the OCS, whereas unidentifiable cephalopods were important in 

the DCS.  Gammarid amphipods were nearly absent from the diet of B. kincaidii during 

the OCS, but were important during the UPS and the DCS.  During the DCS they were 

the most important lower prey taxon in the diet.  Euphausiids were the most important 

prey taxon overall during the UPS and OCS, followed by the unidentifiable mix.  In the 
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UPS, hippolytid shrimp and unidentifiable shrimp were also important.  During the DCS, 

unidentifiable shrimp were the most important shrimp-like crustaceans, but were far less 

important than the euphausiids from the other two seasons.  Unique to the DCS was the 

increased importance of mysids compared to the OCS.   Euphausiids were also important 

during the DCS, but again much less so than the other two seasons.  Myctophids were the 

sole important teleost taxon and only during the OCS and DCS. 

West Coast Groundfish Survey 

 As with the SCL samples, the WCGS data set did not meet the assumptions of 

parametric tests.  Tests revealed that neither data series was homoscedastic.  Levene’s 

Test determined significantly different (p<0.05) variances among the factor groupings for 

shrimp-like crustaceans, teleosts, crabs and cephalopods for the mass data; Box’s M also 

was significant (p<0.01) in the multivariate examination of variance.  Using the numeric 

data, Levene’s Test indicated significant differences (p<0.05) by groups for teleosts, 

small benthic crustaceans and crabs; Box’s M again was significant (p<0.01).  

Examination of the residuals indicated that both data series had a normal distribution.   

Testing of the mass data revealed significant differences in the diet by sex 

(p<0.01, df = 6, 323), maturity status (p=0.025, df = 6, 323) and geographic zone (p<0.01, 

df = 12, 648), but there also were significant maturity*zone (p=0.001, df = 12, 648) and 

sex*maturity (p=0.019, df = 6, 323) interactions.  Male skates consumed a significantly 

greater (p< 0.05) proportion of shrimp-like crustaceans and polychaetes than females as 

determined by post-hoc pairwise comparisons. Immature skates ingested a greater 

proportion of polychaetes and small benthic crustaceans than mature skates.  By zone, the 
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proportion of shrimp-like crustaceans in the diet of skates from zones 3 and 4 were 

similar for each prey and both were significantly greater than in the diets from zone 2. 

The proportion of polychaetes consumed in zone 3 was also greater than that of zone 2.  

Conversely, the proportion of crabs in the diet of skates from zone 2 was significantly 

greater than those of zones 3 and 4.     

The maturity*zone results indicated that only polychaete and crab prey did not 

display an interaction.  Analysis of the means for each level did not indicate any clear 

overall trend among the remaining prey categories (Figure 14a).  One evident trend was 

the clinal decrease in the proportion of cephalopods and teleosts consumed by mature 

skates from south to north.  The consumption of teleosts by immature skates was greatest 

in zone 3 whereas that of cephalopods was lowest in that zone.  Mature skates displayed a 

general increase in their consumption of shrimp-like crustaceans from south to north, 

whereas the proportion ingested by immature skates remained fairly consistent across 

zones, though skates from the northernmost zone did consume the greatest proportion.  

The ingestion of small benthic crustaceans displayed opposing trends by maturity status.  

Though they ingested equal proportions in zone 3, immature skates consumed their least 

proportion, and mature skates their greatest, in that zone.   

The sex*maturity interaction was driven by teleosts and cephalopods (Figure 14b).  

The proportions of these prey categories consumed by female skates decreased when they 

matured, whereas the amount ingested by males increased slightly.  Though it was not 

significant (p >0.05), male skates slightly decreased their consumption of shrimp-like 

prey as they matured, whereas female skates increased theirs. 
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The proportional mass data from the fourteen excluded B. kincaidii stomachs 

from zone 1 qualitatively indicated that the consumption of most of the prey categories 

was similar to the other zones.  There was a greater standard error due to a smaller 

samples size, but the ingestion of teleosts, small benthic crustaceans, and cephalopods in 

zone 1 was similar to that of the other three geographic zones.  The consumption of crab 

prey in zone 1 was nearly equal to that of zones 3 and 4, all of which were less than the 

proportion taken by skates from zone 2.  Polychaete prey consumption in zone 1 was 

much greater than that of the other three zones, whereas the ingestion of shrimp-like 

crustaceans in zone 1 was in between that of zone 2 and zones 3/ 4.  Examining the 

maturity*zone interaction revealed that immature skates in zone 1 consumed more 

shrimp-like crustaceans than mature skates, which was similar to the pattern from zone 2; 

mature skates in zone 3 had a greater proportion of these prey in their diet whereas the 

proportions were equal between the maturities in zone 4.  Polychaetes were found in a 

greater proportion of mature skate stomachs from zone 1, which was opposite the trend 

found in the other three zones.  The sex*zone interaction indicated that teleosts, small 

benthic crustaceans, crabs and cephalopods were all consumed in nearly equal proportion 

by both sexes among each zone.  Males ingested a greater proportion of shrimp-like 

crustaceans in zone 1, similar to zone 2, whereas the consumption in zones 3/ 4 was 

nearly equal between the sexes.  Polychaetes were consumed in a much greater 

proportion by females in zone 1, whereas the ingestion of this category by females was 

equal to or slightly less than that of males in each of the other three zones.   
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Examining the proportional number data, there were significant differences in the 

diet by sex, (p=0.048, df = 6, 323), maturity status (p<0.01, df = 6, 323) and geographic 

zone (p<0.01, df = 12, 648), with significant interactions of maturity*zone (p= 0.007, df 

= 12, 648) and sex*maturity (p= 0.010, df = 6, 323).  Results of post-hoc comparisons 

indicated that female skates consumed significantly more small benthic crustaceans than 

males. Mature skates ingested a greater proportion of teleosts and cephalopods than 

immature skates, whereas the opposite was the case for small benthic crustaceans.  

Among zones, all prey groups except polychaetes displayed differences in the proportion 

ingested.  Shrimp-like crustaceans were consumed significantly more in zones 3 and 4 

(which were not significantly different than each other) than zone 2.  The opposite was 

true for teleosts, crabs and cephalopods, where skates consumed a greater proportion of 

these prey in zone 2 than zones 3 and 4 (again not significantly different).  The 

consumption of small benthic crustaceans deviated from this pattern, with skates from 

zones 2 and 4 (not significantly different from each other) consuming a greater 

proportion than those in zone 3.   

Cephalopod prey were responsible for the maturity*zone interaction.  Mature 

skates displayed a significant decline in the proportion of cephalopods consumed from 

zone 2 to zones 3/ 4 (Figure 15a).  The proportion ingested by immature skates remained 

relatively stable across all zones.   

The sex*maturity interaction was caused by teleosts, crabs, and cephalopods.  

Female skates did not increase their consumption of teleost prey as they matured, but 

males did (Figure 15b).  The patterns of crab and cephalopod ingestion were similar in 
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that female skates slightly decreased their ingestion on these groups as they matured, 

whereas males increased theirs. 

 Qualitative examination of the numeric proportion of zone 1 prey of B. kincaidii 

yielded similar results compared to the mass data.  Shrimp-like crustaceans were 

consumed in a slightly lower proportion by skates in zone 1 than zone 2, both of which 

were much lower compared with zones 3 and 4.  Polychaetes composed a much greater 

proportion of the skate diet in zone 1 than in all other zones.  Teleost and crab prey 

proportions were similar for skates in zones 1, 3 and 4, all of which were lower than that 

of zone 2.  Cephalopods were taken nearly equally in zones 1 and 2, which was 

marginally greater than the proportions taken from zones 3 and 4.  Lastly, small benthic 

crustaceans were preyed on nearly equally in all zones, though least in zone 3.  Shrimp-

like crustacean and polychaete prey differed between maturity levels in zone 1 skate diets, 

as revealed by the maturity*zone interaction.  Immature skates consumed a greater 

proportion of shrimp-like crustaceans than mature ones, whereas the opposite was true 

for polychaetes.  There did not appear to be any overall pattern in the consumption of 

prey  categories among the four zones.  There was a distinct clinal zigzag pattern of 

consumption of crabs and small benthic crustaceans by immature skates; predation on 

these groups was greater in zones 2 and 4 than in zones 1 and 3.  Examining the sex*zone 

interaction, consumption of shrimp-like crustaceans and polychaetes again differed in 

skates from zone 1.  Male B. kincaidii consumed a greater proportion of shrimp and vice 

versa for polychaetes.  Additionally, male skates ingested more cephalopods than females 

within zone 1.   
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Although the amount of variance in the diet explained by the model was low for 

both the proportional mass and number of prey, geographic zone, maturity status, and the 

interaction of these two factors accounted for the greatest explained dietary variance 

(Table 6).  The sex*maturity interaction was next by numeric data, followed by the 

sex*maturity*zone interaction (which was non-significant).  Sex, although significant in 

the model, explained the second least amount of variance in the diet by number, followed 

by the sex*zone interaction.  Sex explained slightly more variation in the mass model and 

ranked 4th in factor fit.  The remaining interactions in the mass model comprised the least 

important factors in explaining dietary variance.  When the ranks of the factors were 

compared between significance of fit and p-value by mass, zone, sex*zone and 

sex*mat*zone agreed (Table 6).  The remaining factors differed by a ranking of one 

except for maturity status, which explained the second most amount of variance in the 

model but was ranked fifth by p-value.  All of the factors except maturity status and 

geographic zone, which were switched in rank between fit and p-value, agreed in the 

numeric model. 

 Additionally, lower taxa of the six prey categories were examined qualitatively 

for each of the main effects.  Only unidentifiable polychaetes were important in the diet 

of female sandpaper skates.  Onuphids were the most important polychaetes for male 

skates, followed by unidentifiable polychaetes.  There were no cephalopods that were 

considered important in the diet of either sex, but squids were the dominant taxon.  Small 

benthic crustaceans were predominately gammarid amphipods in the diet of both sexes, 

but were more important to females.  The unidentifiable mix of shrimps, euphausiids and 
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mysids was the most important group of shrimp-like crustaceans, followed by 

euphausiids, for both sexes. Additionally, crangonid shrimps and unidentifiable shrimps 

were important to female B. kincaidii whereas unidentifiable shrimps were important to 

males.  There were no lower taxa of crabs or teleosts considered important to either sex.   

By maturity status, onuphids were important in the diets of immature skates, but 

not to mature skates, whereas unidentifiable polychaetes were important for both maturity 

stages.  Squids were the only important cephalopod component of the diet, and only for 

mature skates, whereas gammarid amphipods were the only important small benthic 

crustaceans and only to immature skates.  The unidentifiable mix was the most important 

taxon of shrimp-like crustaceans for both maturity stages, though more to mature skates.  

Euphausiids and unidentifiable shrimps were also important to the diet of immature 

skates.  Unidentifiable shrimps were the next most important taxon to mature skates, 

followed by crangonid shrimps and identifiable euphausiids.   

The two most important shrimp-like crustacean taxa to skates from zone 1 were 

unidentifiable and crangonid shrimps.  These were followed by euphausiids and the 

unidentifiable mix.  In zone 2, euphausiids and the unidentifiable mix were most 

important taxa, followed by unidentifiable shrimps.  The unidentifiable mix was the most 

important taxon to the diet of skates in zones 3 and 4.  In zone 3, the remaining important 

group were euphausiids, whereas in zone 4 unidentifiable shrimps were second, followed 

by crangonid shrimps.   

Among the four zones, unidentifiable polychaetes were frequently important 

contributors to the diet.  In zone 1, this group, followed closely by opheliids and 
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nephtyids were important.  In zone 2, however, only opheliids were important.  Onuphids 

were the most important lower taxon in the diet of skates from zone 3 along with 

unidentifiable polychaetes.  In the northernmost zone, 4, unidentifiable polychaetes and 

the unidentified polychaete A were the important taxa.   

The importance of lower taxa from the remaining prey categories varied 

geographically, but was often greatest in the two southernmost zones.  Squids were the 

single important cephalopod, and only to skates in zones 1 and 2.  Two lower taxa of 

crabs were important to the diet of B. kincaidii but in only two of the zones; 

unidentifiable crabs in zone 1 and axiid crabs in zone 2.  Similarly, two teleost taxa were 

important contributors to the diet.  Myctophids were considered important to the diet of 

skates from zones 1 and 2; unidentifiable teleosts were also consumed in zone 2.  Unlike 

the other secondary taxa, gammarid amphipods were important prey in all zones. 
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DISCUSSION 

Crustaceans were the most important prey taxa to the overall diet of Bathyraja 

kincaidii, composing > 75% of the prey by %N¯¯¯¯  and %IRI¯¯¯¯¯  and more than 60 %M¯¯¯¯ .  This is 

a trait shared with many other nearshore and offshore, small bodied (< 700 mm TL) 

benthic skates (McEachran et al. 1976, Berestovskiy 1990, Ebert et al. 1991, Smale and 

Cowley 1992, Pedersen 1995, Ellis et al. 1996, Orlov 1998a, Platell et al. 1998, Muto et 

al. 2001, Braccini and Perez 2005, Dolgov 2005, Mabragaña et al. 2005), rays (Abdel-

Aziz, 1994, Valadez-Gonzalez et al. 2001, Ismen 2003), sharks (Ellis et al. 1996, 

Braccini et al. 2005) and teleosts (Wakefield 1984, Garrison and Link 2000, Platell and 

Potter 2001).  Additionally, smaller individuals of larger (> 700 mm TL) species in these 

habitats also prey significantly on crustaceans (McEachran et al. 1976, Ajayi 1982, King 

and Clark 1984, Smale and Cowley 1992, Abdel-Aziz et al. 1993, Ellis et al. 1996, Smale 

and Compagno 1997, Orr and Bowering 1997, Alonso et al. 2001, Hovde et al. 2002, 

Brickle et al. 2003, Ebert and Cowley 2003).  Most crustaceans taken by B. kincaidii 

were shrimp and shrimp-like crustaceans (euphausiids and mysids), which were found in 

96% of the stomachs that contained food.  Euphausiids are important, and often primary, 

prey for cetaceans, birds, and fishes (Schoenherr 1991, Brodeur and Pearcy 1992, Ainley 

et al. 1996, Croll et al. 1998, Yamamura et al. 1998, Croll et al. 2005).  Although they 

were taxonomically diverse, crabs and small benthic crustaceans (predominantly 

gammarid amphipods) played minor roles in the overall diet.   

Polychaetes were the second most important category overall, and as with the 

crustaceans, their importance in the diets of skates and other elasmobranchs has been well 
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documented (McEachran et al. 1976, Templeman 1982, Gordon and Duncan 1989, 

Berestovskiy 1990, Ellis et al. 1996, Platell et al. 1998, Brickle et al. 2003, Ebert and 

Cowley 2003, Dolgov 2005, Mabragaña et al. 2005).  The most important members of 

this group were the Onuphidae and unidentifiable polychaete remains.  In the SCL data, 

the taxa of polychaetes consumed appeared to be related to skate maturity status, with 

small-bodied worms (e.g. Opheliidae) more important to immature skates and larger 

nephtyid worms nearly absent from immature skate stomachs but important to mature 

skates.   

The two remaining prey categories played only minor roles in the diet of B. 

kincaidii.  Teleosts were fairly diverse, but the most important taxon was unidentifiable 

remains.  Other researchers have noted a similar minor importance of teleosts in the diet 

of small batoids (McEachran et al. 1976, Templeman 1982, Ebert et al. 1991, Smale and 

Cowley 1992, Pedersen 1995, Muto et al. 2001, Platell and Potter 2001) and specifically 

Bathyraja spp. (Orlov 1998a, Brickle et al. 2003).  Cephalopods ranked just behind 

teleosts in importance.  The majority of this category were unidentifiable squids due to 

the partial digestion of beaks.  However the majority of octopods were identified as 

Octopus rubescens.  As with the other groups of prey items, the minor importance of 

cephalopods in the diet of small benthic fishes has been previously established 

(Templeman 1982, Berestovskiy 1990, Smale and Cowley 1992, Ellis et al. 1996, Orr and 

Bowering 1997, Orlov 1998a, Walmsley-hart et al. 1999, Garrison and Link 2000, Hovde 

et al. 2002, Brickle et al. 2003, Dolgov 2005). 
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Echinoderms, composed of an unidentifiable ophiuroid and Strongylocentrotus sp., 

and molluscs, represented by Amphissa bicolor, Astyris gausapata, Rictaxis 

punctocaelatus and an unidentifiable bivalve, were considered incidentally ingested 

rather than prey.  In all four cases of the occurrence of echinoderms, only small pieces of 

spines, test and disc were recovered.  Of the 14 occurrences of molluscs, 12 were from 

stomachs that contained benthic prey items such as crabs, polychaetes and Crangonid 

shrimp, indicating they could have been ingested while feeding on other items.  The lone 

bivalve encountered in the examination comprised < 0.01% by mass of the items in that 

stomach.  For the remaining 13 gastropods, only in two cases did they comprise more 

than 4% by mass of the stomach contents.  Additionally, in only a single instance was 

there more than one of these items in a stomach; one mature female had a single Astyris 

gausapata and a single Rictaxis punctocaelatus that totaled < 2% by mass of the stomach 

contents.  With a combined frequency of occurrence < 4%, it seems these items should 

have occurred in more stomachs if they were actively incorporated into the diet.  This 

combination of factors led to these items being excluded from the prey analyses; the 

values for the remaining prey items in Tables 2, 3 and 4 were calculated without 

including these items, whereas the values for the molluscs and echinoderms were 

calculated with all stomach contents included.  

The dietary importance of benthopelagic, vertically-migrating prey such as 

euphausiids, myctophid fishes, and the shrimp Sergestes similis raised the question of 

where these skates could be feeding.  Though it is possible they could migrate into the 

water column to feed, a more likely explanation is based upon the interaction of 
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shoreward currents and the migration of their prey.  It has been suggested that when these 

migrators are at their shallower nighttime depths, shoreward currents may advect them 

over shallower shelf waters, so that when they descend in the daytime they are near or in 

contact with the seafloor (Isaacs and Schwartzlose 1965, Pereyra et al. 1969, Chess et al. 

1988, Croll et al. 1998, Ressler et al. 2005).  Within Monterey Bay, it has been suggested 

that the canyon walls can further serve to concentrate prey (Croll et al. 2005); the area 

map indicates that many skates used in this study came from trawls near canyon edges 

(Figure 1).  This interaction of currents, a nearshore shelf and, in Monterey Bay, steep 

canyon walls could allow B. kincaidii to feed on concentrations of these prey the skate 

otherwise might not encounter in its benthic habitat.   

While sorting stomachs, it became apparent that certain prey items were biased in 

how they were considered important to the diet because of their differential digestion and 

degradation.  Often with cephalopod and teleost prey there was little or no flesh 

remaining in the stomach, leaving only beaks and otoliths or other bones to be used, 

which underestimated the importance by mass of those prey.  Similarly, polychaetes were 

often partially digested and at times counted by jaw parts rather than whole animals 

(except for opheliids which were almost exclusively whole).  Even though these 

categories comprised the second, third and fourth greatest portions of the diet by mass, 

those values are considered to underestimate their importance to a certain degree. 

Because of this, the numeric abundance of these prey categories may more accurately 

estimate their importance to the diet.  Significant differences for these three categories 

were only detected in tests of their numeric importance in the SCL data.  Similarly, the 
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importance of teleosts and cephalopods in the WCGS samples displayed differences in 

their numeric importance, yet polychaetes displayed differences only with the mass data.   

Shrimp-like and small benthic crustacean prey displayed the opposite relationship.  

These items, though not always whole, were rarely in an advanced state of digestion.  

However, their eyes, the characters used to enumerate them, were frequently destroyed.  

These categories composed the first and third greatest percentages by number in the diet, 

but again, these estimates are believed to somewhat underestimate their importance.  

Thus, the mass data may have more accurately represented their importance.  Despite this, 

differences in the importance of these categories were still detected by proportional 

number, but not always for the same factors or interactions as their mass data.  It is 

possible that differences in the findings between numeric and gravimetric data may have 

been influenced more by the digestion rates of certain prey rather than their importance in 

the diet. Analyses of both mass and number would be beneficial in such cases.   

Another possible source of bias could be from a low sample size (ten stomachs or 

less) in each sex-maturity grouping from the DCS in the SCL data. Though cumulative 

prey curves indicated those samples were enough to describe the richness of the diet, it 

could be argued they were too few and could have biased the importance of prey for that 

season.  Though the use of cumulative prey curves is an accepted (and imperative) step in 

the description of diet, further discussion and examination into methods for determining 

the proper diet statistic (prey number, mass, IRI, richness or diversity) and sufficient 

sample size for use in statistical testing of diet data is needed.  
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An interesting result from these statistical tests was the significant difference in 

the diet between the sexes. Although not always analyzed, male and female diets 

frequently do not differ in elasmobranchs (Abdel-Aziz et al. 1993, Cortés et al. 1996, 

Platell et al. 1998, Alonso et al. 2001, Morato et al. 2003, Braccini and Perez 2005, 

Braccini et al. 2005), though sexual differences in diets have been observed in some 

species (King and Clark 1984, Gray et al. 1997, Orlov 1998b).  Significant differences 

were detected for all three crustacean categories and polychaetes across both sample 

sources.  Yet, because of significant interactions, it was determined that only polychaete 

prey by mass and small benthic crustacean prey by number differed between the sexes in 

the WCGS samples.  Though the significant interactions do not allow for the conclusion 

that the remaining differences were due to sex alone, they do indicate that sex had a 

significant effect on the diet, but this effect differed with maturity status and geographic 

zone. 

Santa Cruz Lab 

Though frequent significant interactions precluded the conclusion that differences 

in the diet of SCL samples could be due solely to the main factors, fit revealed that 

oceanographic season explained the most variance in the diet.  Previous studies have also 

noted intra- and interannual changes in the diets of elasmobranchs (McEachran et al. 

1976, Pedersen 1995, Cortés et al. 1996, Muto et al. 2001, Ismen 2003, Braccini and 

Perez 2005, Braccini et al. 2005).  These results, coupled with previous studies on prey 

abundances from the area, indicate that seasonal changes in the diet of B. kincaidii may 

be related to seasonal variation in the abundance of euphausiids, their most important 
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prey.  However, the majority of the variance remained unexplained in the gravimetric 

data, indicating additional factors are responsible for much of the variation in the diet by 

mass.  Depth is one factor that may account for some dietary variance.  Significant 

differences were detected in the diet of Raja rhina by depth, specimens that were 

collected in the same sampling regime as B. kincaidii (Robinson 2006).  Another factor 

that may account for the unexplained variation is larger scale temporal variation.  The 

SCL samples were collected from 2002-2005, so yearly fluctuations in prey species could 

possibly affect their importance in the diet. 

Euphausiid abundances vary intra-annually due to localized oceanographic 

changes, particularly upwelling, and inter-annually due to large scale El Niño/ La Niña 

events (Brinton 1976, Brinton 1981, Brodeur and Pearcy 1992, Mackas et al 1997, 

Mackas 1992, Ainley et al. 1996, Lavaniegos et al. 1998, Tanasichuk 1998a, Tanasichuk 

1998b, Yamamura et al. 1998, Tanasichuk 1999, Benson et al. 2002, Marinovic et al. 

2002, Brinton and Townsend 2003, Croll et al. 2005).  Though the timing can vary, when 

cool, nutrient rich water is upwelled, a predictable chain of events ensues (see Cushing 

1971 for review).  During this time, phytoplankton increase in biomass followed by an 

increase in zooplankton, such as euphausiids.  Because of variability and a lag between 

spawning and adulthood, peaks in euphausiid abundance can occur months after 

phytoplankton abundances begin to increase (Croll et al. 2005).   

In the Monterey Bay area, upwelling most often occurs from late March/ early 

April until late October/ early November, peaking in June (Marinovic et al. 2002, Croll et 

al. 2005, Pacific Fisheries Environmental Laboratory 2006) (Figure 16).  This period 
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encompasses the UPS and OCS used in the present study, during which time euphausiids 

were most important to the diet of B. kincaidii.  This is also the time of greatest 

euphausiid abundance in the study area (Marinovic et al. 2002, Croll et al. 2005).  

Upwelling decreases sharply starting in late July, and taking into account the three to four 

month time lag suggested by Croll et al. (2005), a decrease in the abundance of juvenile 

and adult euphausiids should first be seen in November, which corresponds to the start of 

the DCS.  This decrease in abundance has been previously noted for euphausiids in 

Monterey Bay (Marinovic et al. 2002, Croll et al. 2005), Euphausia pacifica off southern 

California (Cailliet and Ebeling 1990), and for both E. pacifica and Thysanoessa 

spinifera off Vancouver Island (Brinton 1976, Tanasichuk 1998a, Tanasichuk 1998b).  

The remaining shrimp-like crustaceans important in the diet of B. kincaidii 

included various shrimps and mysids, mostly unidentifiable.  If it can be assumed that the 

identifiable species also comprise the unidentifiable group and represent the same 

proportion in the diet, then the most important species was Sergestes similis.  In 

Monterey Bay, Barham (1957) found this species had a nearly constant abundance 

throughout the year due to two populations with a six month reproductive lag.  There is 

no information currently available on the abundances of deep-water mysids in Monterey 

Bay, but Mauchline (1980) suggested that abundances of most species fluctuate 

seasonally with reproduction.   

Myctophids were the most important identifiable teleosts in the diet of B. 

kincaidii.  Stenobrachius leucopsaurus abundance varies seasonally, with estimates from 

Monterey Bay peaking in winter and lowest from March-June (Neighbors and Wilson, Jr. 
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2006).  Barham (1957) noted that in Monterey Bay, S. leucopsarus was captured 

throughout the year, but was most abundant during the months of the DCS by a 

recalculated average.  Diaphus theta, another myctophid consumed, was absent in all but 

one of the samples taken during the UPS, but like S. leucopsarus it was present in much 

greater numbers during the DCS (Barham 1957).  These data indicate that myctophids are 

more abundant in the DCS than either of the other two seasons. 

Little information is available on the seasonal abundance of Loligo opalescens, 

the most important identifiable squid species in the diet, aside from fishery-dependant 

data.  This is because of the difficulty in sampling this species with conventional gear 

such as trawls, which adults can easily evade or escape (Cailliet and Vaughan 1983).  The 

fishery lands maximum catches from May-July (McInnis and Broenkow 1978, Hardwick 

and Spratt 1979, Cailliet and Vaughan 1983, Yaremko 2001).  Assuming that catch was 

directly related to abundance (ignoring problems with fishing effort), October-March is 

the period of lowest Loligo abundance in Monterey Bay, suggesting that these squid were 

more abundant during the UPS and early OCS than in the DCS.  

Data on the seasonality of deep-water small benthic crustaceans and polychaetes 

in the area is currently lacking.  Slattery (1980) claimed that shallower amphipod species 

had peaks in recruitment during spring and summer (UPS and early OCS), but in deeper 

water there was a reduced seasonality.  Because there is no clear evidence, discussion of 

possible reasons for the fluctuation in importance of these prey items in the diet is not 

discussed.  
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Synthesizing the abundances of the various prey from other studies, an 

explanation for the patterns observed in the diet of B. kincaidii is possible.  Beginning in 

the UPS, euphausiids were likely highly abundant and remained so until approximately 

November.  During this time they were the dominant prey of both males and females, but 

were more important to mature skates than immature skates.  Also during this season, 

polychaetes were important prey to B. kincaidii, but were more important to immature 

skates.  Squids and crabs were consumed but were not important to the diet.  Though they 

did not contribute much to the diet, Sergestes similis were likely fairly abundant.   

During the OCS euphausiids likely remained highly abundant and were the most 

important prey of B. kincaidii.  However, there was a dramatic increase in the importance 

of myctophids and squid such as Loligo opalescens to the diet, which could be explained 

by an increased abundance in the area.  These prey were exploited by both sexes, but 

were more important to mature than immature skates.  Polychaetes remained secondarily 

important but the importance of gammarid amphipods declined. 

Decreases in phytoplankton, likely associated with the DCS, led to decreased 

numbers of euphausiids.  Presumably, since their primary prey was no longer available in 

the same abundance, B. kincaidii began to prey more upon shrimps such as S. similis, 

which remained at roughly the same abundance all year.  Mysids were of greater 

importance to the diet in this season, more so than euphausiids.  Although the overall 

importance of shrimp-like crustaceans declined somewhat during the same time period, it 

remained the most important prey category because of this increased importance of 

shrimps and mysids which masked the dramatic decline of euphausiids from the UPS/ 
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OCS to DCS.  Bathyraja kincaidii continued to prey on myctophids, which likely peaked 

in abundance during this season; they remained more important to mature skates than 

immature ones.  Gammarid amphipods significantly increased in the diet and were much 

more important to immature skates, replacing teleosts and cephalopods that the mature 

skates fed upon.  Polychaetes also increased in the diet, again more in immature skates.  

Squids remained important items in the diet, but not as much as during the OCS.  This 

may reflect (but cannot be fully explained by) their likely minimal abundance during this 

season.  Further sampling of the shelf-slope benthos should lead to a more complete 

understanding of any seasonal trends in prey abundance and to further discussion of the 

causes behind the observed seasonal dietary fluctuations of B. kincaidii.   

West Coast Groundfish Survey 

 Similar to the SCL samples, a dimensional factor, geographic zone, explained 

more variance in the diet than sex, maturity status or their interactions.  The amount of 

explained dietary variance among all factors, however, was much less than that of the 

SCL samples.  Depth may again be a source of this unexplained variation, given that the 

depth range of WCGS samples was greater than SCL samples.  Additionally, there is the 

possibility that these were merely weak statistical effects detected by a large sample size 

and differences in diet based on these factors are not necessarily biologically significant 

(Graham and Edwards 2001).  Unlike the SCL data, scant information is available on 

latitudinal variation in the abundances of the prey of B. kincaidii.  There are general 

descriptions of the distribution of euphausiids which report that Euphausia pacifica and 

Thysanoessa spinifera, the two most important euphausiids in the diet, are transitional 
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zone species and are present throughout the study area (Ponomareva 1966, Mauchline 

and Fisher 1969).   Additionally, published information on historical data from 1949 to 

1958 indicated some degree of latitudinal variation in the abundances of these two 

species (Brinton 1962).  The information available on decapod prey abundance is 

primarily limited to landing data for the most commercially important species (Wicksten 

1984, Wicksten 1989, see also Otto and Jamieson 2003), of which only Pandalus jordani 

was consumed.  This species has been found to display marked horizontal differences in 

abundance.  A similar lack of information on non-commercial species abundance exists 

for teleost prey with Sebastes spp the most important commercially collected prey.  As 

the data indicate, however, P. jordani and Sebastes spp. composed little of the overall 

diet from these samples, so discussions of their latitudinal differences in the diet of B. 

kincaidii would not be that informative.  Some information is available for polychaete 

distributions from the study area, but lacks information on abundance (see Appendix I 

listing of polychaete identification guides).  Taking into account these limitations, what 

evidence there is for prey abundance and distribution is presented.   

   In the southernmost zone, 1, the increased importance of shrimps and polychaetes 

in the diet, and the lower overall importance of shrimp-like crustaceans compared to the 

other zones, may be because of the overall lower abundance of euphausiids in the area.  

Historical evidence indicates that euphausiid abundance could be comparatively lesser 

within zone 1.  During the period from 1955-1959, krill were less abundant in the area of 

zone 1 compared with the area from just south of Monterey Bay to just north of San 

Francisco Bay (spanning the northern area of zone 2 and the southern area of zone 3) 
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(Mullin and Conversi 1989). However, from 1960-1969, no significant difference in the 

abundance of euphausiids could be detected for the same regions, lending evidence to the 

highly variable spatio-temporal nature of this group.  Similarly, Brinton (1962), using 

combined data from 1949-1958, found that except for an inshore area of southern 

California and two areas further north (discussed later), there was a relatively 

homogenous abundance of 500-4999 Euphausia pacifica / 1000 m3 (see Figure 28, ibid) 

whereas Thysanoessa spinifera was found in abundances of 50-499 individuals/ 1000 m3 

in the area of zone 1 (see Figure 53, ibid).  This indicates that euphausiids could also, at 

times, be fairly abundant within this area.  It is unclear whether the diet from this zone 

reflected a period of low krill abundance and skates fed on the relatively more abundant 

shrimps or whether the skates preyed more upon shrimps regardless of euphausiid 

abundance.  There is no available abundance data on the remaining prey categories in this 

zone. 

 The diet of skates from zone 2 was again dominated by shrimp-like crustaceans, 

and the importance of this category closely matched their overall importance in the 

WCGS samples.  The dominance of euphausiids and the shrimp-like crustacean mix 

could possibly be explained by the historical findings, as before.  Brinton (1962) noted 

that the greatest abundance of Euphausia pacifica was slightly offshore within this zone, 

from the area of Point Conception to San Francisco Bay (southern portion of study zone 

3), reaching densities of > 5000 individuals/ 1000 m3.  Thysanoessa spinifera also 

displayed greater abundances (50-499 individuals/ 1000 m3) in the southern half of zone 

2, yet historically it was conspicuously absent from the Monterey Bay area (recall that 
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this species was the most important identifiable euphausiid from the SCL stomachs).  

Perhaps because of this increased euphausiid abundance, B. kincaidii decreased 

consumption of polychaetes.  The increase in euphausiids, however, does not easily 

explain the increased importance of crab prey in the diet, of which the Axiidae 

(Calocarides spp.) comprised over 20% of the diet by mass, the greatest mass for all prey 

taxa from that zone.  Although it is unclear why because of a lack of prey abundance 

information, within this zone, B. kincaidii replaced polychaetes in its diet with 

cephalopods, teleosts and most importantly, axiid crabs.  It is possible that axiid crabs 

were more abundant in this area and the skates consumed them in proportion to their 

abundance.   

 Within zone 3, shrimp-like crustaceans remained the major component of the diet 

and were predominantly the shrimp-like mix.  As from above, Euphausia pacifica 

displayed their greatest abundance in the southern portion of this zone.  However, in the 

mid-offshore area in southern Oregon/ northern California, densities were slightly 

decreased to 50-499 individuals/ 1000 m3.  Thysanoessa spinifera displayed a similar 

trend; this species had its greatest density (> 500 individuals/ 1000 m3) outside of San 

Francisco Bay, and steadily decreased until < 50 individuals/ 1000 m3 were collected in 

southern Oregon.  Despite this general decrease in the northern limits of zone 3, 

euphausiids remained important prey for skates in this area.  Although there was no 

abundance information, small benthic crustaceans, crabs, cephalopods, and teleosts 

displayed a general decrease in their importance compared to the other three zones.  

Octopus rubescens first appeared in the diet within this zone, which was interesting given 
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this species importance in the diet of B. kincaidii from the SCL samples, yet none were 

found in the diet of skates from zone 2.  Pagurid and galatheid crabs, along with crab 

larvae, were first encountered in the diet within this zone.  Additionally, B. kincaidii 

consumed Sternaspis cf. fossor and two unidentified polychaetes (albeit infrequently and 

comprising a low importance) which were not ingested in other zones.   

 Skates from the northernmost zone, 4, again preyed predominantly on shrimp-like 

crustaceans.  The importance of lower taxa, however, changed considerably.  Euphausiids 

comprised < 1 %IRI¯¯¯¯¯  of the diet, whereas the unidentified shrimp-like mix made up 43 

%IRI¯¯¯¯¯ , which could be related to availability based on the historical data.  Euphausia 

pacifica displayed its lowest abundance in this area and T. spinifera was absent from all 

plankton samples except those from northernmost area of Washington outside of Puget 

Sound.  Within this zone, skates began to prey upon the shrimp Pandalus jordani.  This 

may be because the greatest abundance of this species occurs off central Oregon and 

Washington (Dahlstrom 1970), specifically in the Columbia region between 43º00’ N and 

47º30’ N (PacFin 2006b).  However, this species is also considered abundant off northern 

California/ southern Oregon, so its absence in the diet of skates from zone 3 cannot be 

explained by abundance alone.  Bathyraja kincaidii also increased consumption of 

gammarid amphipods, possibly as a result of decreased euphausiid abundances.   
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CONCLUSION 

Bathyraja kincaidii is a major predator of benthic and benthopelagic crustaceans.  

By mass and number, the dominant prey were shrimp-like crustaceans, composed 

primarily of euphausiids, but also included shrimps and mysids.  Although there were 

differences in the diet by geographic zone, oceanographic season, maturity status and sex, 

some differences could not be ascribed solely to those factors because of significant 

interactions.  Factor fit indicated that these main factors explained more of the observed 

variance in the diet data than the interactions, and the temporal (oceanographic season) 

and spatial (geographic zone) factors explained the most overall.  The difference in the 

importance of prey between the numeric and gravimetric data may be related to 

differences in digestion of certain prey groups and may not represent actual differences in 

their importance by these measures.  The seasonal variation in the diet of SCL samples 

was likely attributable to the availability of euphausiids, the skate’s primary prey.  In the 

DCS, when euphausiids are less abundant, B. kincaidii relied more on secondary prey 

such as gammarid amphipods, shrimps, mysids, polychaetes, and myctophids.  Further 

research is needed to accurately assess the seasonal abundances of these prey.  This is to 

determine whether the cause for their increased importance is related to a relative 

increase in their abundance compared to the lower euphausiid biomass or if they display 

comparatively similar or lower absolute abundances during this period and B. kincaidii 

actively chooses them.  Due to a general lack of information on latitudinal variation in the 

abundance of most prey items, the causes for differences in the diets of WCGS samples 
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by geographic zone remain unknown. However, for euphausiid prey, geographic 

variation may play a key role in determining their importance in the diet.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2. MORPHOLOGICAL EXAMINATION 
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INTRODUCTION 

In conjunction with a diet study, it can be beneficial to examine a species’ 

ecomorphology, the role an organism’s form plays in how the organism interacts with its 

environment and other organisms (Norton et al. 1995). Previous researchers have 

qualitatively examined and generally described the gross morphology of fishes and their 

place in the ecosystem (e.g. Compagno 1990), but not until recently have these data been 

used quantitatively with diet descriptions.  Ecomorphological studies have incorporated 

gut length, mouth placement, mouth size, and jaw protrusibility to associate fishes with 

their diet (Labropoulou and Eleftheriou 1997, Castillo-Rivera et al. 2000, Platell and 

Potter 2001, Xie et al. 2001, Schafer et al. 2002).  The feeding morphology of a species 

can give insight into particular inter- and intra-specific differences (or similarities) 

detected in the diet.  Sex and maturity status (or size classes) are two of the most common 

factors related to differences in diet, and it is possible that changes in morphology related 

to these factors may play a role in these dietary differences.  

Sexual dimorphism in elasmobranchs is fairly widespread, and is particularly 

common in the batoids.  These differences are manifested as variation in body size, 

sexually dimorphic teeth and as the alar and malar thorns unique to adult male skates 

(Hubbs and Ishiyama 1968, McEachran et al. 1976, McCourt and Kerstitch 1980, Nordell 

1994, Braccini and Chiaramonte 2002a, Ebert 2005).  Thorns are believed to assist in 

maintaining the males’ attachment to females during mating (Price 1967, Luer and 

Gilbert 1985).  The importance of variation in the tooth morphology of skates, however, 

has been a contested matter. Feduccia and Slaughter (1974) suggested that differences in 



 51

dentition were utilized to alleviate niche overlap between the sexes, but a reply by 

McEachran (1977) indicated that a diet study of more than 1600 skates from four species 

with sexually dimorphic teeth did not display any differences in diet between the sexes.  

Herman et al. (1995, 1996) noted that sexual and ontogenetic variation is common among 

the extant skate genera, but there was no discussion of how this variation related to diet.  

Conversely, the dentition of adult male and female Bathyraja griseocauda collected off 

Chile were not significantly different from one another (Sáez and Lamilla 2004).  A 

dietary study of this species, from the Falkland Islands, found an ontogenetic shift in the 

diet, but did not examine possible gender differences (Brickle et al. 2003).  Given the 

widespread nature of dental dimorphism in batoids, an examination of feeding 

morphology in concert with diet data could provide insight into the way in which 

morphology may influence diet.  

There is a general lack of quantitative data concerning the relationship of feeding 

morphology and diet in skates, particularly on an intra-specific basis.  Certain factors that 

may be important were suggested by Ellis et al. (1996): predator size, mouth structure, 

dentition and species distribution.  Though these were used in an inter-specific 

comparative context, the first three factors also could be important in describing diet 

within a species relative to this variation.  To date, studies by Braccini and Chiaramonte 

(2002b) and Braccini and Perez (2005) provide the most insight into these relationships 

for skates.  These authors detected a mix of ontogenetic and sexual differences in 

morphology, and a distinct ontogenetic shift in diet, but no difference in diet was found 

between males and females.  From these results, they suggested that such sexual 
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dimorphisms probably did not play a role in determining diet, but that ontogenetic 

changes in diet could be related to a release from certain morphological constraints and/ 

or better ability to find prey. 

This study further tested if differences in the morphology of skates were 

correlated with diet.  The oral and dental morphology of Bathyraja kincaidii was 

examined for intra-specific differences related to sex, maturity status and geographic 

zone of capture.  These findings were then examined in conjunction with the results from 

the diet study to determine what role, if any, morphology has in determining intra-

specific differences in diet. 
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MATERIALS AND METHODS 

 Sandpaper skates, Bathyraja kincaidii, were collected from June through October 

2004 by the NMFS Northwest Fisheries Science Center West Coast Groundfish Survey. 

These specimens were collected from 49 hauls of varying depths, frozen onboard, and 

later thawed for processing and examination.   

 To examine the role morphology may play in explaining diet, the following were 

measured to the nearest 0.01 mm using dial calipers (Figure 17): 

Mouth width (MW) - the distance between the labial flaps at either end of the 

mouth. The actual jaw is wider than this measurement, but the flaps constrain the 

mouth width to this distance. 

Pre-oral length (POL) - in a relaxed state, the distance from the tip of the snout to 

the edge of the portion of the upper jaw just before it bears teeth.  

Palatoquadrate protrusion (PROT) - the maximum distance the upper jaw can 

extend away from the ventrum, measured as the distance from the furthest point 

on the upper jaw, at full extension, to the labial skin flap where the palatoquadrate 

rests when retracted. Though this may not be a true measure of the actual amount 

of protrusion the skate uses, it is the maximum amount of which it is capable. 

Additionally, teeth were examined to assess their possible role in dietary variation.  The 

second tooth row to the left of the median row on the lower jaw of the skate was removed.  

Each tooth in the row was photographed digitally in both a lateral and dorsal aspect with 

the SPOT Advanced program v. 4.0.9 for Windows using a SPOT RT Slider 2.3.1 camera 

attached to a Leica MZ125 dissecting microscope.  The photographs were analyzed with 
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Image-Pro Plus v. 4.1.1.2 calibrated to the appropriate zoom settings employed by the 

microscope.  The following were measured to the nearest 0.1 nm (Figure 18): 

Crown width (CW) - the distance between the lateral portions of the crown. 

Crown length (CL) - the distance between the anterior and posterior portions  

of the crown. 

Cusp height (CuH) - the perpendicular height of the cusp measured from  

the base of the crown to the tip of the cusp. 

Cusp length (CuL) - the straight line distance from the anterior portion of the 

crown where the cusp erupts to the tip of the cusp. 

Only those teeth which appeared to be complete and unworn were measured. If one 

aspect of a tooth was usable (e.g. base width) but another was broken or worn (e.g. cusp 

height), the valid measurement was determined and used and the broken or worn one was 

discarded.  The measurements for each tooth in a row were used to calculate a mean 

value for each skate which was then used in the analysis.  Preliminary analyses were 

conducted by creating log-log plots of disc width against the above seven measurements, 

as suggested by Alexander (1971), to discern how these features changed with the growth 

of the skate.  The slope of the regression from each measurement was then compared 

with a slope of 1 (indicating isometric growth) using a t-test to determine statistical 

significance (Zar 1996).  Similar to the diet data, a three factor multivariate analysis of 

covariance (MANCOVA) was used on the data to test the null hypotheses that there were 

no differences in either mouth or tooth morphology for the same sex, maturity status, and 

geographic zones described in the dietary analysis.  Pillai’s Trace was again used as the 
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reported test statistic owing to its robustness to the violations of parametric assumptions 

(Olson 1974).  Evidence exists that the use of proportions in statistical testing of 

morphological measurements, especially in instances where the growth of structures is 

allometric, can lead to inaccurate results (Packard and Boardman 1987).  Thus, the 

decision was made to use a MANCOVA with disc width (DW, the straight line 

measurement from the lateral tip of the left pectoral fin to the lateral tip of right pectoral 

fin) as the covariate to account for the variability in oral and dental measurements with 

the size of the skate.  The use of total length (TL) as an estimator of body has size has 

been suggested to be superior to DW as it displays the least amount of measurement error 

compared with other body measurements (Francis 2006).  However, preliminary log-log 

plots in which the morphometric measurements were regressed against DW and TL had 

similar slopes and r2 values for both body size estimators (nearly all the regressions using 

DW had slightly greater r2 values).  Arcsine transformed proportions were not used 

because unlike the diet data, these measurements did not have any ‘0’ data points. Tooth 

and mouth data were tested separately to examine any possible contrasts in how they 

varied.  A sequential Bonferroni test was used to determine which geographic zones were 

different from one another when a morphological difference was found for that factor 

(Rice 1989).  Aside from the multiple comparisons, all other statistical tests were 

conducted with SPSS 11.0.1 for Windows.  The magnitude of effects (ω2) for each factor 

was calculated for sex, maturity status, and geographic zone of capture (Graham and 

Edwards 2001). 
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RESULTS 

Sample information 

A total of 179 specimens was examined (80 females, 99 males), with a range of 1 

to 12 skates collected per haul (mean 3.6 ± 0.4 SE); 20 skates were collected in zone 1, 

36 from zone 2, 51 from zone 3 and 72 from zone 4 (Figure 19).  Skates ranged in size 

from 236 to 628 mm TL (mean 487 ± 6.3 SE mm TL) (Figure 20).  Skates were collected 

from 54.6 m to 589.2 m depth (mean 268.5 ± 20.5 SE m).  The number of teeth examined 

in each tooth row ranged from 3 to 11 (mean 5.9 ± 0.1 SE).  There were three skates for 

which tooth crown widths and lengths were not collected because all teeth in the row 

were damaged, however the cusps were intact and those measurements were used.  

Additionally, there was one skate for which no mouth measurements were taken. 

Oral morphology 

The preliminary log-log plots indicated that each of the three oral measurements 

varied with size in a different manner between the sexes (Figure 21).  Mouth width 

displayed isometric growth (a constant rate of growth in relation to change in disc width) 

for females whereas this measurement was slightly positively allometric (the slope of the 

regression line >1) in males, meaning that mouth width increased proportionately as they 

grew (Table 7).  There was an isometric relationship in the pre-oral length of females, but 

a negatively allometric (slope of regression line <1) one for males.  This indicated that 

the pre-oral lengths of males became proportionately smaller as they grew.  The 

protrusion distance of females displayed negative allometry, whereas males displayed a 

significantly positive allometric relationship.  Also evident from the plots was that mouth 
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width and pre-oral length growth had relatively low variances at any size, whereas 

protrusion distance had greater variation, especially for the large immature and mature 

skates of both sexes.  These results indicate that as they grow, the amount of protrusion of 

which females are capable and the pre-oral length of males decreases proportionately, 

whereas both the protrusion distance and mouth width of males increase proportionately. 

The assumptions for parametric tests were violated in this data set.  Levene’s test 

indicated that separately, pre-oral length (p=0.081) had equal variances among the groups, 

but mouth width (p=0.017) and protrusion distance (p<0.001) did not.  Box’s M test also 

indicated significant (p<0.001) differences in variance for all measurements together.  An 

examination of the residuals indicated that the data for these measurements were 

distributed normally, though mature males had much greater protrusion distances than all 

other groups (Figure 22).  The specific assumption of homogeneity of the regression 

coefficients was not violated (p>0.33 for each interaction). 

There were significant differences in the oral measurements by sex, maturity 

status (p<0.01, df= 3, 159 for both factors), and geographic zone (p<0.01, df= 9, 483) 

with significant sex*maturity (p<0.01, df= 3, 159), sex*zone (p=0.044, df= 9, 483), 

maturity*zone (p<0.01, df= 9, 483), and sex*maturity*zone (p=0.048, df= 9, 483) 

interactions.  Pairwise comparisons determined that male B. kincaidii had significantly 

greater mouth widths and protrusion distances, whereas females displayed greater pre-

oral lengths.  Mature skates had a greater amount of protrusion.  Skates examined from 

zones 2 and 3 displayed similar size mouth widths, which were both greater than that of 

skates from zone 4.  Skates from zone 2 had smaller pre-oral lengths than skates from 
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zone 4.  Finally, skates from the two southern-most zones, 1 and 2, displayed more upper 

jaw protrusion than those from zone 3, which in turn had greater distances than skates 

from zone 4.   

The sex*maturity interaction was caused by pre-oral length and protrusion 

distance.  As skates matured, the pre-oral length of females increased slightly whereas 

that of males decreased; the mean measurement of females was greater than that of males 

for both maturity states (Figure 23a).  The protrusion distance of females decreased 

somewhat as they matured, but that of males increased significantly and remained greater 

than females.   

The maturity*zone interaction was caused by both mouth width and protrusion 

distance.  There was no change in the mouth width of immature skates throughout zones. 

Mature skates, however, displayed a significantly smaller mouth width in zone 4 (Figure 

23b).  The palatoquadrate protrusion measured in skates from zones 1 and 4 were not 

different between maturities, but in zones 2 and 3 mature skates displayed a much greater 

amount of protrusion.  Immature skates showed a continual decrease in their protrusion 

distance with increasing latitude, whereas there was a slight increase in this measurement 

for mature skates from zone 1 to zone 2, which then decreased northward. 

Though overall there was a significant sex*zone interaction, post-hoc tests 

indicated that no oral measurement was different between immature and mature skates 

(p>0.24 for all, Figure 23c).  It may have been the multivariate combination of the three 

measurements that indicated a significant difference between the maturity states.  
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However, the mouth width of skates from zone 1 was similar between the sexes, but for 

the remaining three zones, males displayed greater mouth widths.  

A post-hoc test indicated that only protrusion distance was responsible for the 

significant sex*maturity*zone interaction.  The data indicated that in zones 1 and 3, 

immature males displayed greater amounts of protrusion than immature females, whereas 

in the other zones, immature skates of both sexes had nearly equal protrusion distances 

(Figure 24). The difference in the amount of protrusion between mature males and 

females in zone 2 also was greater than that of the other three zones.  Additionally, the 

mean protrusion distance of females in zones 2 and 3 did not change as they matured, 

whereas that of females from zones 1 and 4 decreased sharply. 

Factor fit indicated that sex explained the most amount of variance (32 %) in the 

mouth morphology data (Table 8).  The sex*maturity interaction (ranked second) and 

geographic zone (ranked third) explained nearly equal amounts of morphological 

variance.  The maturity*zone interaction ranked fourth in importance and together these 

four factors accounted for 52 % of the variation in oral morphology.  The variance 

explained by the remaining three factors was < 2 %.  There was nearly complete 

agreement between rank importance of factor fit and p-value, with the sex*maturity 

interaction and zone inverted as were the two factors explaining the least amount of 

variance, the sex*zone and sex*maturity*zone interactions.  

Dental morphology 

As with the oral measurements, log-log plots revealed that the growth of teeth 

varied between males and females (Figure 25).  Tooth crown widths grew with negative 
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allometry for both sexes, but the growth of male crown widths was less than females 

(Table 7).  There was little difference in this measurement between large immature and 

mature males.  The growth of crown lengths for both sexes was slightly negatively 

allometric.  The growth of cusp height in females was isometric, but males had positive 

allometric growth of this feature.  The cusp lengths of males and females grew with 

positive allometry, but the slope of the regression line for males was greater than that of 

females indicating the growth of this feature in males is proportionately greater than that 

of females.  The values of all four of the measurements tended to continue to increase 

with size in mature females, but in mature males they leveled off; crown width and cusp 

height also displayed a large amount of variation with size.  As the skates grew, the teeth 

of both sexes tended to get proportionately shorter and narrower.  However the cusps of 

the teeth of both sexes grew proportionately longer, though more so in males; the cusps 

of males also become proportionately higher.   

 The assumptions of parametric tests also were violated in the tooth measurement 

data.  Levene’s test revealed that only cusp length data did not have equal variances 

among groups (p<0.01), but Box’s M also was significant (p<0.01).  The examination of 

the residuals indicated the data were normally distributed, though mature males had 

greater cusp heights and cusp lengths than all other sex-maturity groups (Figure 26).  The 

regression coefficients were determined to be homogeneous for all treatments (p>0.40 for 

each interaction). 

There were significant differences in dental morphology by sex, maturity status 

(p<0.01, df= 4, 156 for both), and geographic zone (p<0.01, df= 12, 474), along with a 
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significant sex*maturity (p<0.01, df= 4, 156) interaction.  Pairwise comparisons revealed 

that male B. kincaidii had greater cusp heights and cusp lengths, whereas females had 

greater crown widths.  The crown widths of immature skates were greater than that of 

mature individuals but mature skates displayed greater cusp lengths.  The cusp lengths of 

skates from zone 1 were greater than those of skates from zone 4.  

Crown width, cusp height, and cusp length led to the significant sex*maturity 

interaction.  Immature females displayed slightly greater crown widths than immature 

males, but the difference between the sexes increased significantly as they matured 

(Figure 27a).  Immature males had slightly greater cusp heights and lengths than 

immature females, but similarly, the differences between the sexes were significantly 

greater for mature individuals.  Of the mature skates, females displayed greater crown 

widths than males, whose mean measurement was less than that of immature skates, 

whereas mature males had greater cusp heights than those of mature females and 

immature skates.  For both maturity stages, the cusp lengths of males were greater, but 

the difference between the sexes was much greater in mature skates. 

 Although there was not an overall significant maturity*zone interaction, a post-

hoc test indicated that crown width differed significantly (p=0.02) among the zones.  The 

crown width of skates from zones 1, 2, and 3 was slightly greater in immature skates 

(Figure 27b).  However, the difference in this measurement between maturity states was 

much greater in zone 4.  There appeared to be a trend of slightly increased crown widths 

from south (zone 1) to north (zone 3), but in zone 4 the crown width of mature skates 

decreased sharply. 
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There was also a significant interaction in cusp height (p=0.033) although the 

sex*maturity*zone interaction was not significant.  In zones 2, 3, and 4, cusp heights of 

immature skates of both sexes were similar (Figure 28).  As they matured, this 

measurement slightly decreased for females whereas that of males increased.  Within 

zone 1, however, the cusp height of male teeth remained consistent as they matured but 

that of females increased, such that there was no difference between mature males and 

females.  

Factor fit again revealed that sex explained the greatest amount of variance in the 

data (34 %) (Table 8).  The sex*maturity interaction explained the second greatest 

amount of variation in dental morphology (12.6 %).  Maturity status and geographic zone 

of capture together explained 4.3 % and were the final factors to explain > 1 % of the 

morphological variance in the data.  In total, these four factors explained 51 % of the 

variance in tooth morphology whereas the remaining three factors accounted for 1.2 % of 

the explained variance.  There was complete agreement between the rankings of factor fit 

and p-value. 
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DISCUSSION 

 There were clear, significant differences detected in the oral and dental 

morphology of Bathyraja kincaidii by all three of the main factors along with frequent 

interactions.  However, of all the factors and interactions, sex accounted for >32 % of the 

variance in the examined morphology.  This was manifested in differences for all 

examined variables except tooth crown length.  Although there were distinct differences 

in morphology between the sexes, it is questionable whether differences detected in the 

diet were reflected by these differences in morphology.  Recall that in the 2003 WCGS 

diet data, sex explained < 1 % of the variance, indicating the possibility that any 

differences detected in the diet were because of a large number of samples and may not 

be biologically relevant.  The sex*maturity interaction explained the second most amount 

of variance in the morphology data, revealing that the link between these two factors 

played an important role in how morphology varied.  Ontogenetic and sexually dimorphic 

differences in teeth are fairly widespread in elasmobranchs, with the teeth of mature 

males differing from that of immature males and females (Ebert et al. 1991, Herman et al. 

1995, 1996, Motta and Wilga 2001).  Yet again, this interaction explained < 1 % of the 

variance in the diet data.   

Further evidence for the lack of a relationship between intra-specific variation in 

morphology and diet is evident from a comparison of the results of the tests on the 

morphological variables to those of the 2003 WCGS diet data.  If the examined 

morphological variables had an effect on diet, differences among the factor levels of the 

former should correlate well with differences in the latter, either positively or negatively.  
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Male B. kincaidii had greater mouth widths, protrusion distances, and tooth cusp heights 

and lengths; males also ingested significantly more shrimp-like crustaceans and 

polychaetes.  If there was a direct link between these significantly greater morphological 

measurements and a significant increase in these prey categories, it should be expected 

that for any other factor (maturity status, geographic zone and interactions), the 

relationship should remain (or display a significant decrease in a prey category in the case 

of a negative correlation).   For example, protrusion distance and cusp length were greater 

in mature individuals, with both measurements displaying sex*maturity interactions 

whereby they increased significantly for males as they matured but decreased slightly for 

females.  Yet, immature and mature skates did not differ in their consumption of shrimp-

like crustaceans, nor was there a sex*maturity interaction for this prey.  Furthermore, 

polychaetes were consumed more by immature skates, which is contrary to what would 

be predicted.   

Likewise, there was no clear relationship between morphology and diet by 

geographic zone of capture.  Mouth width, PROT, and CuL were greater in skates from 

the southern zones (1 and 2) than in the northern zones (3 and 4).  Yet, shrimp-like 

crustaceans were more important to the diet of skates from the northern zones, and 

polychaetes only showed and increased importance in the diet of skates from zone 1.   

The only possible relationship supported by the data was that increased PROT and CuL 

may negatively affect the consumption of small benthic crustaceans, whereas an increase 

in CW would positively affect consumption. However, these relationships did not hold 

when accounting for variances in morphology by geographic zone.  Intuitively, it is 
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unlikely that these differences in morphology could be so strong as to lead to differences 

in diet for one factor (sex) but then not in another (maturity status, geographic zone) or 

their interactions.  Unfortunately, the skates used in the diet and morphological tests were 

collected in different years. It could be possible, as discussed in the previous chapter, that 

temporal variation could allow for the diet of samples from 2004 to be different from 

those in 2003 (and thus have different relationships among the factors), but the degree to 

which this is the case is unknown. 

Early in the examination of such relationships for skates, Feduccia and Slaughter 

(1974) suggested that differences in the dentition of skates were used to exploit different 

prey to reduce intra-specific competition, though no specific diet data was cited.  

McEachran (1977) issued a reply in which he refuted these claims.  In his examination of 

more than 1600 specimens from four species with dimorphic teeth, none were found to 

display significant differences in the diet between the sexes for either maturity status.   

This lack of a relationship between intra-specific differences in morphology and 

diet was noted in a study of the sandskate, Psammobatis extenta (Braccini and 

Chiaramonte 2002b).  As males grew, POL was negatively allometric (based on total 

length, TL) whereas females displayed isometry for this measurement.  The MW of 

males displayed positive allometry whereas females showed negative allometry and there 

were strong differences in dentition.  Females retained a rounded cusp throughout their 

size range, whereas the teeth of males changed from a rounded to a pointed cusp, the 

change in tooth morphology with TL corresponding closely to the changes in maturity 

status with size (Braccini and Chiaramonte 2002a).  Yet, given these differences in 
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morphology between the sexes, there was no difference in the diets of males and females 

for this species, though an ontogenetic change was noted (Braccini and Perez 2005). 

Additional, less exhaustive, studies on other batoids have led to similar 

conclusions.  Smale and Cowley (1992) found that despite the morphological differences 

in the teeth of adult Raja cf. clavata, males and females consumed similar prey.  A 

separate diet study of R. clavata from the Azores (Morato et al. 2003) further indicated 

similarity in the diet between the sexes, despite noted differences in their teeth.  The teeth 

of mature male Patagonian skates, Bathyraja macloviana, display well developed cusps 

whereas the teeth of all females and immature males also have cusps, but are smaller and 

blunter than those of mature males (Scenna et al. 2006).  There were no significant 

differences found in the proportions of the major prey categories between the sexes of 

mature individuals; Horn’s Index was found to be 0.98 (a value of 1.00 indicates identical 

diets).  A comparison of the diet of immature skates was not possible because of a lesser 

sample size.  Teeth of the stingray Dasyatis akajei qualitatively differed between the 

sexes in mature individuals, whereas those of immature rays were similar (Taniuchi and 

Shimizu 1993).  As they matured, males developed a long curved cusp whereas females 

had teeth of similar shape as the larger immature specimens, but with irregular pointed 

posterior edges.  The stomach contents, based solely on frequency of occurrence, 

indicated some difference in the lower taxa consumed, but were similar in their major 

prey categories; changes in the diet with the onset of maturity were displayed.  Based on 

the body of evidence from these previously published and the current results, it appears 
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that variation in the feeding morphology of skates plays little, if any, role in any 

detectable intra-specific differences in their diet.   

With the amount of evidence against the role of morphology accounting for intra-

specific differences in diet of skates, it is likely these morphological differences serve 

another purpose, namely mating.  Accounts of the courtship of skates and rays indicate 

that males bite and hold the pectoral fins of females before and during copulation (Price 

1967, McCourt and Kerstitch 1980, Luer and Gilbert 1985).  It is believed that the more 

cuspidate dentition of males allows them to better grip females to aid in reproduction.  

Round stingrays, Urobatis halleri, which have been documented engaging in such 

behavior, display sexually dimorphic teeth when mature (Nordell 1994).  The teeth of 

adult males have a single, long cusp whereas females retain a molariform dentition 

similar to immature individuals.  Adult females also have a relatively thicker disc than 

that of immature females, presumably to reduce damage that the sharper dentition of 

adult males may cause during copulatory biting; females with severely damaged discs 

were rarely seen.   

Perhaps the most striking evidence for the primary role of sexual dental 

dimorphism in mating was found in the Atlantic stingray, Dasyatis sabina (Kajiura and 

Tricas 1996).  Females displayed typical molariform batoid teeth with rounded crowns 

throughout the year.  Males also had this tooth shape, but only for a few months during 

the year. From October to June, males developed strongly monocuspidate teeth which 

were significantly different from females.  Like other batoids, even with such 

morphological differences, there was no difference in the diet between the sexes (Cook 
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1994 cited in Kajiura and Tricas 1996).  The time at which these teeth began to emerge 

corresponded closely with the mating season.  The authors determined that this change in 

dentition could benefit the male’s gripping of the female’s pectoral fin during mating, 

with a significant increase in force required to break a pectoral fin free from jaws bearing 

the cuspidate teeth compared with jaws bearing molariform teeth.  Combined with this 

stronger grip, the greater mouth width of male B. kincaidii would allow for more surface 

area of a female’s pectoral fin to be grasped by the jaws, further strengthening the hold 

and increasing the probability of successfully reproducing. 

  In addition to sex, geographic location was a source of morphological variation 

in B. kincaidii, more so for oral than dental measurements.  Protrusion distance decreased 

with increasing latitude whereas mouth width generally increased with latitude, but it is 

unclear as to why only these measurements displayed a pattern.  The pre-oral, pre-nasal, 

and pre-orbital lengths of Raja miraletus decreased clinally in samples from the 

Mediterranean Sea to South Africa (McEachran et al. 1989).  It was suggested that varied 

hydrographic conditions served to isolate or reduce gene flow among the populations, 

giving rise to these morphological differences.  Though the geographic area in the present 

study is smaller by comparison, perhaps the same conditions that led to the suggested 

geographical differences in abundance of their prey (see Chapter 1) could have also 

created semi-isolated populations of B. kincaidii, allowing these slight, but discernable, 

morphological differences to develop.  A study of Raja ocellata in the northeast Atlantic 

revealed that specimens from an isolated allopatric population in the Gulf of St. 

Lawrence displayed some morphological characters that were dramatically different than 
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specimens from a population sympatric with another skate, Raja erinacea, further south 

(McEachran and Martin 1977).  The authors claimed this was evidence of character 

displacement to reduce competition in the sympatric population.  In the present study, a 

similar possibility could exist given the geographically varied abundance of other skate 

species (such as other Bathyraja spp. and Raja spp.) along the eastern North Pacific 

(Pacific Shark Research Center 2007).  This could further interact with geographically 

isolated populations (as postulated above), causing the varied morphological differences 

detected in this study.     

 This is the first study to consider cusp length in a quantitative analysis of tooth 

morphology in batoids.  The cusp length measurement displayed the greatest difference 

among the factor levels and contributed the most amount of explained variance to the 

factor fit model.  A quantitative examination of the teeth of the skate Bathyraja 

griseocauda revealed no significant differences in tooth width or height between mature 

males and females (Sáez and Lamilla 2004).  Considering this, cusp length may be a 

more pertinent measurement to describe the important difference in tooth morphology 

between the sexes and as the skate matures.  For species with recurved dentition similar 

to B. kincaidii, length, rather than height, better describes the size of the cusp relative to 

its purpose.  An increase in length could increase the penetration depth of the tooth, 

which would allow for a better grip on the pectoral fin of the female.  A firmer grasp 

would require an increase in the force necessary to break the two apart, as determined by 

Kajiura and Tricas (1996).  By the same reasoning, greater cusp length also could 

increase the likelihood of capturing prey, at least those items that require capture or 
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processing by the jaws as opposed to those that are engulfed and swallowed.  If this 

benefit was employed by the skates, as indicated previously, not all groups with greater 

cusp lengths (males and mature skates) consistently fed more on any prey category. 

This is also the first reported study to quantitatively examine palatoquadrate 

protrusion in skates within an ecological context.  This measurement contributed either 

the most or the second most (behind pre-oral length) amount of variation explained by the 

factors.  Protrusion is believed to play an important role in the feeding behavior of 

elasmobranchs (Motta and Wilga 2001).  Batoids can display the greatest amount of 

protrusion of all elasmobranchs owing to their euhyostylic jaw suspension coupled with 

the lack of ligamentous connections to the cranium (Wilga et al. 2001, Wilga 2002).  In 

this type, the jaws are suspended solely from an anteriorly directed hyomandibula; the 

jaws are free to move as far away from the head as is allowed by the skin that covers the 

labial portion of the palatoquadrate.  Ecologically, the function of palatoquadrate 

protrusion in elasmobranchs is in need of further experimental study, but it appears the 

function can vary from taxa to taxa (see Motta and Wilga 2001 for summary).  Early 

examination suggested that palatoquadrate protrusion served to facilitate the closing of 

jaws by decreasing the distance needed to be traveled by the Meckel’s cartilage (lower 

jaw) and facilitated prey capture and processing (cutting or removing pieces of large prey) 

in certain species (Motta and Wilga 2001).   

Information on the upper jaw protrusion in batoids has primarily come from 

functional analyses in three species.  Whereas kinematic analyses were beyond the scope 

of this simple examination, such results give some insight to the findings of the present 
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study.  Each of the three taxa examined displayed distinct uses of palatoquadrate 

protrusion.  The Atlantic guitarfish, Rhinobatos lentiginosus, used protrusion to capture 

food between its jaws by decreasing the amount of time for jaw closure and during 

processing manipulation (Wilga and Motta 1998).  Narcine brasiliensis, the lesser 

electric ray, employed protrusion to quickly anterio-ventrally expand its jaws to decrease 

the distance to its food and during the winnowing process to aid in the removal of debris 

(Dean and Motta 2004).  The exact use of protrusion during feeding by the cownose ray, 

Rhinoptera bonasus, is currently unclear, but it was suggested that ligamentous 

connections, used to strengthen the jaws for durophagy, may passively cause 

palatoquadrate protrusion with expansion of the lower jaw (Sasko et al. 2006).   

Based on these results, increased protrusion distance can be added to the list of 

morphological features that benefit male skates in reproduction.  It has been suggested 

that a wider mouth, shorter snout, more cuspidate teeth, and alar and malar spines work 

together to ensure a more successful mating attempt (Braccini and Chiaramonte 2002b).  

If used in a similar manner as R. lentiginosus, protrusion would increase the likelihood of 

capturing the female’s pectoral fin by decreasing both the distance between individuals 

and the time it takes to close the jaw.  As much as protrusion has been analyzed in a 

feeding context, studies are lacking in the reproductive aspect, which appears to be 

equally important in batoids.  Though it would be quite difficult for B. kincaidii, given its 

habitat and available methods for live capture, a functional morphological study of 

batoids comparing the distance and timing of protrusion behavior in dietary and 



 72

reproductive contexts would give important insight into any differences that exist 

between these two uses.   
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CONCLUSION 

 Among the three main factors, significant differences were found for a majority of 

the morphological measurements tested. Overall, the most common differences 

encountered were by sex (with differences in 6 of the 7 measurements), the sex*maturity 

interaction (5 measurements) and geographic zone of capture (4 measurements).  These 

types of differences have frequently been reported in morphological studies on batoids.  

Of the geographical differences detected, only protrusion clearly indicated a latitudinal 

cline.  The interaction of sex and maturity status provided an important basis for 

understanding morphological development in batoids.  As males matured, there was a 

dramatic change in their morphology, with an increase in their mean mouth width, 

amount of upper jaw protrusion, tooth cusp height and length accompanied by a decrease 

in pre-oral length.  Despite these differences in morphology between the sexes and 

maturity stages, they were not well correlated with changes in the diet for those factors.  

The data indicate that reproduction plays a greater role than diet in shaping intra-specific 

morphological variation.  The extreme morphology of mature male skates allows them to 

better capture females and maintain the close contact needed for successful mating, 

without affecting their diet. 
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Table 1. Taxonomic list of all items found in the stomachs of Bathyraja kincaidii. 
________________________________________________________________________ 

Annelida    
 Polychaeta  
 Aciculata  
  Onuphidae  
    Mooreonuphis sp.  
    Onuphis sp.  
  Lumbrineridae  
    Lumbrineris sp.  
  Nephtyidae  
    Nephtys sp.  
 Canalipalpata  
  Sternaspidae  
    Sternaspis cf. fossor  
  Terebellidae  
 Scolecida 
  Opheliidae  
    Ophelina acuminata  
  Unknown  
    Polychaete A  
    Polychaete E  
Echinodermata  
 Echinoidea  
  Strongylocentrotidae  
   Strongylocentrotus sp.  
 Ophiuroidea (unid) 
Mollusca     
 Bivalvia (unid) 
 Gastropoda  
  Cerithiidae  
   Bittium sp.  
  Columbellidae  
   Amphissa bicolor  
   Astyris gausapata  
  Acteonidae  
   Rictaxis punctocaelatus  
 Cephalopoda 
  Octopoda  
  Octopodidae  

             Octopus rubescens
  Teuthida  
        Enoploteuthidae  
  Abraliopsis felis  
  Gonatidae  
   Gonatus sp.  
  Loliginidae  
   Loligo opalescens  
Crustacea     
 Eumalacostraca 
     Pericarida  
  Amphipoda  
     Gammaridea  
   Ampeliscidae  
    Ampelisca unsocalae  
    Byblis bathyalis  
    Byblis sp.  
   Eusiridae  
    Rhachotropis clemens  
    Rhachotropis oculata  
   Gammaridae  
    Maera danae  
   Isaeidae  
    Photis lacia  
    Photomedeia prudens  
   Liljeborgiidae  
    Liljeborgia cota  
   Lysianassidae  
    Hippomedon columbianus
    Lepidepecreum serraculum 
    Wecomedon wecomus  
   Oedicerotidae  
    Bathymedon sp.  
    Monoculodes glyconica  
   Pardalascidae  
    Nicippe tumida  
   Phoxocephalidae  
    Foxiphalus cognatus  
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Table 1. continued 
________________________________________________________________________ 

   Heterophoxus oculatus  
   Rhepoxynius sp.  
   Synopiidae  
   Syrrhoe longifrons  
   Syrrhoe sp.  
      Hyperiidea  
  Paraphronimidae  
   Paraphronima crassipes  
   Paraphronima sp.  
      Caprellidea  
  Protellidae  
   Mayerella banksia  
  Isopoda  
  Aegidae  
   Rocinela angustata  
  Idoteidae  
   Synidotea angulata  
  Cumacea  
   Diastylidae  
    Diastylis sp.  
   Nannastacidae  
    Campylaspis sp.  
  Mysida  
   Mysidae  
    Boreomysis californica  
    Holmsiella anomala  
    Inusitatomysis insolita  
    Meterythrops robusta  
    Pseudomma cf. truncatum  
     Eucarida  
  Euphasiacea  
  Euphausiidae  
  Euphausia pacifica  
  Nematoscelis difficilis  
  Thysanoessa inermis  
  Thysanoessa raschi  
  Thysanoessa spinifera  
    Decapoda  

  Dendrobranchiata  
  Sergestidae  
  Sergestes similis  
   Caridea  
  Hippolytidae  
  Eualus avinus  
  Eualus berkelyorum  
  Eualus macropthalmus 
  Eualus sp.  
  Heptacarpus sp.  
  Spirontocaris holmesi 
  Spirontocaris lamellicornis 
  Spirontocaris ochotensis 
  Spirontocaris sica  
  Spirontocaris sp.  
  Pandalidae  
   Pandalus jordani  
   Pandalus sp.  
  Pasiphaeidae  
   Pasiphaea pacifica  
  Crangonidae  
   Crangon alaskensis  
   Metacrangon spinosissima 
   Neocrangon communis 
   Neocrangon resima  
     Thalassinidea  
  Axiidae  
   Calocarides quinqueseriatus 
   Calocarides spinulicauda 
   Calocarides sp.  
    Brachyura  
   Majoidea  
  Pisidae  
   Chorilia longipes  
   Scyra acutifrons  
  Pinnotheridae  
   Pinnixa occidentalis  
   Pinnixa sp.  
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Table 1. continued 
________________________________________________________________________ 

  Anomura  
  Paguridae  
  Pagurus granosimanus 
  Pagurus ochotensis  
  Pagurus tanneri  
  Pagurus sp.  
  Galatheidae  
  Munida quadrispina  
  Munida sp.  
Chordata     
    Vertebrata  
 Teleostei  
  Bothidae  
  Citharichthys sp.  
  Clupeidae  
  Clupea pallasi  
  Merlucciidae  
  Merluccius productus 
  Myctophidae  
  Diaphus theta  
  Stenobrachius leucopsarus 
  Tarletonbeania crenularis 
  Pleuronectidae  
   Eopsetta exilis  
  Scorpaenidae  
   Sebastes sp.  
  Zoarcidae  
   Lycodapis mandibularis  

 
________________________________________________________________________ 
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Table 2. The importance and standard error (SE) of prey items consumed by Bathyraja 
kincaidii based on mean percentage number (%N¯¯¯¯ ), mean percentage mass (%M¯¯¯¯ ), 
frequency of occurrence (%FO), mean Index of Relative Importance (IRI¯¯¯ ), and mean 
percentage Index of Relative Importance (%IRI¯¯¯¯¯ ) from the combined Santa Cruz Lab and 
West Coast Groundfish Survey samples sources at four taxonomic scales. 
           
        %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  

Polychaetes 14.85 0.91 20.08 1.27 72.01 2515.10 16.57 
 Polychaetes 14.85 0.91 20.08 1.27 72.01 2515.10 25.16 
  Onuphidae 4.70 0.49 6.77 0.73 32.45 372.33 6.42 
   Onuphidae 4.70 0.49 6.77 0.73 32.45 372.33 9.61 
  Lumbrinereidae 0.30 0.10 0.39 0.19 3.85 2.68 0.05 
   Lumbrinereidae 0.30 0.10 0.39 0.19 3.85 2.68 0.07 
  Nephtyidae 1.30 0.29 4.10 0.71 11.76 63.56 1.10 
   Nephtys sp. 1.30 0.29 4.10 0.71 11.76 63.56 1.64 
  Polychaete A 2.74 0.36 1.02 0.24 22.52 84.65 1.46 
   Polychaete A 2.74 0.36 1.02 0.24 22.52 84.65 2.19 
  Polychaete E 0.43 0.17 0.50 0.24 2.84 2.66 0.05 
   Polychaete E 0.43 0.17 0.50 0.24 2.84 2.66 0.07 
  Other polychaetes 0.04 0.03 0.07 0.06 0.61 0.07 0.00 
   Sternaspis cf. fossor 0.02 0.01 0.01 0.01 0.41 0.01 0.00 
   Terebellidae 0.03 0.03 0.06 0.06 0.20 0.02 0.00 
  Opheliidae 2.92 0.48 2.73 0.49 15.21 85.97 1.48 
   Opheliidae 2.92 0.48 2.73 0.49 15.21 85.97 2.22 
  Polychaetes (unid) 2.40 0.37 4.48 0.61 38.54 264.96 4.57 
   Polychaetes (unid) 2.40 0.37 4.48 0.61 38.54 264.96 6.84 
Cephalopods 4.40 0.41 9.16 0.98 38.95 527.85 3.48 
 Cephalopods 4.40 0.41 9.16 0.98 38.95 527.85 5.28 
  Octopoda  0.46 0.09 1.39 0.31 7.71 14.28 0.25 
   Octopus rubescens 0.44 0.08 1.37 0.31 7.30 13.27 0.34 
   Octopoda (unid) 0.01 0.01 0.02 0.01 0.41 0.01 0.00 
  Teuthida 3.19 0.36 7.25 0.91 30.22 315.43 5.44 
   Abraliopsis felis 0.16 0.08 0.35 0.24 1.42 0.71 0.02 
   Gonatus sp. 0.52 0.15 0.66 0.28 3.65 4.32 0.11 
   Loligo opalescens 0.18 0.07 1.56 0.50 2.23 3.89 0.10 
   Teuthida (unid) 2.36 0.33 4.68 0.70 23.12 162.64 4.20 
  Cephalopods (unid) 0.75 0.19 0.52 0.24 6.49 8.21 0.14 
   Cephalopods (unid) 0.75 0.19 0.52 0.24 6.49 8.21 0.21 

Small benthic crustaceans 8.92 0.75 6.75 0.78 43.81 686.58 4.52 
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Table 2. continued 
 
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  

 Amphipods 7.91 0.70 4.95 0.67 39.96 514.21 5.14 
   Gammarid amphipods 7.83 0.70 4.94 0.67 39.55 504.94 13.03 
  Other Amphipods 0.10 0.06 0.02 0.02 1.01 0.12 0.00 
   Paraphronima crassipes 0.01 0.01 0.00 0.00 0.20 0.00 0.00 
   Paraphronima sp. 0.05 0.05 0.02 0.02 0.20 0.01 0.00 
   Caprellid amphipods 0.04 0.02 0.00 0.00 0.61 0.02 0.00 
 Isopods 0.92 0.18 1.76 0.41 9.53 25.57 0.26 
  Isopods 0.92 0.18 1.76 0.41 9.53 25.57 0.44 
   Rocinela angustata 0.52 0.15 1.17 0.34 3.85 6.53 0.17 
   Synidotea angulata 0.03 0.02 0.01 0.00 0.41 0.01 0.00 
   Isopods (unid) 0.37 0.09 0.58 0.23 5.27 5.04 0.13 
 Cumaceans 0.09 0.07 0.03 0.02 0.81 0.10 0.00 
  Cumaceans 0.09 0.07 0.03 0.02 0.81 0.10 0.00 
   Campylaspis sp. 0.02 0.01 0.01 0.01 0.41 0.01 0.00 
   Diastylis sp. 0.07 0.07 0.02 0.02 0.20 0.02 0.00 
   Cumaceans (unid) 0.01 0.01 0.00 0.00 0.20 0.00 0.00 
Shrimp-like crustaceans 62.66 1.30 46.17 1.55 96.35 10485.96 69.08 
 Euphausiids/ mysids 21.28 1.47 11.02 1.03 47.87 1546.05 15.46 
  Euphausiidae 18.78 1.47 9.77 1.00 36.51 1042.39 17.97 
   Euphausia pacifica 1.15 0.27 1.05 0.24 10.55 23.16 0.60 
   Nematoscelis difficilis 0.07 0.07 0.19 0.19 0.20 0.05 0.00 
   Thysanoessa inermis 0.03 0.03 0.01 0.01 0.20 0.01 0.00 
   Thysanoessa raschi 0.01 0.01 0.00 0.00 0.20 0.00 0.00 
   Thysanoessa spinifera 1.75 0.35 1.44 0.30 12.37 39.42 1.02 
   Euphausiidae (unid) 15.75 1.32 7.08 0.84 27.99 639.12 16.50 
  Mysidae 2.50 0.40 1.25 0.31 17.85 66.88 1.15 
   Boreomysis californica 0.07 0.07 0.05 0.05 0.41 0.05 0.00 
   Holmsiella anomala 0.42 0.15 0.20 0.08 2.64 1.64 0.04 
   Inusitatomysis insolita 0.07 0.06 0.02 0.01 0.61 0.06 0.00 
   Meterythrops robusta 0.01 0.01 0.00 0.00 0.61 0.01 0.00 
   Pseudomma cf. truncatum 1.03 0.28 0.30 0.13 6.90 9.22 0.24 

   Mysidae (unid) 0.89 0.22 0.67 0.26 7.71 12.01 0.31 

 Shrimp-like decapods (unid) 25.65 1.41 16.00 1.12 49.09 2044.43 20.45 
  Shrimp-like decapods (unid) 25.65 1.41 16.00 1.12 49.09 2044.43 35.25 
   Euphausiid/ mysid mix 2.58 0.61 1.50 0.42 4.06 16.55 0.43 
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Table 2. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
   Euphausiid/ mysid/ shrimp mix 5.16 0.74 3.62 0.60 10.95 96.15 2.48 
   Euphausiid/ shrimp mix 15.87 1.27 9.33 0.93 29.41 741.15 19.13 
   Shrimp/ mysid mix 2.03 0.47 1.56 0.39 4.67 16.75 0.43 
 Shrimps 15.74 1.15 19.15 1.33 53.35 1861.14 18.62 
  Crangonidae 2.45 0.43 4.49 0.68 15.01 104.14 1.80 
   Crangon alaskensis 0.35 0.20 0.47 0.25 1.01 0.83 0.02 
   Metacrangon spinosissima 0.12 0.06 0.31 0.17 1.01 0.44 0.01 
   Neocrangon communis 0.69 0.14 1.64 0.33 6.90 16.10 0.42 
   Neocrangon resima 0.02 0.01 0.15 0.10 0.61 0.10 0.00 
   Crangonidae (unid) 1.27 0.28 1.91 0.44 8.72 27.81 0.72 
  Hippolytidae 2.94 0.42 3.05 0.46 17.85 106.84 1.84 
   Eualus avinus 0.11 0.07 0.05 0.04 1.01 0.16 0.00 
   Eualus berkelyorum 0.00 0.00 0.01 0.01 0.20 0.00 0.00 
   Eualus macropthalmus 0.23 0.10 0.65 0.25 1.62 1.43 0.04 
   Eualus sp. 0.25 0.07 0.10 0.05 4.06 1.43 0.04 
   Heptacarpus sp. 0.10 0.10 0.11 0.11 0.20 0.04 0.00 
   Spirontocaris holmesi 0.51 0.16 0.53 0.17 3.45 3.59 0.09 
   Spirontocaris lamellicornis 0.00 0.00 0.00 0.00 0.20 0.00 0.00 
   Spirontocaris ochotensis 0.00 0.00 0.00 0.00 0.20 0.00 0.00 
   Spirontocaris sica 0.64 0.25 0.74 0.27 2.03 2.80 0.07 
   Spirontocaris sp. 0.97 0.22 0.83 0.19 7.51 13.49 0.35 
   Hippolytidae (unid) 0.12 0.08 0.02 0.02 0.61 0.08 0.00 
  Pandalidae 0.55 0.14 1.62 0.40 5.88 12.73 0.22 
   Pandalus jordani 0.23 0.11 0.90 0.35 1.83 2.06 0.05 
   Pandalus sp. 0.32 0.08 0.71 0.21 4.26 4.41 0.11 
  Pasiphaea pacifica 0.62 0.15 1.42 0.38 6.09 12.44 0.21 
   Pasiphaea pacifica 0.62 0.15 1.42 0.38 6.09 12.44 0.32 
  Sergestes similis 1.68 0.27 3.12 0.49 14.60 70.06 1.21 
   Sergestes similis 1.68 0.27 3.12 0.49 14.60 70.06 1.81 

  Shrimps (unid) 7.50 0.83 5.46 0.73 21.50 278.65 4.80 

   Shrimps (unid) 7.50 0.83 5.46 0.73 21.50 278.65 7.19 
Crabs  2.95 0.45 6.86 0.87 24.95 244.90 1.61 
 Crabs 2.95 0.45 6.86 0.87 24.95 244.90 2.45 
  Axiidae 0.94 0.38 2.04 0.58 2.84 8.47 0.15 
   Calocarides quinqueseriatus 0.44 0.24 1.06 0.42 1.62 2.44 0.06 
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Table 2. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
   Calocarides spinulicauda 0.01 0.01 0.15 0.15 0.20 0.03 0.00 
   Calocarides sp. 0.49 0.29 0.83 0.38 1.01 1.34 0.03 
  Brachyura 0.19 0.08 0.36 0.15 2.64 1.46 0.03 
   Chorilia longipes 0.01 0.01 0.08 0.08 0.20 0.02 0.00 
   Scyra acutifrons 0.01 0.01 0.02 0.02 0.20 0.01 0.00 
   Majoidea (unid) 0.12 0.07 0.20 0.11 1.01 0.32 0.01 
   Pinnixa occidentalis 0.01 0.01 0.01 0.01 0.41 0.01 0.00 
   Pinnixa sp. 0.01 0.01 0.01 0.01 0.20 0.00 0.00 
   Brachyura (unid) 0.03 0.01 0.05 0.03 0.81 0.06 0.00 
  Paguridae 0.34 0.10 1.78 0.45 4.87 10.34 0.18 
   Pagurus granosimanus 0.03 0.02 0.24 0.15 0.61 0.16 0.00 
   Pagurus ochotensis 0.01 0.01 0.08 0.08 0.20 0.02 0.00 
   Pagurus tanneri 0.11 0.07 0.63 0.26 1.42 1.05 0.03 
   Pagurus sp. 0.12 0.06 0.58 0.28 1.42 0.99 0.03 
   Paguridae (unid) 0.08 0.03 0.26 0.17 1.22 0.41 0.01 
  Galatheidae 0.38 0.12 0.51 0.21 3.25 2.90 0.05 
   Munida quadrispina 0.33 0.12 0.46 0.20 2.43 1.94 0.05 
   Munida sp. 0.02 0.02 0.05 0.05 0.41 0.03 0.00 
   Galatheidae (unid) 0.02 0.02 0.00 0.00 0.41 0.01 0.00 
 Crab larvae 0.28 0.14 0.11 0.05 2.84 1.09 0.02 
 Crab larvae 0.28 0.14 0.11 0.05 2.84 1.09 0.03 
 Crabs (unid) 0.82 0.15 2.06 0.44 11.76 33.88 0.58 
 Crabs (unid) 0.82 0.15 2.06 0.44 11.76 33.88 0.87 
Unidentifiable crustaceans 0.88 0.32 0.88 0.37 4.46 7.87 0.05 
 Unidentifiable crustaceans 0.88 0.32 0.88 0.37 4.46 7.87 0.08 
  Unidentifiable crustaceans 0.88 0.32 0.88 0.37 4.46 7.87 0.14 
   Unidentifiable crustaceans 0.88 0.32 0.88 0.37 4.46 7.87 0.20 

Teleosts  5.33 0.52 10.10 1.03 46.04 710.51 4.68 
 Teleosts 5.33 0.52 10.10 1.03 46.04 710.51 7.11 
  Myctophidae 1.49 0.33 4.22 0.75 10.34 59.00 1.02 
   Diaphus theta 0.30 0.10 1.01 0.36 2.84 3.73 0.05 
   Stenobrachius leucopsarus 0.66 0.21 2.20 0.56 4.46 12.76 0.33 
   Tarletonbeania crenularis 0.31 0.21 0.74 0.35 1.01 1.06 0.01 
   Myctophidae (unid) 0.22 0.08 0.27 0.10 2.84 1.37 0.04 
  Pleuronectidae 0.18 0.06 0.41 0.17 3.25 1.92 0.03 
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Table 2. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
   Eopsetta exilis 0.10 0.05 0.18 0.10 1.42 0.39 0.01 
   Pleuronectidae (unid) 0.08 0.03 0.23 0.13 2.03 0.64 0.02 
  Sebastes sp. 0.59 0.13 1.13 0.28 7.71 13.23 0.23 
   Sebastes sp. 0.59 0.13 1.13 0.28 7.71 13.23 0.34 
  Other Teleosts 0.39 0.18 0.84 0.38 1.83 2.26 0.04 
   Citharichthys sp. 0.00 0.00 0.00 0.00 0.20 0.00 0.00 
   Clupea pallasi 0.13 0.08 0.25 0.20 0.61 0.23 0.01 
   Lycodapis mandibularis 0.07 0.07 0.18 0.18 0.20 0.05 0.00 
   Merluccius productus 0.18 0.14 0.38 0.27 0.41 0.23 0.01 
   Gadidae 0.02 0.01 0.03 0.02 0.41 0.02 0.00 
  Teleosts (unid) 2.68 0.35 3.50 0.58 27.99 173.05 2.98 
   Teleosts (unid) 2.68 0.35 3.50 0.58 27.99 173.05 4.47 
           
           
Echinoderms 0.29 0.21 0.24 0.20 0.81 0.43 0.00 
 Echinoderms 0.29 0.21 0.24 0.20 0.81 0.43 0.00 
  Echinoidea 0.28 0.21 0.23 0.20 0.61 0.31 0.01 
   Strongylocentrotus sp. 0.28 0.21 0.23 0.20 0.61 0.31 0.01 
  Ophiuroidea 0.01 0.01 0.01 0.01 0.20 0.00 0.00 
   Ophiuroidea (unid) 0.01 0.01 0.01 0.01 0.20 0.00 0.00 
Molluscs  0.16 0.06 0.24 0.13 2.83 1.12 0.01 
 Molluscs 0.16 0.06 0.24 0.13 2.83 1.12 0.01 
  Bivalvia 0.00 0.00 0.00 0.00 0.20 0.00 0.00 

   Bivalve (unid) 0.00 0.00 0.00 0.00 0.20 0.00 0.00 

  Gastropoda 0.16 0.06 0.24 0.13 2.63 1.03 0.02 
   Amphissa bicolor 0.03 0.02 0.05 0.05 0.61 0.05 0.00 
   Astyris gausapata 0.07 0.05 0.07 0.06 1.01 0.15 0.00 
   Rictaxis punctocaelatus 0.01 0.01 0.00 0.00 0.20 0.00 0.00 
   Gastropoda (unid) 0.05 0.03 0.11 0.10 1.01 0.16 0.00 
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Table 3. The importance and standard error (SE) of prey items consumed by Bathyraja 
kincaidii based on mean percentage number (%N¯¯¯¯ ), mean percentage mass (%M¯¯¯¯ ), frequency 
of occurrence (%FO), mean Index of Relative Importance (IRI¯¯¯ ), and mean percentage Index 
of Relative Importance (%IRI¯¯¯¯¯ ) from Santa Cruz Lab samples at four taxonomic scales. 
           
        %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
Polychaetes 11.50 1.62 20.69 2.54 65.91 2121.84 13.78 
 Polychaetes 11.50 1.62 20.69 2.54 65.91 2121.84 20.67 
  Onuphidae 4.65 1.10 5.98 1.49 26.52 281.94 4.43 
   Onuphidae 4.65 1.10 5.98 1.49 26.52 281.94 5.78 
  Nephtyidae 1.16 0.40 8.35 1.88 16.67 158.52 2.49 
   Nephtys sp. 1.16 0.40 8.35 1.88 16.67 158.52 3.25 
  Polychaete A 1.22 0.43 0.86 0.60 10.61 22.14 0.35 
   Polychaete A 1.22 0.43 0.86 0.60 10.61 22.14 0.45 
  Opheliidae 3.57 1.14 3.36 1.19 12.12 84.04 1.32 
   Opheliidae 3.57 1.14 3.36 1.19 12.12 84.04 1.72 
  Polychaetes (unid) 0.89 0.23 2.14 0.73 21.21 64.24 1.01 
   Polychaetes (unid) 0.89 0.23 2.14 0.73 21.21 64.24 1.32 
Cephalopods 5.30 0.73 19.43 2.57 53.03 1311.37 8.52 
 Cephalopods 5.30 0.73 19.43 2.57 53.03 1311.37 12.77 
  Octopoda 1.00 0.24 3.98 1.02 16.67 83.04 1.30 
   Octopus rubescens 0.98 0.24 3.94 1.02 15.91 78.27 1.60 
   Octopoda (unid) 0.02 0.02 0.04 0.04 0.76 0.05 0.00 
  Teuthida 3.10 0.51 13.99 2.40 39.39 673.57 10.58 
   Abraliopsis felis 0.42 0.27 0.77 0.73 3.79 4.51 0.09 
   Gonatus sp. 0.15 0.13 0.61 0.61 1.52 1.14 0.02 
   Loligo opalescens 0.65 0.27 4.66 1.65 6.82 36.15 0.74 
   Teuthida (unid) 1.89 0.37 7.96 1.72 27.27 268.70 5.51 
  Cephalopods (unid) 1.19 0.57 1.46 0.85 5.30 14.04 0.22 
   Cephalopods (unid) 1.19 0.57 1.46 0.85 5.30 14.04 0.29 
Small benthic crustaceans 8.27 1.62 5.79 1.53 28.79 404.85 2.63 
 Amphipods 7.58 1.53 4.27 1.27 28.03 332.01 3.23 
  Gammarid amphipods 7.39 1.52 4.20 1.27 27.27 316.13 4.96 
   Gammarid amphipods 7.39 1.52 4.20 1.27 27.27 316.13 6.48 
  Other Amphipods 0.19 0.19 0.06 0.06 0.76 0.19 0.00 
   Paraphronima sp. 0.19 0.19 0.06 0.06 0.76 0.19 0.00 
 Isopods 0.69 0.31 1.53 0.77 5.30 11.77 0.11 
  Isopods 0.69 0.31 1.53 0.77 5.30 11.77 0.18 

   Rocinela angustata 0.34 0.19 0.73 0.43 3.79 4.07 0.08 
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Table 3. continued        
        
 %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
   Isopods (unid) 0.35 0.25 0.80 0.65 1.52 1.73 0.04 
Shrimp-like crustaceans 68.74 2.45 39.83 2.98 98.48 10693.08 69.46 
 Euphausiids/ mysids 42.97 3.49 19.91 2.48 64.39 4048.96 39.44 
  Euphausiidae 40.79 3.58 17.94 2.43 56.82 3336.70 52.40 
   Euphausia pacifica 0.86 0.45 0.65 0.49 6.82 10.28 0.21 
   Thysanoessa raschi 0.04 0.04 0.01 0.01 0.76 0.04 0.00 
   Thysanoessa spinifera 5.49 1.22 4.02 0.99 28.79 273.93 5.61 
   Euphausiidae (unid) 34.39 3.22 13.25 2.03 50.76 2418.29 49.56 
  Mysidae 2.18 0.82 1.97 0.86 9.85 40.89 0.64 
   Boreomysis californica 0.25 0.25 0.18 0.18 0.76 0.33 0.01 
   Holmsiella anomala 0.56 0.32 0.29 0.19 3.79 3.23 0.07 
   Mysidae (unid) 1.37 0.63 1.50 0.78 6.06 17.37 0.36 
 Shrimp-like decapods (unid) 14.15 2.33 8.64 1.81 28.03 638.68 6.22 
  Shrimp-like decapods (unid) 14.15 2.33 8.64 1.81 28.03 638.68 10.03 
   Euphausiid/ mysid mix 2.22 1.06 1.40 0.92 4.55 16.45 0.34 
   Euphausiid/ mysid/ shrimp mix 1.17 0.69 0.84 0.49 2.27 4.57 0.09 
   Euphausiid/ shrimp mix 10.11 2.09 5.32 1.45 18.18 280.50 5.75 
   Shrimp/ mysid mix 0.65 0.39 1.07 0.64 3.03 5.24 0.11 
 Shrimps 11.62 2.01 11.29 2.05 40.91 937.34 9.13 
  Crangonidae 1.11 0.34 1.50 0.68 9.85 25.69 0.40 
   Neocrangon communis 0.39 0.19 0.90 0.59 3.79 4.88 0.10 
   Crangonidae (unid) 0.72 0.29 0.60 0.34 6.06 8.00 0.16 
  Hippolytidae 2.64 0.93 2.91 0.97 9.85 54.60 0.86 
   Heptacarpus sp. 0.38 0.38 0.40 0.40 0.76 0.59 0.01 
   Spirontocaris holmesi 0.21 0.15 0.33 0.18 3.03 1.62 0.03 
   Spirontocaris sica 1.18 0.65 1.42 0.76 3.79 9.83 0.20 
   Spirontocaris sp. 0.75 0.53 0.70 0.40 2.27 3.30 0.07 
   Hippolytidae (unid) 0.12 0.12 0.06 0.06 0.76 0.14 0.00 
  Pasiphaea pacifica 0.77 0.36 0.60 0.41 6.82 9.30 0.15 
   Pasiphaea pacifica 0.77 0.36 0.60 0.41 6.82 9.30 0.19 
  Sergestes similis 1.87 0.74 2.45 0.96 8.33 36.01 0.57 

   Sergestes similis 1.87 0.74 2.45 0.96 8.33 36.01 0.74 

  Shrimps (unid) 5.24 1.31 3.84 1.29 19.70 178.77 2.81 
   Shrimps (unid) 5.24 1.31 3.84 1.29 19.70 178.77 3.66 
Crabs  0.97 0.35 1.83 0.86 12.88 36.05 0.23 
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Table 3. continued 
          
   %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
 Crabs 0.97 0.35 1.83 0.86 12.88 36.05 0.35 
  Brachyura 0.21 0.16 0.29 0.24 2.27 1.14 0.02 
   Majoidea (unid) 0.18 0.15 0.24 0.24 1.52 0.64 0.01 
   Brachyura (unid) 0.03 0.03 0.04 0.04 0.76 0.05 0.00 
  Paguridae 0.25 0.23 0.28 0.23 1.52 0.80 0.01 
   Pagurus tanneri 0.23 0.23 0.23 0.23 0.76 0.35 0.01 
   Paguridae (unid) 0.02 0.02 0.05 0.05 0.76 0.05 0.00 
  Crabs (unid) 0.52 0.22 1.26 0.75 9.85 17.48 0.27 
   Crabs (unid) 0.52 0.22 1.26 0.75 9.85 17.48 0.36 
Unidentifiable crustaceans 0.57 0.39 0.09 0.05 6.06 4.02 0.03 
 Unidentifiable crustaceans 0.57 0.39 0.09 0.05 6.06 4.02 0.04 
  Unidentifiable crustaceans 0.57 0.39 0.09 0.05 6.06 4.02 0.06 
   Unidentifiable crustaceans 0.57 0.39 0.09 0.05 6.06 4.02 0.08 
Teleosts  4.64 0.75 12.34 2.09 48.48 823.10 5.35 
 Teleosts 4.64 0.75 12.34 2.09 48.48 823.10 8.02 
  Myctophidae 2.10 0.66 6.43 1.79 15.91 135.77 2.13 
   Diaphus theta 0.58 0.31 1.56 0.90 4.55 9.73 0.20 
   Stenobrachius leucopsarus 1.33 0.59 4.34 1.57 8.33 47.23 0.97 
   Myctophidae (unid) 0.19 0.08 0.54 0.28 4.55 3.31 0.07 
  Pleuronectidae 0.05 0.04 0.30 0.29 1.52 0.53 0.01 
   Pleuronectidae (unid) 0.05 0.04 0.30 0.29 1.52 0.53 0.01 
  Sebastes sp. 0.50 0.21 1.55 0.61 8.33 17.07 0.27 
   Sebastes sp. 0.50 0.21 1.55 0.61 8.33 17.07 0.35 
  Teleosts (unid) 1.99 0.40 4.05 1.17 26.52 160.21 2.52 
   Teleosts (unid) 1.99 0.40 4.05 1.17 26.52 160.21 3.28 
           
           
Echinoderms 0.03 0.03 0.01 0.01 0.75 0.03 0.00 
 Echinoderms 0.03 0.03 0.01 0.01 0.75 0.03 0.00 
  Echinoidea 0.03 0.03 0.01 0.01 0.75 0.03 0.00 
   Strongylocentrotus sp. 0.03 0.03 0.01 0.01 0.75 0.03 0.00 
Molluscs 0.19 0.09 0.21 0.19 4.51 1.80 0.01 
 Molluscs 0.19 0.09 0.21 0.19 4.51 1.80 0.02 
  Bivalvia 0.01 0.01 0.00 0.00 0.75 0.01 0.00 
   Bivalve (unid) 0.01 0.01 0.00 0.00 0.75 0.01 0.00 
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Table 3. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
  Gastropoda 0.17 0.09 0.21 0.19 3.76 1.45 0.02 
   Amphissa bicolor 0.07 0.06 0.20 0.19 1.50 0.40 0.01 
   Astyris gausapata 0.04 0.04 0.00 0.00 0.75 0.03 0.00 
   Gastropoda (unid) 0.07 0.06 0.01 0.01 1.50 0.13 0.00 
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Table 4. The importance and standard error (SE) of prey items consumed by Bathyraja 
kincaidii based on mean percentage number (%N¯¯¯¯ ), mean percentage mass (%M¯¯¯¯ ), 
frequency of occurrence (%FO), mean Index of Relative Importance (IRI¯¯¯ ), and mean 
percentage Index of Relative Importance (%IRI¯¯¯¯¯ ) from West Coast Groundfish Survey 
samples at four taxonomic scales. 
           
        %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  

Polychaetes 16.08 1.09 19.85 1.47 74.24 2667.22 17.53 
 Polychaetes 16.08 1.09 19.85 1.47 74.24 2667.22 25.25 
  Onuphidae 4.72 0.53 7.06 0.83 34.63 407.87 6.53 
   Onuphidae 4.72 0.53 7.06 0.83 34.63 407.87 10.06 
  Lumbrinereidae 0.41 0.13 0.54 0.25 5.26 5.00 0.08 
   Lumbrinereidae 0.41 0.13 0.54 0.25 5.26 5.00 0.12 
  Nephtyidae 1.35 0.37 2.55 0.66 9.97 38.89 0.62 
   Nephtys sp. 1.35 0.37 2.55 0.66 9.97 38.89 0.96 
  Polychaete A 3.29 0.46 1.08 0.25 26.87 117.46 1.88 
   Polychaete A 3.29 0.46 1.08 0.25 26.87 117.46 2.90 
  Polychaete E 0.59 0.23 0.69 0.32 3.88 4.96 0.08 
   Polychaete E 0.59 0.23 0.69 0.32 3.88 4.96 0.12 
  Other polychaetes 0.06 0.04 0.10 0.09 0.83 0.13 0.00 
   Sternaspis cf. fossor 0.02 0.02 0.01 0.01 0.55 0.02 0.00 
   Terebellidae 0.03 0.03 0.09 0.09 0.28 0.03 0.00 
  Opheliidae 2.69 0.51 2.50 0.51 16.34 84.70 1.36 
   Opheliidae 2.69 0.51 2.50 0.51 16.34 84.70 2.09 
  Polychaetes (unid) 2.95 0.50 5.34 0.79 44.88 371.63 5.95 
   Polychaetes (unid) 2.95 0.50 5.34 0.79 44.88 371.63 9.17 
Cephalopods 4.07 0.50 5.40 0.87 33.80 319.96 2.10 
 Cephalopods 4.07 0.50 5.40 0.87 33.80 319.96 3.03 
  Octopoda 0.26 0.08 0.45 0.17 4.43 3.14 0.05 
   Octopus rubescens 0.25 0.08 0.44 0.17 4.16 2.84 0.07 
   Octopoda (unid) 0.01 0.01 0.01 0.01 0.28 0.01 0.00 
  Teuthida 3.22 0.46 4.78 0.86 26.87 214.99 3.44 
   Abraliopsis felis 0.06 0.06 0.19 0.19 0.55 0.14 0.00 
   Gonatus sp. 0.65 0.19 0.68 0.31 4.43 5.93 0.15 
   Loligo opalescens 0.01 0.01 0.43 0.31 0.55 0.25 0.01 
   Teuthida (unid) 2.54 0.42 3.48 0.72 21.61 129.92 3.20 
  Cephalopods (unid) 0.59 0.16 0.17 0.08 6.93 5.26 0.08 
   Cephalopods (unid) 0.59 0.16 0.17 0.08 6.93 5.26 0.13 

Small Benthic Crustaceans 9.16 0.83 7.10 0.90 49.31 801.65 5.27 



 100

Table 4. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  

 Amphipods 8.04 0.78 5.20 0.78 44.32 586.93 5.56 
  Gammarid amphipods 7.98 0.78 5.20 0.78 44.04 580.52 9.29 
   Gammarid amphipods 7.98 0.78 5.20 0.78 44.04 580.52 14.32 
  Other Amphipods 0.06 0.03 0.00 0.00 1.11 0.07 0.00 
   Paraphronima crassipes 0.01 0.01 0.00 0.00 0.28 0.00 0.00 
   Caprellid amphipods 0.05 0.03 0.00 0.00 0.83 0.04 0.00 
 Isopods 1.00 0.22 1.85 0.48 11.08 31.59 0.30 
  Isopods 1.00 0.22 1.85 0.48 11.08 31.59 0.51 
   Rocinela angustata 0.58 0.20 1.33 0.44 3.88 7.44 0.18 
   Synidotea angulata 0.04 0.03 0.01 0.01 0.55 0.02 0.00 
   Isopods (unid) 0.38 0.09 0.51 0.20 6.65 5.89 0.15 
 Cumaceans 0.12 0.09 0.04 0.03 1.11 0.18 0.00 
  Cumaceans 0.12 0.09 0.04 0.03 1.11 0.18 0.00 
   Campylaspis sp. 0.02 0.02 0.01 0.01 0.55 0.02 0.00 
   Diastylis sp. 0.09 0.09 0.02 0.02 0.28 0.03 0.00 
   Cumaceans (unid) 0.01 0.01 0.00 0.00 0.28 0.00 0.00 
Shrimp-like crustaceans 60.44 1.52 48.49 1.81 95.29 10379.76 68.23 
 Euphausiids/ mysids 13.35 1.32 7.77 1.03 41.83 883.19 8.36 
  Euphausiidae 10.73 1.28 6.79 1.00 29.09 509.47 8.16 
   Euphausia pacifica 1.25 0.32 1.20 0.27 11.91 29.14 0.72 
   Nematoscelis difficilis 0.09 0.09 0.26 0.26 0.28 0.10 0.00 
   Thysanoessa inermis 0.05 0.05 0.01 0.01 0.28 0.02 0.00 
   Thysanoessa spinifera 0.38 0.10 0.49 0.17 6.37 5.55 0.14 
   Euphausiidae (unid) 8.94 1.18 4.82 0.84 19.67 270.63 6.68 
  Mysidae 2.62 0.45 0.98 0.29 20.78 74.76 1.20 
   Boreomysis californica 0.00 0.00 0.00 0.00 0.28 0.00 0.00 
   Holmsiella anomala 0.37 0.16 0.17 0.09 2.22 1.20 0.03 
   Inusitatomysis insolita 0.10 0.08 0.02 0.02 0.83 0.10 0.00 
   Meterythrops robusta 0.02 0.01 0.01 0.00 0.83 0.02 0.00 
   Pseudomma cf. truncatum 1.41 0.38 0.42 0.17 9.42 17.19 0.42 
   Mysidae (unid) 0.71 0.19 0.37 0.21 8.31 8.98 0.22 
 Shrimp-like decapods (unid) 29.85 1.68 18.70 1.35 56.79 2756.79 26.10 

  Shrimp-like decapods (unid) 29.85 1.68 18.70 1.35 56.79 2756.79 44.14 

   Euphausiid/ mysid mix 2.72 0.74 1.53 0.47 3.88 16.48 0.41 
   Euphausiid/ mysid/ shrimp mix 6.61 0.96 4.64 0.80 14.13 158.98 3.92 
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Table 4. continued 
         
  %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
   Euphausiid/ shrimp mix 17.98 1.54 10.79 1.15 33.52 964.39 23.79 
   Shrimp/ mysid mix 2.54 0.63 1.74 0.47 5.26 22.49 0.55 
 Shrimps 17.24 1.38 22.03 1.63 57.89 2273.29 21.52 
  Crangonidae 2.94 0.57 5.58 0.89 16.90 143.99 2.31 
   Crangon alaskensis 0.47 0.28 0.64 0.35 1.39 1.55 0.04 
   Metacrangon spinosissima 0.17 0.09 0.42 0.24 1.39 0.81 0.02 
   Neocrangon communis 0.80 0.17 1.92 0.40 8.03 21.82 0.54 
   Neocrangon resima 0.02 0.01 0.21 0.13 0.83 0.19 0.00 
   Crangonidae (unid) 1.48 0.37 2.39 0.58 9.70 37.54 0.93 
  Hippolytidae 3.04 0.46 3.10 0.52 20.78 127.70 2.04 
   Eualus avinus 0.15 0.10 0.07 0.06 1.39 0.31 0.01 
   Eualus berkelyorum 0.00 0.00 0.01 0.01 0.28 0.00 0.00 
   Eualus macropthalmus 0.31 0.14 0.89 0.34 2.22 2.66 0.07 
   Eualus sp. 0.34 0.09 0.14 0.06 5.54 2.67 0.07 
   Spirontocaris holmesi 0.62 0.21 0.61 0.22 3.60 4.41 0.11 
   Spirontocaris lamellicornis 0.00 0.00 0.00 0.00 0.28 0.00 0.00 
   Spirontocaris ochotensis 0.00 0.00 0.01 0.01 0.28 0.00 0.00 
   Spirontocaris sica 0.45 0.23 0.49 0.24 1.39 1.30 0.03 
   Spirontocaris sp. 1.05 0.23 0.88 0.22 9.42 18.13 0.45 
   Hippolytidae (unid) 0.11 0.09 0.01 0.01 0.55 0.07 0.00 
  Pandalidae 0.75 0.19 2.21 0.55 8.03 23.74 0.38 
   Pandalus jordani 0.31 0.15 1.23 0.48 2.49 3.84 0.09 
   Pandalus sp. 0.44 0.11 0.97 0.28 5.82 8.22 0.20 
  Pasiphaea pacifica 0.57 0.15 1.73 0.50 5.82 13.34 0.21 
   Pasiphaea pacifica 0.57 0.15 1.73 0.50 5.82 13.34 0.33 
  Sergestes similis 1.61 0.25 3.37 0.58 16.90 83.99 1.34 
   Sergestes similis 1.61 0.25 3.37 0.58 16.90 83.99 2.07 
  Shrimps (unid) 8.33 1.03 6.05 0.88 22.16 318.66 5.10 
   Shrimps (unid) 8.33 1.03 6.05 0.88 22.16 318.66 7.86 
Crabs  3.67 0.60 8.71 1.13 29.36 363.55 2.39 

 Crabs 3.67 0.60 8.71 1.13 29.36 363.55 3.44 
  Axiidae 1.29 0.51 2.78 0.79 3.88 15.79 0.25 
   Calocarides quinqueseriatus 0.60 0.33 1.45 0.57 2.22 4.55 0.11 
   Calocarides spinulicauda 0.01 0.01 0.20 0.20 0.28 0.06 0.00 
   Calocarides sp. 0.68 0.40 1.13 0.52 1.39 2.50 0.06 
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Table 4. continued 
           
    %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
  Brachyura 0.18 0.09 0.39 0.19 2.77 1.60 0.03 
   Chorilia longipes 0.02 0.02 0.11 0.11 0.28 0.04 0.00 
   Scyra acutifrons 0.02 0.02 0.03 0.03 0.28 0.01 0.00 
   Majoidea (unid) 0.10 0.08 0.18 0.12 0.83 0.23 0.01 
   Pinnixa occidentalis 0.02 0.01 0.01 0.01 0.55 0.02 0.00 
   Pinnixa sp. 0.01 0.01 0.01 0.01 0.28 0.01 0.00 
   Brachyuran (unid) 0.03 0.02 0.05 0.03 0.83 0.07 0.00 
  Paguridae 0.37 0.11 2.33 0.60 6.09 16.49 0.26 
   Pagurus granosimanus 0.04 0.02 0.33 0.21 0.83 0.30 0.01 
   Pagurus ochotensis 0.01 0.01 0.11 0.11 0.28 0.03 0.00 
   Pagurus tanneri 0.07 0.03 0.77 0.34 1.66 1.40 0.03 
   Pagurus sp. 0.16 0.09 0.79 0.38 1.94 1.84 0.05 
   Paguridae (unid) 0.10 0.05 0.33 0.24 1.39 0.60 0.01 
  Galatheidae 0.52 0.16 0.70 0.28 4.43 5.41 0.09 
   Munida quadrispina 0.45 0.16 0.63 0.28 3.32 3.62 0.09 
   Munida sp. 0.03 0.02 0.06 0.06 0.55 0.05 0.00 
   Galatheidae (unid) 0.03 0.02 0.01 0.00 0.55 0.02 0.00 
  Crab larvae 0.38 0.19 0.15 0.07 3.88 2.03 0.03 
   Crab larvae 0.38 0.19 0.15 0.07 3.88 2.03 0.05 
  Crabs (unid) 0.93 0.19 2.35 0.53 12.47 40.93 0.66 
   Crabs (unid) 0.93 0.19 2.35 0.53 12.47 40.93 1.01 
Unidentifiable crustaceans 1.00 0.42 1.17 0.50 4.16 9.03 0.06 
 Unidentifiable crustaceans 1.00 0.42 1.17 0.50 4.16 9.03 0.09 
  Unidentifiable crustaceans 1.00 0.42 1.17 0.50 4.16 9.03 0.14 
   Unidentifiable crustaceans 1.00 0.42 1.17 0.50 4.16 9.03 0.22 
Teleosts  5.58 0.65 9.28 1.18 45.15 671.23 4.41 
 Teleosts 5.58 0.65 9.28 1.18 45.15 671.23 6.35 
  Myctophidae 1.26 0.37 3.40 0.79 8.31 38.80 0.62 

   Diaphus theta 0.20 0.08 0.81 0.36 2.22 2.24 0.06 
   Stenobrachius leucopsarus 0.42 0.19 1.41 0.50 3.05 5.59 0.14 
   Tarletonbeania crenularis 0.42 0.29 1.01 0.47 1.39 1.98 0.05 
   Myctophidae (unid) 0.23 0.11 0.17 0.08 2.22 0.87 0.02 
  Pleuronectidae 0.23 0.08 0.45 0.20 3.88 2.64 0.04 
   Eopsetta exilis 0.14 0.06 0.24 0.14 1.94 0.74 0.02 
   Pleuronectidae (unid) 0.09 0.04 0.21 0.15 2.22 0.67 0.02 
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Table 4. continued 
          
   %N¯¯¯¯  SE  %M¯¯¯¯  SE %FO IRI¯¯¯  %IRI¯¯¯¯¯  
  Sebastes sp. 0.62 0.16 0.98 0.31 7.48 11.93 0.19 
   Sebastes sp. 0.62 0.16 0.98 0.31 7.48 11.93 0.29 
  Other Teleosts 0.54 0.24 1.15 0.52 2.49 4.21 0.07 
   Citharichthys sp. 0.00 0.00 0.00 0.00 0.28 0.00 0.00 
   Clupea pallasi 0.17 0.12 0.34 0.28 0.83 0.43 0.01 
   Lycodapis mandibularis 0.09 0.09 0.25 0.25 0.28 0.09 0.00 
   Merluccius productus 0.24 0.19 0.52 0.37 0.55 0.42 0.01 
   Gadidae 0.02 0.02 0.04 0.03 0.55 0.03 0.00 
  Teleosts (unid) 2.93 0.45 3.30 0.67 28.53 177.85 2.85 
   Teleosts (unid) 2.93 0.45 3.30 0.67 28.53 177.85 4.39 
           
           
Echinodermata 0.38 0.29 0.33 0.28 0.55 0.39 0.00 
 Echinodermata 0.38 0.29 0.33 0.28 0.55 0.39 0.00 

  Echinoidea 0.37 0.29 0.31 0.28 0.55 0.38 0.01 

   Strongylocentrotus sp. 0.37 0.29 0.31 0.28 0.55 0.38 0.01 
  Ophiuroidea 0.01 0.01 0.01 0.01 0.28 0.01 0.00 

   Ophiuroidea (unid) 0.01 0.01 0.01 0.01 0.28 0.01 0.00 
Mollusca  0.15 0.08 0.25 0.16 2.22 0.88 0.01 
 Mollusca 0.15 0.08 0.25 0.16 2.22 0.88 0.01 
  Gastropoda 0.15 0.08 0.25 0.16 2.22 0.88 0.01 
   Amphissa bicolor 0.01 0.01 0.00 0.00 0.28 0.00 0.00 
   Astyris gausapata 0.09 0.07 0.10 0.08 1.11 0.21 0.01 
   Rictaxis punctocaelatus 0.01 0.01 0.00 0.00 0.28 0.00 0.00 

   Gastropoda (unid) 0.04 0.03 0.14 0.13 0.83 0.15 0.00 
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Table 5.  Factor fit (ω2), Pillai's Trace p-value and the rank 
importance of both for the three main factors and their 
interactions resulting from the MANOVA performed on the 
gravimetric and numeric importance of the six main prey 
categories of Bathyraja kincaidii taken in SCL samples. 
 

Gravimetric Data 
Factor ω2 rank p-value rank 
Sex   2.05 2    0.03 4 
Maturity status   2.02 3    1.05x10-7 1 
Oceanographic season   3.39 1    5.11x10-7 2 
Sex*maturity   1.85 4    0.13 5 
Sex*season   0.21 5    0.23 6 
Maturity*season   0.11 6    0.01 3 
Sex*maturity*season   0.00 7    0.80 7 
Error 90.37    
     
     

Numeric Data 
Factor ω2 rank p-value rank 
Sex   0.04 6    0.53 6 
Maturity status 14.28 2    3.72x10-17 1 
Oceanographic season 17.12 1    2.87x10-13 2 
Sex*maturity   0.01 7    0.86 7 
Sex*season   2.31 4    0.04 4 
Maturity*season   3.93 3    2.64x10-9 3 
Sex*maturity*season   0.61 5    0.29 5 
Error 61.69    

 
 
                     ___________________________________________________ 
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Table 6.  Factor fit (ω2), Pillai's Trace p-value and the rank 
importance of both for the three main factors and their 
interactions resulting from the MANOVA performed on the 
gravimetric and numeric importance of the six main prey 
categories of Bathyraja kincaidii taken in WCGS samples. 
 

Gravimetric Data 
Factor ω2 rank p-value rank 
Sex   0.62 4    1.93x10-4 2 
Maturity status   0.78 3    0.02 5 
Geographic zone   2.00 1    4.74x10-6 1 
Sex*maturity   0.56 5    0.02 4 
Sex*zone   0.50 6    0.38 6 
Maturity*zone   1.63 2    7.9x10-4 3 
Sex*maturity*zone   0.21 7    0.53 7 
Error 93.70    
     
     

Numeric Data 
Factor ω2 rank p-value rank 
Sex   0.35 6    0.05 5 
Maturity status   1.14 3    3.38x10-5 1 
Geographic zone   4.94 1    1.41x10-4 2 
Sex*maturity   0.68 4    0.01 4 
Sex*zone   0.01 7    0.97 7 
Maturity*zone   2.18 2    6.51x10-3 3 
Sex*maturity*zone   0.59 5    0.71 6 
Error 90.12    

 
                      
                     ___________________________________________________ 
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Table 7. Linear regression slopes, resultant t-test and p-values and description of the proportional growth of the seven 
morphological measurements taken on Bathyraja kincaidii 
 

Female Male 

Measurement Slope t -value p-value Growth Slope t -value p-value Growth 

MW 1.01 0.89 >0.20 Isometry 1.08 2.72 <0.01 + Allometry 

POL 0.97 1.61 >0.10 Isometry 0.70 6.40 <0.01 - Allometry 

PROT 0.82 4.15 <0.01 - Allometry 1.71 6.36 <0.01 + Allometry 

CW 0.74 5.24 <0.01 - Allometry 0.21   19.24 <0.01 - Allometry 

CL 0.92 2.64   0.01 - Allometry 0.81 4.87 <0.01 - Allometry 

CuH 0.98 1.16 >0.20 Isometry 1.30 4.73 <0.01 + Allometry 

CuL 1.42 4.83 <0.01 + Allometry 2.41 7.58 <0.01 + Allometry 
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Table 8.  Factor fit (ω2), Pillai's Trace p-value and the rank 
importance of both for the three main factors and their 
interactions resulting from the MANCOVA performed on 
the three oral and four dental morphology measurements 
taken on Bathyraja kincaidii 
 

Oral morphology 
Factor  ω2 rank p-value rank 
Sex 32.01 1    8.11x10-30 1 
Maturity status   0.97 5    5.95x10-3 5 
Geographic zone   8.41 3    1.57x10-14 2 
Sex-maturity   8.93 2    5.24x10-13 3 
Sex-zone    0.15 7    0.04 6 
Maturity-zone   3.01 4    9.78x10-7 4 
Sex-maturity-zone   0.61 6    0.048 7 
Error  45.92    
      
      

Dental morphology 
Factor  ω2 rank p-value rank 
Sex  34.05 1    7.39x10-40 1 
Maturity status   2.52 3    1.01x10-6 3 
Geographic zone   1.77 4    1.28x10-3 4 
Sex-maturity 12.58 2    3.15x10-22 2 
Sex-zone    0.01 7    0.77 7 
Maturity-zone   0.73 5    0.07 5 
Sex-maturity-zone   0.41 6    0.27 6 
Error  47.93    
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Figure 1. Area map of central California indicating locations and number of Bathyraja 
kincaidii captured in Santa Cruz Lab trawls whose stomachs were used in the diet 
analysis.  Size of bar indicates length of trawl. 
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Figure 2. Area map of the eastern North Pacific indicating locations and number of 
Bathyraja kincaidii captured in West Coast Groundfish Survey trawls whose stomachs 
were used in the diet analysis. 
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Figure 3. Histogram of the total lengths of male and female Bathyraja kincaidii collected 
in Santa Cruz Lab trawls. 
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Figure 4. Cumulative prey curve for all prey items collected in Bathyraja kincaidii 
stomach samples from Santa Cruz Lab trawls. Error bars represent the standard deviation 
of the plotted mean generated from 100 resamplings. 
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Figure 5. Histogram of the total lengths of male and female Bathyraja kincaidii collected 
in West Coast Groundfish Survey trawls. 
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Figure 6. Cumulative prey curve for all prey items collected in Bathyraja kincaidii 
stomach samples from West Coast Groundfish Survey trawls. Error bars represent the 
standard deviation of the plotted mean generated from 100 resamplings. 
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Figure 7. Graphical representation of the component indices of importance for major prey 
categories in the diet of Bathyraja kincaidii from both sample sources.  Numbers in 
parentheses indicate %IRI¯¯¯¯¯  and error bars represent the standard error for their respective 
measurement. Crabs, unidentified crustaceans, molluscs and echinoderms are not 
included because of their low importance. 
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Figure 8. Graphical representation of the component indices of importance for major prey 
categories in the diet of Bathyraja kincaidii from SCL samples.  Numbers in parentheses 
indicate %IRI¯¯¯¯¯  and error bars represent the standard error for their respective measurement. 
Crabs, unidentified crustaceans, molluscs and echinoderms are not included because of 
their low importance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 123

 

 



 124

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Graphical representation of the component indices of importance for major prey 
categories in the diet of Bathyraja kincaidii from WCGS samples.  Numbers in 
parentheses indicate %IRI¯¯¯¯¯  and error bars represent the standard error for their respective 
measurement. Crabs, unidentified crustaceans, molluscs and echinoderms are not 
included because of their low importance. 
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Figure 10. Cumulative prey curves of the major prey categories for each combined factor 
grouping used in the analysis of the diet of Bathyraja kincaidii from SCL samples.  Error 
bars represent the standard deviation of the plotted mean generated from 100 resamplings. 
For the following sex-maturity-season combinations, F0= immature female, F1= mature 
female M0= immature male, M1=mature male, UPS= Upwelling season, OCS= Oceanic 
season, DCS= Davidson Current season.  
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Figure 11. Cumulative prey curves of the major prey categories for each combined factor 
grouping used in the analysis of the diet of Bathyraja kincaidii from WCGS samples.  
Error bars represent the standard deviation of the plotted mean generated from 100 
resamplings. For the following sex-maturity-zone combinations, F0= immature female, 
F1= mature female M0= immature male, M1=mature male.  
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Figure 12. Mean values and 95% confidence intervals of the gravimetric proportion of the 
six prey categories in the diet of Bathyraja kincaidii from SCL samples. a) 
maturity*season interaction, ▲= immature skates, ♦= mature skates. b) sex*maturity 
interaction, IMM= immature, MAT= mature, ■= female skates, ●= male skates. * 
significant (p<0.05) for the interaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 131

 
 

 



 132

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Mean values and 95% confidence intervals of the numeric proportion of the 
six prey categories in the diet of Bathyraja kincaidii from SCL samples. a) sex*season 
interaction, ■= female skates, ●= male skates. b) maturity*season, ▲= immature skates, 
♦= mature skates.  * significant (p<0.05) for the interaction 
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Figure 14. Mean values and 95% confidence intervals of the gravimetric proportion of the 
six prey categories in the diet of Bathyraja kincaidii from WCGS samples. a) 
maturity*zone interaction, ▲= immature skates, ♦= mature skates. b) sex*maturity 
interaction, IMM= immature, MAT= mature, ■= female skates, ●= male skates. Note the 
difference in scale between the shrimp-like crustacean figure and the remaining plots for 
both interactions. * significant (p<0.05) for the interaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 135

 
 

 
 



 136

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Mean values and 95% confidence intervals of the numeric proportion of the 
six prey categories in the diet of Bathyraja kincaidii from WCGS samples. a) 
maturity*zone interaction, ■= female skates, ●= male skates. b) sex*maturity, ▲= 
immature skates, ♦= mature skates.  Note the difference in scale between the shrimp-like 
crustacean figure and the remaining plots for both interactions. * significant (p<0.05) for 
the interaction 
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Figure 16. Mean upwelling index and standard error from the 36º N 122º W station for 
the month/ year combinations encompassing the dates of collection of SCL samples. The 
more positive the value of the index, the more likely upwelling is to occur. For those 
months when no stomach samples were collected (April, May and August), the mean 
plotted is from each of those months from the entire study period, 2002-2005. 
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Figure 17. An anterior view of Bathyraja kincaidii indicating the oral measurements used 
in the ecomorphological analysis. The upper photograph is a frontal view of the ventrum, 
POL= pre-oral length, MW= mouth width. The bottom photograph is a sagittal view of 
the ventrum, PROT= protrusion distance.  
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Figure 18. A representative tooth from Bathyraja kincaidii indicating the dental 
measurements used in the ecomorphological analysis. The upper photograph is an 
overhead transverse view, CW= crown width, CL= crown length. The bottom photograph 
is a sagittal view, CuH= cusp height, CuL= cusp length. The cusp is posteriorly directed. 
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Figure 19. Area map of the eastern North Pacific indicating locations and number of 
Bathyraja kincaidii captured in West Coast Groundfish Survey trawls whose 
measurements were used in the morphological analysis. 
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Figure 20. Histogram of the total lengths of male and female Bathyraja kincaidii used in 
the morphological analysis. 
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Figure 21. Log-log plots of the oral measurements used in the study. Δ = immature skates, 
♦= mature skates. The regression line and equation are for both maturities combined. The 
dashed line with a slope of 1 indicates isometric growth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 149

 
 
 
 
 
 
 
 

Female y = 1.0102x - 0.9851
R2 = 0.9533

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1 2.2 2.3 2.4 2.5 2.6 2.7

L
og

 m
ou

th
 w

id
th

Male y = 1.0823x - 1.1447
R2 = 0.9215

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1 2.2 2.3 2.4 2.5 2.6 2.7

y = 0.9681x - 0.5892
R2 = 0.9734

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.1 2.2 2.3 2.4 2.5 2.6 2.7

L
og

 p
re

-o
ra

l l
en

gt
h

y = 0.7031x + 0.0277
R2 = 0.8789

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.1 2.2 2.3 2.4 2.5 2.6 2.7

y = 0.8208x - 1.0631
R2 = 0.5014

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2.1 2.2 2.3 2.4 2.5 2.6 2.7

Log disc width

L
og

 p
ro

tr
us

io
n 

di
st

an
ce

y = 1.7137x - 3.1624
R2 = 0.632

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2.1 2.2 2.3 2.4 2.5 2.6 2.7

Log disc width  
 
 
 
 
 
 
 



 150

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Distribution histogram of protrusion distance for the sex-maturity groupings 
indicating a non-normal distribution. F0=immature female, F1=mature female, 
M0=immature male, M1=mature male. 
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Figure 23. Mean values and 95% confidence intervals of the three oral measurements 
taken from Bathyraja kincaidii. a) sex*maturity interaction, IMM= immature, MAT= 
mature, ■= female skates, ●= male skates b) maturity*zone interaction, ▲= immature 
skates, ♦= mature skates c) sex*zone interaction,  ■= female skates, ●= male skates.  * 
significant (p<0.05) for the interaction 
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Figure 24. Mean values and 95% confidence intervals for the sex*maturity*zone 
interaction of the protrusion distance of Bathyraja kincaidii. IMM= immature, MAT= 
mature, ■= female skates, ●= male skates.  
 
 
 
 
 
 
 
 
 
 



 155

 



 156

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Log-log plots of the dental measurements used in the study. Δ = immature 
skates, ♦= mature skates. The regression line and equation are for both maturities 
combined. The dashed line with a slope of 1 indicates isometric growth. 
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Figure 26. Distribution histograms of cusp height and cusp length for the sex-maturity 
groupings indicating a non-normal distribution. F0=immature female, F1=mature female, 
M0=immature male, M1=mature male. 
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Figure 27. Mean values and 95% confidence intervals of the four dental measurements 
taken from Bathyraja kincaidii. a) sex*maturity interaction, IMM= immature, MAT= 
mature, ■= female skates, ●= male skates b) maturity*zone interaction,  ▲= immature 
skates, ♦= mature skates  * significant (p<0.05) for the interaction 
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Figure 28. Mean values and 95% confidence intervals for the sex*maturity*zone 
interaction of the cusp height measurement of Bathyraja kincaidii. IMM= immature, 
MAT= mature, ■= female skates, ●= male skates.  
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