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ABSTRACT 

The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to es- 
timate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009. The CASA model was driven by NASA 
Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1 km resolution) 
disturbance events detected in biweekly time series data. This modeling framework has been implemented to estimate 
historical as well as current monthly patterns in plant carbon fixation, living biomass increments, and long-term decay 
of woody (slash) pools before, during, and after land cover disturbance events. Results showed that CASA model pre- 
dictions closely followed the seasonal timing of Ameriflux tower measurements. At a global level, predicting net eco- 
system production (NEP) flux for atmospheric CO2 from 2000 through 2005 showed a roughly balanced terrestrial bio- 
sphere carbon cycle. Beginning in 2006, global NEP fluxes became increasingly imbalanced, starting from −0.9 Pg C 
yr−1 to the largest negative (total net terrestrial source) flux of −2.2 Pg C yr−1 in 2009. In addition, the global sum of 
CO2 emissions from forest disturbance and biomass burning for 2009 was predicted at 0.51 Pg C yr−1. These results 
demonstrate the potential to monitor and validate terrestrial carbon fluxes using NASA satellite data as inputs to eco-
system models.  
 
Keywords: Carbon Flux; Deforestation; MODIS; Ecosystem Production 

1. Introduction 

The emission of CO2 from deforestation and other land 
cover changes is among the most uncertain components 
of the global carbon cycle. Inconsistent and unverified 
information about global deforestation patterns has sig- 
nificant implications for balancing the present-day car- 
bon budget and predicting the future evolution of climate 
change. A number of studies have estimated carbon 
emissions from tropical deforestation [1-7] but the esti- 
mates vary greatly and are difficult to be compared due 
to differences in (land cover) data sources, estimated re- 
gional extents, and carbon computation methodologies. 

A recent review of previous work on estimating car- 
bon emissions from vegetation change by Ramankutty et 
al. [8] pointed to the importance of considering ecosys- 
tem dynamics following land cover conversion, including 
the fluxes from the decay of products and slash pools, 
and the fluxes from either newly established agricultural 
lands or regrowing forest. This review also suggested  

that accurate carbon-flux estimates should consider his- 
torical land-cover changes over at least the previous 20 
years. Such results can be highly sensitive to estimates of 
the partitioning of cleared carbon into instantaneous 
burning vs long-time scale dead woody pools. Accord- 
ingly, the main objective of the present study was to 
quantify the major controls on carbon flux patterns and 
processes terrestrial ecosystems worldwide, using NASA 
satellite data products to drive models of net ecosystem 
production (NEP) and detect large-scale ecosystem dis- 
turbance, leading to detailed estimates of net biome pro- 
duction (NBP).  

An updated version of the CASA (Carnegie Ames 
Stanford Approach) model [9] was used in this study to 
predict terrestrial ecosystem fluxes using MODIS collec- 
tion 5 of the Enhanced Vegetation Index (EVI; [10,11]) 
as inputs at a geographic resolution of 0.5˚ latitude/lon- 
gitude. This model version was developed at NASA 
Ames Research Center [2,9,12,13] to estimate monthly  
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patterns in carbon fixation, plant biomass increments, 
nutrient allocation, litter fall, soil carbon, CO2 exchange, 
and soil nutrient mineralization.   

Previously published results from the CASA model 
driven by global satellite observations imply that above- 
average global temperatures are commonly associated 
with an increasing trend in terrestrial ecosystem sinks for 
atmospheric CO2 [12,13]. These predictions support the 
hypothesis that regional climate warming has had meas- 
urable but relatively small-scale impacts on atmospheric 
CO2 sequestration rates, mainly in northern high latitude 
ecosystems (tundra and boreal forest). A main goal of 
this paper was to re-evaluate this hypothesis based on the 
results of new CASA model reuslts over the period 2000 
to 2009.  

This study also represents the first global application 
of the CASA model’s [9] predictions of forest biomass 
using MODIS data inputs to infer carbon fluxes from 
land cover change. As recommended by Ramankutty et 
al. [8], our CASA modeling framework has been de- 
signed to estimate historical as well as current monthly 
patterns in plant carbon fixation, living biomass incre- 
ments, and long-term decay of slash pools before, during, 
and after land cover disturbance events [7]. The unique 
aspects of our methodology are in the combination of 
MODIS satellite images to first quantify and map stand- 
ing vegetation biomass pools across the globe in manner 
consistent with stand age, tree production estimates, and 
soil properties, and second to simulate both the gross and 
net loss of carbon to the atmosphere in a mechanistic 
manner that maps and tracks all the pools of wood and 
herbaceous litter remaining for years following distur- 
bance. In tropical forested areas, we have used MODIS 
data to model the carbon cycle prior to deforestation, and 
then immediately reduce plant carbon uptake to observed 
levels in field-based studies of forest clearing. All model 
carbon pools (wood, leaf, and root) have been altered 
dynamically in the simulations of clearing and burning 
anywhere and everywhere that land cover change has 
been mapped out.  

2. Satellite Data Inputs 

The launch of NASA’s Terra satellite platform in 1999 
with the moderate resolution imaging spectroradiometer 
(MODIS) instrument on-board initiated a new era in re- 
mote sensing of the Earth system with promising impli- 
cations for carbon cycle research. Direct input of satellite 
vegetation index “greenness” data from the MODIS sen- 
sor into ecosystem simulation models can be used to es- 
timate spatial variability in monthly net primary produc- 
tion (NPP), biomass accumulation, and litter fall inputs 
to soil carbon pools. Global NPP of vegetation can be 
predicted using the relationship between leaf reflectance 

properties and the fraction of absorption of photosyn- 
thetically active radiation (FPAR), assuming that net 
conversion efficiencies of PAR to plant carbon can be 
approximated for different ecosystems or are nearly con- 
stant across all ecosystems.  

Whereas previous versions of the NASA-CASA model 
[9] used a normalized difference vegetation index (NDVI) 
to estimate FPAR, the current model version instead re- 
lies the EVI time series, which has a higher dynamic re- 
sponse across the full range of vegetated cover, does not 
saturate in medium-to-high biomass areas, and is less 
susceptible to atmospheric interference [10,14,15]. The 
lower level of saturation of low-to-medium range plant 
production estimated from CASA modeling with MODIS 
EVI inputs (compared to MODIS NDVI inputs) will re- 
sult in lower annual NPP in any zones where primary 
forest has become increasing mixed with degraded forest 
and converted agricultural land uses.  

The global 0.5˚ (latitude/longitude) resolution MODIS 
vegetation index (VI) data sets used as inputs to CASA 
were generated by aggregating monthly 0.05˚ (~6 km) 
data (MOD13C2 version 005) from the USGS LP DAAC. 
The VI layer was selected from each MOD13C2 spatial 
composite file and surface water values are converted to 
“NoData”. To aggregate from a 0.05˚ cell size to 0.5˚ 
resolution, the VI values for each pixel block were aver-
aged. Each monthly layer was then multiplied by 0.0001 
to scale the data to the standard MODIS VI value range. 
This aggregation procedure provided the greatest assur-
ance of high-quality, cloud-free VI inputs to the carbon 
cycle model.  

3. Modeling Methods and Global Drivers 

3.1. CASA Ecosystem Carbon Fluxes 

As documented in Potter [2] the monthly NPP flux, de- 
fined as net fixation of CO2 by vegetation, is computed in 
CASA on the basis of light-use efficiency [16]. Monthly 
production of plant biomass is estimated as a product of 
time-varying surface solar irradiance, Sr, and EVI from 
the MODIS satellite, plus a constant light utilization effi- 
ciency term (emax) that is modified by time-varying stress 
scalar terms for temperature (T) and moisture (W) effects 
(Equation (1)). 

          (1) N maxPP Sr *EVI*e *T* W

The emax term is set uniformly at 0.55 g C MJ−1 PAR, a 
value that derives from calibration of predicted annual 
NPP to previous field estimates [12]. This model calibra- 
tion has been validated globally by comparing predicted 
annual NPP to more than 1900 field measurements of 
NPP [12,13,17]. Climate drivers for the CASA model 
were from the National Center for Environmental Predic- 
tion (NCEP) reanalysis data set (version NCEP/DOE II 
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[18]), and land cover settings were aggregated from the 
MODIS global 1-km product (described in Zhao and 
Running [19]).  

and may eventually leave the system as seepage and run- 
off. Freeze-thaw dynamics with soil depth operate ac- 
cording to the empirical degree-day accumulation method 
[24], as described by Bonan [25].  The T stress scalar is computed with reference to deri- 

vation of optimal temperatures (Topt) for plant production. 
The Topt setting will vary by latitude and longitude, 
ranging from near 0˚C in the Arctic to the middle thirties 
in low latitude deserts. The W stress scalar is estimated 
from monthly water deficits, based on a comparison of 
moisture supply (precipitation and stored soil water) to 
potential evapotranspiration (PET) demand using the 
method of Priestly and Taylor [20].  

Based on plant production as the primary carbon and 
nitrogen cycling source, the NASA-CASA model is de- 
signed to couple daily and seasonal patterns in soil nu- 
trient mineralization and soil heterotrophic respiration 
(Rh) of CO2 from soils worldwide. Net ecosystem pro- 
duction (NEP) can be computed as NPP minus Rh fluxes, 
excluding the effects of small-scale fires and other local- 
ized disturbances or vegetation regrowth patterns on 
carbon fluxes [26]. The NASA-CASA soil model uses a 
set of compartmental difference equations. First-order 
decay equations simulate exchanges of decomposing 
plant residue (metabolic and structural fractions) at the 
soil surface. The model also simulates surface soil or- 
ganic matter (SOM) fractions that presumably vary in 
age and chemical composition. Turnover of active (mi- 
crobial biomass and labile substrates), slow (chemically 
protected), and passive (physically protected) fractions of 
the SOM are represented.   

Evapotranspiration is connected to water content in the 
soil profile layers (Figure 1), as estimated using the 
NASA-CASA algorithms described by Potter [2]. The 
soil model design includes three-layer (M1-M3) heat and 
moisture content computations: surface organic matter, 
topsoil (0.3 m), and subsoil to rooting depth (1 to 10 m). 
These layers can differ in soil texture, moisture holding 
capacity, and carbon-nitrogen dynamics. The setting for 
deep rooting depths (up to 10 meters) in tropical forest 
biomes follows the findings from studies of primary pro- 
duction seasonality in these regions [21-23]. Water bal- 
ance in the soil is modeled as the difference between 
precipitation or volumetric percolation inputs, monthly 
estimates of PET, and the drainage output for each layer. 
Inputs from rainfall can recharge the soil layers to field 
capacity. Excess water percolates through to lower layers  

3.2. Deforestation Carbon Fluxes 

The general method used in this study to compute bio- 
mass burning gas emissions is based on the approach 
described by Potter et al. [27]. To estimate regional trace  

 

 

Figure 1. Schematic representation of components in the NASA-CASA model. The soil profile component (a) is layered with 
depth into a surface ponded layer (M0), a surface organic layer (M1), a surface organic-mineral layer (M2), and a subsurface 
mineral layer (M3), showing typical levels of soil water content (shaded) in three general vegetation types. The production 
and decomposition component (b) shows separate pools for carbon cycling among pools of leaf litter, root litter, woody detri- 
us, microbes, and soil organic matter, with dependence on litter quality (Lit q). t 
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gas emissions from vegetation fires, we apply the fol- 
lowing equation: 

 t xE B x   * * * ,F fC e A x t         (2) 

where Et (Pg; 1 Pg = 1015 g) is the regional emissions 
total at time t (d), B is the biomass subjected to burn at 
location x, CF is the biomass combustion fraction associ- 
ated with a particular plant tissue fraction (leaf versus 
wood), ef is the emission factor (flaming and/or smolder- 
ing) associated with a particular trace gas, A is the area 
burned (km2) at location x and time t.  

To estimate the B term in Equation (2), maps of vege- 
tation biomass can be derived by one of two general 
methods. The first is by spatial interpolation, using what 
is normally a small number (<100) of intensive field site 
measurements of aboveground plant mass [28]. A weak- 
ness of any interpolation method is that a small number 
of measurements may not adequately represent the vari- 
ability of biomass growth patterns. The second general 
method, and the one used in this study, is developed 
through our combination of satellite remote sensing and 
ecosystem carbon flux modeling. Satellite imagery can 
be transformed using plant production models to provide 
relatively high spatial resolution maps of above-ground 
biomass over a regional area of interest [2].  

We adopted default CF values largely from the 
FLAMBE modeling system [29], with several modifica- 
tions. We used a globally uniform CF value of 0.95 for leaf 
material [27]. In tropical rainforest zones, we adopted a 
CF value of 0.45 for wood material, derived from Ama- 
zon forest slash burning studies [30,31]. Following the 
approach of Potter et al. [27], we based these estimates 
for typical CF values on studies that were conducted in 
the Amazon on small-holder properties, where all deci- 
sions as to which vegetation to burn, size of area slashed, 
location, and the timing of the slash and burn process 
(how to slash, how long to dry, when to burn) were en- 
tirely left to property owners. The estimated CF values 
used in our analysis are typical of those reported in sev- 
eral other studies of tropical biomass burning [32]. 

The ef term in Equation (2) is defined as the amount of 
a compound released per amount of fuel consumed (g dry 
matter). Calculation of this parameter requires knowl- 
edge of the carbon content of the biomass burned and the 
carbon budget of the fire usually expressed as the CF 
term [33]. Where fuel and residue data at the ground 
level are not available, an overall fuel carbon content of 
45% - 50% is commonly assumed [34]. 

The ef vales we used in Equation (2) were estimated by 
Scholes et al. [35] based on a review of some 70 publica- 
tions, a large fraction of which were produced as a result 
of International Geosphere-Biosphere Programme (IGBP) 
Biomass Burning Experiment (BIBEX) campaigns. It 
appears from this compilation of published ef values that 
adequate data exist for CO2 emissions for savanna and 

tropical forest fires. Post-disturbance decomposition of 
residual biomass carbon pools in wood and soils fol- 
lowed the methods of Potter et al. [7].  

3.3. Ecosystem Disturbance Events 

In this section, we describe algorithms implemented for 
mapping global land cover change and wildfires based on 
satellite observations from MODIS data by Mithal et al. 
[36]. The new forest cover change algorithms were un- 
supervised in nature and exploit both the temporal and 
spatial structure in the MODIS data. Using independent 
wildfire perimeter data sets, we have comprehensively 
evaluated these algorithms, as well as those from alter- 
nate methods, across different forest climatic zones. The 
framework depends upon the Enhanced Vegetation Index 
(EVI) from MODIS 16-day Level 3 1 km Vegetation 
Indices (MOD13A2) products. 

The following is a brief description of the algorithms 
used in this framework for mapping of global forest 
cover change and wildfires, and subsequently linked to 
CASA forest biomass pools for carbon emission fluxes. 
In this stratified framework for mapping forest distur- 
bances, we have employed multiple, complementary 
scoring mechanisms using 1 km MODIS EVI time series 
products. The main assumption behind these algorithms 
is that in mature forests, EVI values for future time steps 
tend to be similar to previous years when accounting for 
seasonal variation. On the other hand, changes like wild- 
fires and deforestation are characterized by an abrupt 
decrease in EVI after the event. The algorithms build a 
model that is used for predicting the expected EVI values 
for the future years. Deviation of the future observations 
from the predicted value indicates a change. A measure 
that quantities the deviation of future observations from 
the model prediction is used to assign the change score.  

The change score should reflect the significance of de- 
viations with respect to the natural variation of vegeta- 
tion response for a given forest location. The VID 
(Vegetation-Independent Yearly Delta) algorithm devel- 
oped by Mithal et al. [36] addressed this requirement by 
including the standard deviation of the variability in the 
change score. It assumed that the random fluctuations in 
mean annual EVI for a particular vegetation type are 
normally distributed for a location and estimates the 
mean (µvar) and standard deviation (∂var) of the vari- 
ability score distribution as the maximum likelihood es- 
timates for the distribution.  

The new VID score was computed as Equation (3): 

 Yearly Delta score var var           (3) 

Mithal et al. [36] examined the performance of the 
new VID forest disturbance algorithm in several regions 
around the world, including the states of California (US) 
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and the Yukon (Canada). Results demonstrated high ac- 
curacy levels for all major wildfires mapped from aerial 
surveys in these diverse forest regions. Mithal et al. [36] 
quantitatively showed that the VID forest change algo- 
rithms perform better than the well-known MODIS 
burned area (BA) framework [37] in the state of Califor- 
nia (US) and were comparable in results to the BA 
framework for wildfire disturbances in the Yukon (Can- 
ada).   

4. Results 

4.1. CASA Validation with Tower Flux  
Measurements 

Flux estimates from eddy-correlation analysis were ob- 
tained from AmeriFlux tower flux sites that could meet 
certain criteria for CASA model comparisons. First, at 
least three complete years of site flux measurements 
were required to evaluate model predictions of interan- 
nual variations in CASA NEP fluxes. Second, winter 
(and/or dormant/dry) season NEP fluxes were required 
from a site to evaluate model predictions of soil CO2 
emissions on a year-round basis. Third, tower sites were 
required to be representative of the predominant vegeta- 
tion class setting in the global land cover data used as 
input to the CASA model.  

For sites meeting all of these criteria, AmeriFlux data 
sets were obtained from the central data repository lo- 
cated at the Carbon Dioxide Information Analysis Center 
(CDIAC; public.ornl.gov/ameriflux/dataproducts.shtml). 
Level 4 AmeriFlux records contained gap-filled and µstar 
filtered records, complete with calculated gross produc- 
tivity and total ecosystem respiration terms on varying 
time intervals including hourly, daily, weekly, and mon- 
thly with flags for the quality of the original and gap- 
filled data.   

CASA monthly NEP predictions from the MOD13C2 
EVI data values closest to the tower location were com- 
pared to AmeriFlux eddy-correlation monthly estimates 
of the corresponding NEP fluxes. We note that the 
monthly MODIS EVI values in practically every grid cell 
of the global CASA model will be influenced by periodic 
land cover disturbances and (some naturally occurring) 
areas of sparse vegetation cover, including development, 
roads, water bodies. It was expected, therefore, that CASA 
model NEP flux predictions would be systematically 
lower than tower measurements of these carbon fluxes, 
since tower footprints tend to be far less affected by 
wildfire and other disturbances (such as logging and for- 
est thinning), compared for instance to the surrounding 
MODIS grid cell area in which they are located. 

A total of four AmeriFlux tower sites, together report- 
ing 196 monthly measurements, were found to meet the 
criteria cited above for comparison to CASA model NEP 

predictions (Figure 2). CASA model predictions closely 
followed the seasonal timing of AmeriFlux tower mea- 
surements at each site. The linear regression correlation 
coefficient between CASA NEP predictions and tower 
fluxes was estimated at R2 = 0.41 (p < 0.05) for all sites 
combined.  Most of the unexplained variance in this 
model-to-tower flux comparison resulted from the Blo- 
dgett evergreen needle-leaf forest tower site, which 
showed a sudden shift upwards in NEP (greatly enhanced 
ecosystem carbon sink) after 2001 in the AmeriFlux data 
sets, presumably due to stand thinning in 2000 [38]. We 
note that Tang et al. [39] reported a similar correlation 
value (R2 = 0.45) in model-to-tower NEP flux compare- 
sons at the Blodgett forest location, compared to higher 
correlations (all with R2 > 0.50) at seven other AmeriFlux 
forest sites, which implied that small-scale forest man- 
agement at the Blodgett site is an unaccounted source of 
uncertainty in our model flux comparisons. 

4.2. Global Net Primary Production 

As previously reported by Potter et al. [13], predicted 
terrestrial NPP for the globe in 2009 was 50.1 Pg C, a 
total carbon flux in the middle of the range of previous 
vegetation NPP predictions of between 44 to 66 Pg C per 
year for the period 1982-1998 [40,41]. We estimate that 
global terrestrial NPP increased by +0.14 Pg C over the 
time period of 2000 to 2009, due almost entirely to a 
strong upward trend in the Northern Hemisphere (Figure 
3). Annual NPP was predicted to have increased between 
the years 2000 and 2007 in the regions of high-latitude 
(>50˚N) North America and Eurasia, and also in South 
Asia, West and Central Africa, and the western Amazon. 
This upward trend in high-latitude NPP was controlled 
by a combination of rapidly warming temperatures from 
2004 to 2005 and by elevated MODIS EVI patterns, 
which in turn were closely correlated with precipitation 
amounts [13]. Periodic declines in regional NPP levels 
were predicted for the southern Untied States, the south- 
ern Amazon, western Europe, southern and eastern Af- 
rica, and Australia; the timing of negative NPP anomalies 
in each of these regions was associated with severe 
droughts and, in some cases, extreme heat waves [42].  

4.3. Global Net Ecosystem Production 

Subtracting monthly Rh fluxes from monthly NPP fluxes 
yields NEP flux estimates. Predicted global NEP fluxes 
from 2000 through 2005 showed a roughly balanced ter- 
restrial biosphere carbon cycle, with variations less than 
±0.5 Pg C yr−1 (Figure 4). Nonetheless, beginning in 
2006, global NEP fluxes became increasingly imbal- 
anced, starting from −0.9 Pg C yr−1 to the largest nega- 
tive (net terrestrial source) flux of −2.2 Pg C yr−1 in 2009. 
Notable surface temperature warming from 2000-2005    
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Figure 2. Comparison of CASA monthly NEP to Ameriflux measurements derived from eddy-correlation estimates of the 
corresponding monthly fluxes. (a) Tonzi savanna grassland; (b) Howland mixed forest; (c) Blodgett evergreen needle-leaf 
forest; (d) Tapajos evergreen broad-leaf forest.  
 

 

 

Figure 4. Interannual variations from 2000 through 2009 in 
anomalies of annual total NEP for the CASA model for the 
Northern Hemisphere (NH-green circles) and the Southern 
Hemisphere (SH-red circles). Units are Pg C yr−1 (1 Pg = 
1015 g), with positive values indicating net ecosystem sink 
fluxes and negative values indicating net ecosystem source 
fluxes. 

Figure 3. Spatial pattern of terrestrial NPP linear trends 
from 2000 through 2009. 
 
was significantly associated with positive NEP (net sink) 
fluxes in high northern latitude tundra, grasslands, and 
boreal forest areas, whereas from 2005-2009, major 
drought events were associated with negative NEP (net 
source fluxes) in tropical evergreen forests, temperate 
deciduous forests, croplands, grasslands, and savannas 
worldwide (Figure 5).  

 
zones of eastern Canada and Eurasia (World Meteoro- 
logical Organization, [42]) corresponded to positive NEP 
(net sink fluxes) from the CASA model. Extreme heat 
waves were reported across Central Asia, the United 
States, and China from 2000 to 2002. In 2003, much of  Above average temperatures across the high latitude  
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Figure 5. Global predicted NEP fluxes from (a) 2003 (high-
est total ecosystem sink flux) and (b) 2009 (highest total 
ecosystem source flux). Units are g C m−2 yr−1 gridded at 0.5 
deg spatial resolution. 
 
Europe, Canada, Russia, and China experienced summer 
periods of warming temperatures. From 2004 to 2008, 
parts of Pakistan, Australia, the United States, Canada, 
and Europe continued to experience extreme heat waves. 
On the other hand, extreme cold winter temperatures 
were reported repeatedly in Russia, India, and China over 
the period 2000 to 2008. Large parts of Europe experi- 
enced unusually cold temperatures in the summer of 
2001, as did Australia and South Africa in 2007.  

There were many instances of severe drought across 
the globe during the period of 2000 to 2008, mainly af- 
fecting regions of the central North America, Africa, 
Brazil, and China (World Meteorological Organization, 
[42]). Beginning with major droughts in Brazil, the Horn 
of Africa, the Middle East, Central and South Asia, and 
China in 2000 and 2001, these events were followed by 
most of North America, southern Africa, and Australia 
experiencing record low precipitation amounts in 2002, 
2003, and 2004. Large areas of Europe, southern Africa, 
Brazil, and Paraguay were affected by severe droughts in 
2005. From 2006 though 2008, much of the United States, 
eastern and southern Africa, China, and Australia ex- 
perienced continued deficits of precipitation. Strongly 
negative NEP fluxes were predicted to be associated with 
droughts reported in South Asia, eastern Africa, northern 
China, and northern and eastern coastal South America. 
Strongly positive NEP fluxes predicted by the CASA 
model were associated with periodically heavy rainfall 

amounts in Eastern Europe, Siberia, Australia, West Af- 
rica, and southern Africa.  

4.4. Ecosystem Disturbance Emissions 

Comparison of areas of disturbed forest land between 
CASA model inputs and national reports from the Food 
and Agriculture Organization [43] of the United Nations 
showed a close match among the 30 leading counties in 
terms of hectares of forest converted (Table 1). Six of 
the top ten counties ranked by the FAO in terms of an- 
nual forest conversion rates (2005-2009) were also among 
the top ten counties mapped for forest lands converted in 
our CASA model inputs from 2005-2009 MODIS data. 
The notable exceptions in the global comparison shown 
in Table 1 were that of India and Papua New Guinea 
(FAO ranks 3 and 6, respectively). These two Asian 
countries were still ranked among the 30 leading counties 
for forest area converted in CASA model inputs. Ac- 
cording to the FAO [43], India recorded over 25 million 
hectares of forests as being affected by grazing by do- 
mestic animals, a cover change that involves the type of 
gradual forest degradation processes that are difficult to 
detect by satellite remote sensing from MODIS. 

CASA model predictions of CO2 emissions from forest 
disturbance and biomass burning (Figure 6) were highest 
on a unit area (g C m−2 yr−1) basis in the region of South- 
east Asia (specifically in the countries of Myanmar, Ma- 
laysia, Cambodia, Vietnam, and Indonesia). Although the 
CO2 emissions on a unit area basis from forest distur- 
bance in the United States and Brazil were estimated at 
less than half of those estimated from Southeast Asian 
countries (Table 2), the total areas of forest disturbed 
annually gave the United States and Brazil the highest 
national totals of carbon lost from biomass burning in 
2009. Forested regions of the Pacific Northwest, the 
southeastern US and Gulf Coast, and the Amazon rain-
forest were consequently major contributors to global 
biomass emissions to the atmosphere (Figure 6).   
 

 

Figure 6. Global predicted biomass burning fluxes of CO2 
in 2009. Units are g C m−2 yr−1 gridded at 0.5 degree spatial 
resolution. 
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Table 1. Comparison of area forest disturbed between 
CASA model inputs and FAO reported statistics by country 
from 2005-2010 (FAO, 2010). 

CASA 
Rank 

Country Name 

CASA  
Disturbed  

Forest Area in 
2009 (1000 

ha·yr−1) 

FAO Disturbed
Forest Area 

(1000 ha·yr−1)
FAO Rank

1 United States 1544 2169 2 

2 Canada 1075 1230 4 

3 Brazil 951 2336 1 

4 Argentina 808 305 7 

5 Russia 749 991 5 

6 Myanmar 708 218 10 

7 Indonesia 601 103 12 

8 Australia 429 39 15 

9 Malaysia 276 NA NA 

10 Paraguay 239 NA NA 

11 Bolivia 170 NA NA 

12 China 158 221 9 

13 Madagascar 149 20 18 

14 Chile 147 16 19 

15 Mongolia 120 280 8 

16 New Zealand 119 NA NA 

17 Vietnam 110 NA NA 

18 Cambodia 105 27 16 

19 South Africa 94 NA NA 

20 Mexico 89 44 14 

21 India 71 1605 3 

22 Laos 57 NA NA 

23 Peru 46 177 11 

24 Venezuela 41 NA NA 

25 Colombia 33 14 20 

26 France 27 25 17 

27 Spain 26 55 13 

28 Papua New Guinea 21 427 6 

29 Sudan 20 11 21 

30 Bangladesh 19 NA NA 

Table 2. Countries ranked in terms of carbon emissions 
from forest disturbance and biomass burning from the 
CASA model in 2009. 

Rank Country Name 
Country  

Area (km2) 

CO2  
Emissions 

(tons  
C km−2 yr−1) 

CO2  
Emissions
Sum (tons 

C yr−1) 

1 United States 9,470,940 5.7 53,728,900

2 Brazil 8,523,630 5.6 47,796,000

3 Myanmar 670,372 53.4 35,767,700

4 Indonesia 1,890,750 16.8 31,747,500

5 Argentina 2,787,440 9.8 27,345,200

6 Canada 9,923,650 2.7 26,385,500

7 Russia 16,949,100 1.2 20,945,500

8 Malaysia 330,691 45.2 14,942,200

9 Paraguay 400,654 32.0 12,802,900

10 Bolivia 1,092,700 9.1 9,976,240

11 Australia 7,718,920 1.2 9,131,120

12 China 9,424,690 0.6 5,855,640

13 Chile 745,811 7.3 5,478,410

14 Madagascar 596,099 9.0 5,337,460

15 New Zealand 268,943 17.5 4,705,580

16 Cambodia 182,847 24.5 4,475,080

17 Mexico 1,965,660 2.2 4,318,380

18 Vietnam 326,086 12.5 4,092,000

19 South Africa 1,224,590 3.0 3,682,200

20 Mongolia 1,562,320 2.1 3,204,080

21 India 3,166,800 0.9 2,892,880

22 Laos 231,121 12.0 2,763,800

23 Peru 1,299,030 2.0 2,639,680

24 Venezuela 916,784 2.1 1,952,460

25 Colombia 1,142,720 1.5 1,734,090

26 France 547,871 2.1 1,132,640

27 Papua New Guinea 465,616 2.4 1,116,740

28 Thailand 515,247 1.7 869,799 

29 Congo, DRC 2,342,040 0.4 867,590 

30 Spain 506,789 1.4 708,590 
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The global sum of CO2 emissions from forest distur- 
bance and biomass burning for 2009 alone was predicted 
at 0.51 Pg C yr−1. Decomposition emissions of residual 
(dead) forest biomass in the CASA model from three 
years (2007 to 2009) of deforestation globally added 0.15 
Pg C yr−1 to the atmosphere. 

5. Discussion 

A recent study by Zhao and Running [19] reported a de- 
creasing trend in global terrestrial NPP from 2000 to 
2009, using MODIS satellite inputs and the same NCEP 
reanalysis data set as in the CASA model for climate 
inputs. On a regional basis, our CASA model results dif- 
fered from Zhao and Running [19] which reported that 
NPP in the tropical zones (23.5˚S to 23.5˚N) explained 
93% of variations in the global NPP. In contrast, we 
found that NPP in the tropical zones explained only 50% - 
60% of variations in the global NPP, whereas NPP in the 
latitude zone between 30˚N and 60˚N could explain be-
tween 40% and 50% of variations in the global NPP [13]. 
Notwithstanding the difference in the global trend of 
NPP between CASA and the predictions from Zhao and 
Running [19] the overall patterns of interannual varia-
tions in Northern and Southern Hemisphere NPP anoma-
lies were similar between the two model results. NPP 
anomalies in the Northern Hemisphere were nega- tive 
from 2000-2003 and then became strongly positive from 
2004-2008, closely following the 0.1˚ yr−1 surface- 
warming trend in the model input data. NPP anomalies in 
the Southern Hemisphere were positive from 2000-2003 
and then turned negative between 2004-2008, with 2005 
being the most strongly negative anomaly year.  

The more complete CASA model NEP results reported 
in this paper suggest that surface temperature warming 
together with regional droughts (e.g., from 2006 to 2009) 
can drive ecosystem carbon losses to the atmosphere of 
more than 1 Pg C yr−1 in excess of long-term average 
terrestrial NEP fluxes. These predicted changes in NEP 
fluxes over a decade of model results would have made a 
larger impact on atmospheric CO2 concentrations than 
NPP trends alone, and our results highlight the impor- 
tance of including the annual variations in soil Rh de- 
composition fluxes from downed and burned plant bio- 
mass in global carbon cycle. Variations in plant produc- 
tion alone can account for less than one-third of terres- 
trial ecosystem fluxes in most years. 

The forest fire and land cover change mapping frame- 
work presented in this paper has limitations under several 
scenarios. These include situations where 1) the vegeta- 
tion rapidly recovers after a fire or if there are multiple 
fires in rapid succession; 2) the loss in vegetation green 
cover associated with land cover conversion is insignifi- 
cant, such as in crop fallow and rotation practices; 3) the 

vegetation cover has high natural variability in seasonal 
greenness, which is common in mixed woodland-grass- 
land ecosystems. Each of these scenarios poses distinct 
challenges for our current land cover change detection 
framework that are being addressed in future validation 
studies with extensive ground-truth data sets. 

Nevertheless, we have identified numerous relatively 
small-scale patterns throughout the world where terres- 
trial carbon fluxes may vary between net annual sources 
and sinks from one year to the next. We conclude that 
accurately monitoring of NEP for these areas of high 
interannual variability will require further validation of 
carbon model estimates, with a focus on both flux algo- 
rithm mechanisms and potential scaling errors to the re- 
gional level. 
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