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ABSTRACT 

There are localized deep-seafloor habitats where there is a much greater input of nutrients than 

most of the seafloor.  These include hydrothermal vents, cold seeps, and sunken whale skeletons 

called whale-falls.  Meiofauna, a taxonomically diverse group of microscopic invertebrates and 

single-celled eukaryotes, have been studied in many habitats, though there have been no 

published studies on meiofauna at whale-falls.  The purpose of this study was to test whether the 

increased energy resources at a whale-fall affected the meiofauna community.  To test this 

hypothesis, I characterized the community of meiofauna living under and around whale-fall at 

three locations in the Monterey Bay, in terms of biomass (µg carbon per cm2) and diversity.  

Nematodes were the most abundant organism, although annelids accounted for the greatest share 

of biomass in some samples due to their larger body size.  More meiofaunal organisms were 

found near the carcass than far from it and the greatest meiofaunal biomass occurred three to 

seven meters from the carcass.  The greater biomass nearer the bones was probably due to 

nutrient enrichment from the whale.  The lesser numbers under the carcass compared with 3 – 7 

m away may be due to toxic chemical gradients in the sediment around the bones, grazing by 

larger organisms living near the bones, or competitive dominance.  These findings are a 

necessary first step towards a thorough understanding of how the meiofauna at whale-falls differ 

from meiofauna communities in other habitats. 

 



-v- 

ACKNOWLEDGEMENTS 

I would like to thank my advisor, James Harvey, and my committee members Robert 

Vrijenhoek and Kenneth Coale for their unwavering help and support throughout this project.  

Although they are all very busy, they always took the time to help me plan my methods, interpret 

my results, improve my writing and give me moral support. 

Thank you Kurt Buck for all the help you gave me with lab methods and interpreting my 

data.  Thank you Shannon Johnson for giving me the idea for this thesis in the first place and for 

help and support throughout the process.  Thank you Sara Tanner and Ivano Aiello for help with 

the SEM and Ivano for help with the sediment analysis and the map.  Thank you Jonathan Geller 

and Mike Graham for help with the proposal and planning my sampling design. Thank you Mary 

McGann and Jeff Baguley for help with identifying the forams and invertebrates respectively. 

Thank you Julio Harvey for help with the PRIMER software.  I would also like to thank the 

faculty, staff, and students of Moss Landing Marine Laboratories and the Monterey Bay 

Aquarium Research Institute. 

I would like to thank my funding sources: the Molecular Ecology Lab and Benthic 

Ecology Lab at MBARI for collecting the sediment cores (which was by far the most expensive 

part) and providing lab supplies and equipment, and the Friends of MLML 2013 James 

Nybakken Scholarship and the David and Lucile Packard Foundation for monetary grants. 



-vi- 

TABLE OF CONTENTS 

PAGE 

ABSTRACT……………………………………………………………………...………………iv 

ACKNOWLEDGMENTS………………………………………………………………………...v 

TABLE OF CONTENTS…………………………………………………………………………vi 

LIST OF TABLES……………………………………………………………………………….vii 

LIST OF FIGURES……………………………………………………………………………..viii 

INTRODUCTION………………………………………………………………………………...1 

Nutrient enriched seafloor habitats………….…………………..…………………………….1 

Meiofauna………………………………………………………………………………….....3 

METHODS………………………………………………………………………………………..8 

RESULTS………………………………………..………………………………………………11 

Biomass..……………………………………………………………………………………..11 

Diversity……………………………………………………………………………………...13 

DISCUSSION……………………………………………………………………………………15 

CONCLUSION…………………………………………………………………………………..21 

LITERATURE CITED…………………………………………………………………………..23 

TABLES…………………………………………………………………………………………30 

FIGURES………………………………………………………………………………………...32 



-vii- 

LIST OF TABLES 

PAGE 

Table 1: Characteristics of sites, and samples collected................................................................30 

Table 2: Counts of individuals per sediment area..........................................................................31 



-viii- 

LIST OF FIGURES 

PAGE 

Figure 1: Map of the three whale-fall sites sampled……………………………………………..32 

Figure 2: Photo examples of taxonomic groups used for diversity calculations………………...33 

Figure 3: Sediment grain size distribution…………………………………………………….…34 

Figure 4: Line graph of total meiofauna biomass versus distance from whale..………………...35 

Figure 5: Bar graphs of meiofauna biomass divided into broad categories……………………...36 

Figure 6: Line graph of Shannon-Wiener alpha diversity versus distance from whale……….....37 

Figure 7: Beta diversity shown as PCA plots for meiofauna counts and biomass………………38 

Figure 8: Line graph of Simpson’s evenness versus distance from the whale…………………..40 

 

 



-1- 

Introduction 

 Most of the seafloor has low energy input compared with habitats that rely on 

photosynthesis, but there are localized seafloor habitats where the concentration of organic 

carbon is greater, such as hydrothermal vents and cold seeps.  These habitats with greater 

biomass and biodiversity in less productive surroundings resemble oases in a desert (Laubier and 

Desbruyères 1985). Hydrothermal vents are found in most areas with tectonic activity.  Cold 

seeps occur over a wide range of depths in the ocean, where dissolved reduced chemicals such as 

methane or hydrogen sulfide are released from the Earth's crust (Paull et al. 1984).  The 

ecosystems immediately surrounding these geological structures are fueled by chemoautrophic 

bacteria that can synthesize organic carbon using the chemical energy from natural gasses.  

Hydrothermal vent fields and cold seeps persist for decades, making them a transient habitat 

(Callender et al. 1990, Coykendall et al. 2011).  Hydrothermal vent fields vary in size and can be 

tens of meters long and host a large biomass of 2 - 8.5 kg/m2 wet weight (Fustec et al. 1988).  

The biomass of cold seep communities also is greater than the surrounding environment, and the 

species composition is more variable than the hydrothermal vent systems (Juniper and Sibuet 

1987).  The concentration of nutrients in the form of dissolved organic carbon is greater in the 

immediate area around vents and cold seeps, and rapidly decreases tens of meters away (Barry et 

al. 1996). Organic carbon and biomass, therefore, are distributed in a halo around the vent and 

seep systems. 

 Whale carcasses (and later skeletons) on the seafloor, commonly called whale-falls, are 

another nutrient-enriched deep sea habitat, hosting their own specialized community.  Whale-

falls exist on a temporal scale similar to vents and cold seeps, on the order of years to decades, 

and a similar spatial scale of tens of square meters.  They also exhibit a similar distribution of 
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dissolved organic carbon in the sediment, where the percentage of carbon is greater directly 

under the bones than far from the bones, similar to the distribution found at vents and seeps 

(Goffredi et al. 2008).  These nutrient-enriched deep-sea habitats are the setting for a variety of 

intraspecies interactions.  The most striking of these is the symbiosis between invertebrates and 

bacteria (Goffredi et al. 2007), but the abundance of diverse organisms also results in trophic 

interactions that may be less likely elsewhere. For example, pycnogonid sea spiders prey on 

attached and drifting sea anemones at cold seeps, whale-falls, and sunken wood, which is another 

enriched deep-sea habitat (Braby et al. 2009).  Osedax worms attach to bones via root-like 

structures that contain their bacterial symbiotes (Vrijenhoek et al. 2009).  They break down the 

bone gradually, and this process makes it possible for Rubyspira snails to eat the resulting 

spongy bone material (Johnson et al. 2010).  Thus, organisms that inhabit whale-falls are not 

only exploiting the nutrients from the carcass directly, they also benefit from and in some cases 

depend on each other.  Macrofauna have been and continue to be well studied at whale-falls and 

other deep sea habitats, but there are no published studies of how the presence of a whale-fall 

affects the meiofauna community. 

 Smith et al. (1989) hypothesized that whale-falls may provide a stepping-stone for the 

dispersal of chemosynthetic community organisms.  Many of the macroorganisms found on 

whale-falls are related to organisms in the cold seep and hydrothermal vent communities (Smith 

et al. 1989).  For example, Riftia and Osedax belong to the same family, Siboglinidae, and both 

have symbiotic relationships with bacteria (Goffredi et al. 2007), although they are different in 

that the bacteria in Osedax digest collagen and fats (Rouse et al. 2004) and the bacteria in Riftia 

oxidize hydrogen sulfide (Cavanaugh et al. 1981).  The density of whale-fall sites on the abyssal 

plane may hypothetically be as few as one per 935 km2 although this is an average and their 
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distribution may be patchy (Jelmert and Oppen-Berntsen 1996).  This raises the question: how do 

the larvae of whale-fall community species find a whale carcass on which to settle?  Osedax 

worms can live on large bones from other organisms, such as teleost fish (Rouse et al. 2011).  

These smaller bones can provide stepping stones between distant whale-fall habitats.  Although 

Osedax are typically observed on whale bones, molecular clock data and Osedax’s ability to 

colonize other bones indicate that they existed before whales did (Vrijenhoek et al. 2009). 

There has been speculation since the 1930s that the carcasses of large marine animals 

such as whales would provide an influx of nutrients to deep benthic organisms thereby increasing 

those organisms' abundance (Krogh 1934).  Trawls later in the 20th century brought up whale 

bones with organisms such as mussels and polychaetes living on them, indicating that these 

bones provided food or habitat for a variety of organisms (Dell 1987).  It was not until the late 

20th century when technology allowed direct observation of the deep sea that this phenomenon 

was studied in detail.  Smith et al. (1989) described the community living on whale-fall after the 

fortuitous discovery of a sunken whale carcass off southern California.  MBARI scientists 

discovered a gray whale carcass on the seafloor of the Monterey Bay in 2002 and later sank four 

more carcasses at different locations and depths around the Monterey Bay (Fig. 1).  Goffredi et 

al. (2004), thereafter, described unique benthic fauna living on whale bones in the Monterey Bay, 

including the Osedax bone-eating worm, a relative of the hydrothermal vent worms Riftia.  Much 

work has been done on the macrofauna and microfauna of whale-falls but there has not yet been 

a publication on the meiofauna. 

 Mare (1942) coined the term "meiobenthos" to refer to the assemblage of small 

metazoans inhabiting the sediment beds of lakes, rivers, oceans, and other bodies of water.  

Modern-day meiofauna are a taxonomically broad group defined by their size: being able to pass 
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through a 300 – 600 μm mesh and being retained by a 31 – 44 μm mesh (Giere 2009).  They are 

mobile or haptosessile, and live on the surface of sediment or in the intersitital space among the 

sediment grains.  Some organisms are included in the meiofauna only in their larval stages, with 

the adult stage being larger and classified as macrofauna.  Meiofauna have been studied in a 

variety of habitats including estuaries, beaches, and the deep seafloor (Giere 2009).  Most 

meiofauna have a broad diet, consuming smaller meiofauna and microorganisms.  The most 

common organisms found in the deep sea meiofauna are nematodes and foraminiferans.  Other 

phyla such as arthropods and annelids are present but less numerous, although their larger bodies 

mean a relatively small number of them can have a disproportionate effect on total meiofauna 

biomass. 

 Meiofauna, being defined only by size, include representatives of most groups of large 

protists and most invertebrate phyla (Fig. 2).  Nematodes are abundant in the meiofauna of many 

habitats.  Nematodes are ecdysozoan organisms belonging to phylum Nematoda.  They represent 

about 90% of organisms (by count) living on the seafloor (Danovaro et al. 2008), and they are 

usually the most abundant taxon in the meiobenthos (Shimanaga et al. 2000).  Their size ranges 

from 0.2 – 3.0 mm long, and they prey opportunistically on a variety of smaller organisms, 

including other nematodes.  Foraminiferans, or forams, are a phylum of amoeboid protists that 

form a test of calcium carbonate or agglutinated sediment particles and are typically less than 1 

mm but can be as large as 20 cm.  Deep-sea forams use their pseudopods for locomotion and to 

capture and consume bacteria, detritus, and sometimes small animals (Sen Gupta 2002).  Ciliata 

are protistans with distinctive macro- and micro-nuclei.  Most ciliates are bacteriovores, some 

are detritivores and scavengers, and a few are predators.  Polychaete annelids are fairly common 

in the deep meiobenthos.  They can be small (< 300 μm), with only a few segments, or large 
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enough to qualify as macrofauna (> 1 mm).  Kinorynchia is a phylum of marine 

pseudocoelomate invertebrates with eleven segments.  They have no limbs or cilia; they 

locomote using the spines on the head and body.  Gastrotricha is another ecdysozoan phylum 

found in the meiobenthos, named for their cilia that look like hairs.  They are small, 60 μm to 

100 μm, and they consume bacteria and protozoans.  Crustacean arthropods, in particular 

copepods and ostracods, are common in the deep meiobenthos.  Harpacticoids are the most 

common copepods in the meiofauna.  Harpactacoids’ tapered bodies range in length from 0.2 

mm to 2.5 mm, and they can be identified by the size and shape of their bodies and limbs.  

Meiofaunal harpactacoids can feed on detritus or more selectively on bacteria, protozoans, or 

diatoms.  Crustaceans' nauplius larvae also are found in the meiofauna.  Ostracods have short 

bodies with few segments and their rounded, hinged carapace resembles a bivalve shell.  Like the 

foraminiferans, ostracods are identified by their carapace shape, although convergent evolution 

of similar carapaces in distantly related organisms makes their identification more difficult.  

Ostracod species include scavengers, microphages, and herbivores, and they are preyed on by 

mites and worms.  These are the most common taxa in the meiofauna in general but their density 

and diversity vary depending on habitat characteristics. 

Depth is an important factor influencing the composition of the meiofauna community in 

a given habitat.  In the Gulf of Guinea, density of meiofauna gradually decreases with increasing 

depth, and varies from about 800 to 1,800 individuals per 10 cm2 at 1,200 m depth to about 0 to 

1,000 individuals per 10 cm2 at 3,000 to 4,000 m depth (Van Gaever et al., 2009a).  The effects 

of nutrient enrichment also vary at different depths and locations.  Meiofauna abundance was 

greater at a nearshore hydrocarbon seep 18 m deep near Santa Barbara than in the surrounding 

area (Montagna et al. 1989), a sulfide seep at 906 m depth in Monterey Bay (Buck and Barry 
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1998), and at 2,150 m depth in the Gulf of Mexico (Robinson et al., 2004).  There was no 

difference, however, at a cold seep and the surrounding area off Japan at 1,170 m depth 

(Shirayama and Ohta 1990), and meiofauna density was actually less at a shallow methane seep 

in the North Sea at 150 m depth (Dando et al. 1991).  Van Gaever et al. (2009b) compared the 

metazoan meiofauna at two locations near Norway, a pockmark cold seep at 740 m depth and a 

mud volcano at 1,280 m depth.  Nematodes were the most abundant meiofauna in both 

Norwegian locations, followed by copepods.  Varied meiofauna densities were found at the seep 

and control sites in both locations, although the pattern of greater density at the seep than non-

seep was consistent. 

 In addition to depth, the age of a whale-fall site is likely to be a factor influencing 

meiofauna community composition.  Smith et al. (1989) described a succession of communities 

colonizing a whale carcass as it decomposed, although the number and duration of distinct stages 

is different at other locations from what Smith found and may depend on the oxygen 

concentration of surrounding water and the rate of decomposition (Lundsten et al. 2010).   In 

anoxic conditions at a southern California site, three stages were observed and a fourth was 

predicted (Bennett et al. 1994).  The first was the mobile scavenger stage, lasting less than a 

year, when large scavengers consumed soft tissues of the carcass.  The second was the 

enrichment-opportunist stage, lasting from months to a few years, in which the carcass was 

colonized by a diverse assemblage of macrofauna that live on the bones and nutrient-enriched 

sediment.  The third stage was the sulfophilic stage, hypothesized by Smith et al. (1989) to last 

about 2 to 50 years, when the bones were colonized by chemosynthetic community organisms.  It 

is now known the bones also are colonized by bone-specialized organisms such as Osedax 

worms (Johnson et al. 2010).  The fourth and final stage, which has been predicted but not 
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observed, was the reef stage, when nutrients would be depleted and the remaining mineral 

structures from the bones would provide a hard substrate for attachment and potentially 

providing flow enhancement that would benefit suspension feeders (Smith and Baco 2003).  

These studies of succession are all based on macrofauna; as there are no published studies on 

meiofauna communities at whale-fall, it is not yet known whether they undergo similar 

ecological succession. 

 In contrast, whale-falls in the Monterey Bay, where oxygen concentration varied between 

0 mL oxygen per liter of seawater (mL/L) and 4.17 mL/L with a mean of 1.368 mL/L, the stages 

were shorter and the enrichment-opportunist stage overlapped completely with the sulfophilic 

stage, calling into question the validity of describing whale-falls over time in terms of discrete 

stages.  The oldest whale-fall in this study, at 2,893 m depth with a mean dissolved O2 of 2.0 

mL/L, was first observed in February 2002 with the skeleton intact.  The bones had completely 

disappeared by 2009, leaving behind only a dark patch on the seafloor.  Osedax worms on whale-

falls of Monterey Bay colonized and degraded the bones, accelerating the progression of stages 

(Braby et al. 2007). 

   Although the ages of the three whale-fall sites in my study were all within a five-year 

range of each other, there may have been changes in the meiofaunal community on a shorter time 

scale, that were not captured by this study.  In addition to having different ages, the carcasses 

were located at different depths, ranging from 633 m to 2,893 m depth.  Depth has an effect on 

communities at cold seeps (Levin 2005), therefore, it also was reasonable to expect depth to 

affect the meiofauna at these whale-fall sites.  Depth can affect community composition of 

macrofauna: of the four known species of Osedax, O. rubiplumus and O. frankpressi were found 

at the two deepest whale-fall sites, below the oxygen minimum zone, and O. japonicus and O. 
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mucofloris were found more recently at shallower, more oxygen-poor whale-fall sites (Braby et 

al. 2007).  Therefore, depth and age of carcass (time elapsed between discovery or deployment of 

the carcass and the collection of samples) were taken into account in this project. 

 The size of the whale carcass, which is proportional with the amount of carbon it brings 

to the seafloor, is another factor to consider.  The whales at 633 m and 2,893 m depth were gray 

whales (Escherictius robustus) approximately 10 m long, and the 1,019 m deep whale was a blue 

whale (Balenoptera musculus) approximately 17 m long.  Extrapolating from the average mass 

and carbon biomass values for whales given by Smith and Baco (2003), the gray whales 

contained approximately 1.20 x 106 g carbon each, and the blue whale approximately 2.85 x 106 

g carbon. 

 The hypotheses tested were (1) total density of organisms (in terms of biomass per 

sediment area, following the convention for reporting meiofauna biomass) would be greatest 

under the bones and decrease at greater distance from the bones, following approximately the 

same pattern as the distribution of organic carbon in the sediment and (2) there would be greater 

diversity in the meiofaunal community at an intermediate distance from the bones.  I expected a 

peak in diversity at the transition zone between the whale-fall-affected sediment and the 

surrounding "background" sediment due to the ecotone effect, and because this pattern has been 

observed specifically for meiofauna in other nutrient-enriched habitats (Boucher and Gourbault 

1990).   

Methods 

MBARI’s Molecular Ecology Lab collected comparable sets of sediment core samples 

from three of their five whale-fall sites (Fig. 1) at three different water depths (Table 1).  The 0 

m cores (0 m from the whale carcass) were taken by moving a bone aside and sampling the 
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sediment that had been directly under the bone.  Sediment cores were collected using the ROV 

Doc Ricketts in June 2011.  The corers used were polycarbonate, 7 cm in diameter and 25 cm 

long.  They are optimized to avoid sediment/water interface disturbance.  For each core, a 23.5 

mL meiofaunal subsample of the top 3 cm of sediment was preserved in gluteraldehyde for 

visual identification of the organisms. 

 Water depth was assumed to be constant among cores within each site, based on previous 

examination of sites by MBARI.  I assumed a greater number of samples at about 0 – 7 m 

distance would be necessary to characterize unique but rare species that would only occur under 

or near the whale carcass, therefore, distance from the carcass was sampled using a stratified 

method (Table 1), with proportionally more samples taken near the carcass.  This pattern of rare 

organisms only occurring on or close to the carcass has been observed in the macrofauna at 

whalefall sites (Goffredi et al. 2004, Johnson et al. 2010).  The 633 m and 1,019 m depth sites 

had intact bones when the cores were collected, but the bones at the 2,893 m depth site had 

degraded and there was only a dark patch on the seafloor to indicate where the skeleton had 

been. 

 Samples were prepared for microscopy using the procedure described by Burgess (2001), 

in which sediment is sieved then suspended in colloidal silica (Ludox) to separate by density, 

and as much sediment as possible was removed to make viewing and identifying the organisms 

easier.  The sample was passed through a 355 µm mesh before the silica procedure to remove 

any organisms too large to qualify as meiofauna and then rinsed onto a 32µm sieve to wash away 

silt and bacteria.  Three steps of centrifugation and resuspension in Ludox were performed to 

remove as much sediment as possible.  The material remaining after processing (organisms and 
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some remaining sediment) was funneled onto an 8µm filter that was placed on a glass 

microscope slide. 

 Individual organisms were identified to the most specific taxon possible, enumerated, and 

photographed using the epifluorescence microscope at MBARI.  All slides were examined at 

100x initially for counts and identification under the epifluorescence microscope using excitation 

wavelengths for DAPI (358 nm), and fluorescein (494 nm) because some of the organisms such 

as nematodes had more clearly visible outlines under the longer-wavelength light, which made 

measuring them on the photographs easier.  Some organisms such as foraminiferans have hard 

parts that could remain intact long after death, and those organisms were not analyzed; the DAPI 

stain ensured that only organisms with intact nucleic acids at the time of collection would be 

counted.  Using the method from Baguley et al. (2004) for size and biomass calculations, 

organisms were photographed at 100x or 200x depending on their size.  I used ImageJ to 

measure the organisms and the biomass conversion factors from Nozais et al. (2004), Hillebrand 

et al. (1999), and Menden-Deuer and Lessard (2000) to estimate their biomass from the 

photographs. 

 I measured the length and width of a subsample of organisms (chosen by where they 

happened to fall on the filter) from each core to save time rather than measuring every 

individual, I calculated the biomass of each organism, then took the average biomass for that 

type of organism in that core and multiplied it by the count per volume of that organism in that 

core to obtain the total biomass (µg carbon) per volume (mL) for each type of organism in each 

core.  I converted biomass per volume to biomass per cm2 of 3 cm sediment depth as this is the 

standard way of reporting meiofauna biomass.  I assigned organisms to nineteen broad 

taxonomic categories, based on their typical abundance in the meiofauna (such as nematodes) 
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and my ability to correctly identify them.  These categories were: Amphipoda, Isopoda, 

Copepoda, Cumacea, Tanaidacia, nauplius larva, other Arthropoda, Gastrotrichia, 

Gnathostomulida, Kinoryncha, Nematoda, Nemertea, Oligochaeteae, Polychaeteae, Priapulidae, 

Turbellaria, other invertebrate, Foraminifera, and other Protista (Fig. 2).   

 Sediment characteristics, especially grain size, influence the composition of meiofaunal 

communities (Giere 2009) therefore, it was necessary to analyze them, to ensure they are not a 

confounding factor.  I took an approximately 1 mL subsample from randomly selected cores at 

three distances from each whale (0 m, 3 – 7 m, and greater than 7 m) and obtained a distribution 

of grain sizes for each core using the laser particle size analyzer at MLML.  I calculated the 

percent of grains in each size category rather than using the count, so that comparisons could be 

made among the cores although the volumes of subsamples may not have been equal.  I assumed 

cores at the same site and the same distance would have the same particle size distributions as 

other cores at that site and distance.  

Results 

 No significant difference was found in particle sizes among sites or among cores within 

sites (Fig. 3).  This supports the assumption that differences in meiofauna were affected by 

presence of the whale, or other factors such as depth and oxygen, and not by sediment 

characteristics. 

Total meiofauna biomass was greatest at an intermediate distance from the carcass at two 

of the three sites.  The meiofauna biomass density for the two shallower sites had a general 

negative trend with greater distance from the carcass, with a maximum at 3 – 7 m distance; the 

relationship between biomass and distance from the carcass at the deepest site was weaker and 

had the greatest value at the 0 m distance (Fig. 4).  Biomass was greatest 3 – 7 m from the bones 
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at the two newer, shallower sites.  The strength of the relationship between biomass and distance 

from whale carcass correlated well with age and depth of the carcass, with the 633-m site having 

the greatest difference between its least and greatest biomass values.  The 2,893-m site had only 

a weak, positive relationship between meiofauna biomass and proximity to the carcass.  At the 

two shallower, newer sites, the meiofauna biomass was less in samples near the carcass than at 

an intermediate distance, which is counterintuitive if one subscribes to the halo-like distribution 

of biomass in response to local enrichment.  It appears that another factor caused the biomass to 

be less at 0 – 3 m distance than it would be otherwise.  The 2,893-m site did not have this 0 – 3 

m biomass suppression.  The biomass versus distance relationship for the 1,019-m site was 

intermediate between the other two sites, meaning depth and age of the carcass may have had an 

effect on the distribution of meiofauna biomass. 

 Nematodes and forams were the most numerous meiofauna in all cores, but annelids were 

the largest group in terms of biomass in most of the cores from the 633-m site due to their large 

bodies, and other protists (besides forams) accounted for a small share of total biomass due in 

part to their smaller size (Fig. 5).  At the 633-m site, biomass of all taxa at 0 m was minimal 

compared with further distances.  More annelid biomass was found at 3 – 7 m distance than at 

the 0-m or >7-m distances.  There was little crustacean biomass at < 7 m.  No clear trends among 

sites existed for biomasses of nematodes or forams but fewer annelids and more arthropods 

occurred at the 1,019-m site than the 633-m site.  The biomass of nematodes at 1,019 m was 

similar in the 3 – 18-m cores and minimal in the 0-m cores.  Foram biomass did not follow the 

general trend of lesser biomass at 0 m distances. 

 The distribution of meiofauna at the 2,893-m site was more similar to the 1,019-m site 

than the 633 m site.  Total meiofauna biomass at all distances from the carcass at 2,893-m was 
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less than the other two sites.  The 2,893-m site had the weakest relationship between distance 

from the carcass and biomass.  Whereas the 1,019-m and 633-m sites had a large difference 

between the 0-m and 3-m samples, there was only a small difference between the biomasses at 0 

m and 3 m at the 2,893-m site, although meiofauna biomass was greatest at 3 m from the carcass, 

which is consistent with the other two sites.  This was largely driven by nematodes, crustaceans, 

and other arthropods.  Crustaceans in particular were more abundant in the 0 – 3 m distance 

cores at the 2,893-m site in comparison with the other sites.  The biomass of forams  versus 

distance had no consistent trend among sites. 

 To quantify diversity, I made a table of the count per sediment area for each distance at 

each site (Table 2).  “Diversity” is a broad concept and can be analyzed using many different 

methods (Whittaker 1972, Legendre 2005).  I have chosen to examine alpha diversity, beta 

diversity, and evenness to get a reasonably comprehensive view of how distance from the carcass 

affected different aspects of meiofauna diversity, at least at a broad taxonomic level. 

Alpha diversity is the variance in how many and which species of organisms are present 

within a site and beta diversity is this variance or species turnover along a habitat gradient or 

among sites (Whittaker 1972).  I used the Shannon-Weiner index for alpha diversity because it 

does not give too much weight to dominant species as does Simpson's index (Whittaker 1972).  I 

calculated the Shannon-Weiner Diversity Function using the formula from Krebs (1999):  

H' = ∑(pi log2 pi) where pi = percent number of each taxonomic group for each distance within 

each site (Fig. 6).  The relationship between distance from the carcass and diversity was similar 

to the relationship with biomass: lesser values at 0 m distance and greater values at 3 m.  Unlike 

biomass, the strength of the relationship was about the same at all three sites, and was weak.  The 

relationships between diversity and distance were similar among all three sites, unlike biomass.  
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This makes sense given the taxonomic categories I was able to identify were broad, and most 

meiofauna habitats could be expected to have representatives of most of these broad groups.  I 

may have found differences in diversity among the sites if I had been able to identify the 

organisms at the genus or species level. 

 I performed principal components analysis (PCA) using the PRIMER software 

application to determine beta diversity.  I chose PCA over other multivariate analyses because it 

clearly and easily displays the contributions that each group made to the differences among the 

samples.  I made plots based on square root transformed biomass (Fig. 7a) and square root 

transformed counts (abundance) (Fig. 7b).  The data were transformed by square root to prevent 

the most abundant species from overwhelming the signal of rare species (Legendre and 

Gallagher 2001).  Neither the sites nor the distances formed distinct clusters.  The values for 3 – 

20 m distances at the 2,893-m site were the most tightly clustered group for both biomass and 

abundance, but the 0-m data point was far from the rest, mainly due to it being more dominated 

by nematodes than the others.  The clusters for the 1,019-m and 633-m sites overlapped, 

although there were some differences.  The 633-m site had greater foram abundance, especially 

for the 13-m and 18-m distances, and in terms of biomass the 1,019-m site was somewhat more 

nematode-dominated, and the sediments at 3 m, 13 m and 18 m distances from the 633-m site 

were most heavily dominated by polychaetes and oligochaetes. 

 Evenness is another characteristic of biological communities that can be quantified.  

Whereas diversity represents which taxa are present, evenness indicates the degree to which one 

or a few taxa are dominant (Whittaker 1972).  Two samples could have the same number of 

species present but one could have 90% of its organisms belong to a single species and the other 

have equal numbers from each taxon; the evenness of the first sample would be less than the 
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evenness of the second.  The greatest possible value of evenness occurs when there is an equal 

number of individuals from every taxon.  I used Simpson's Measure of Evenness from Krebs 

(1999): E = (1/D)/s, where D = Simpson's Diversity Index (D = ∑pi
2) and s = the total number of 

taxa in the sample (Fig. 8).  As with alpha diversity, there was not a clear difference among the 

sites or a strong trend versus distance.  The 633-m site had the greatest variation in evenness.  

The 1,019-m and 2,893-m sites had a general trend of increasing evenness with increasing 

distance from the carcass. 

 Some taxa were present at every site and most distances and others were only found in a 

few of the sediment cores (Table 2). Nematodes, forams, and other protists were present in every 

sediment core, and annelids were present in most.  Some taxa were not found at every site or 

every distance: there were no tanaids in the cores from the 633-m site.  Nemerteans were only 

found at 7 m distance or greater.  Tanaids were only found at distances 3 – 7.5 m and were only 

found at the 1,019-m and 2,893-m sites.  The probability of finding large-bodied, less ubiquitous 

organisms in a given sediment core is less than that of finding a more common organism, such as 

nematodes, therefore it was more problematic to get a reasonable estimate of their total biomass 

and abundance.  If it had been feasible to sample a greater volume of sediment and to identify all 

of the organisms to a finer taxonomic level, I may have been able to estimate diversity more 

accurately and a clearer pattern may have emerged. 

Discussion 

Nutrient enriched marine habitats often exhibit greater biomass and diversity overall than 

non-enriched sites, with lesser biomass and diversity at the center of the site (under the bone or at 

the fissure leaking gas) and greater diversity a few meters from the center of the site (Montagna 

et al. 1989; Buck and Barry 1998; Van Gaever et al. 2009a).  One possible reason for the reduced 
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diversity is a few taxa may colonize a whale-fall early and establish competitive dominance, then 

competition may decrease the diversity of organisms under and near the carcass although the 

total abundance of organisms could be great.  In addition to the effect of competition, it is 

possible that chemicals that are at greater concentration under the carcass may be harmful to 

meiofaunal organisms.  Whale-falls, like cold seeps, have greater concentrations of sulfide than 

the surrounding sediment and are inhabited by mats of bacteria, such as the Beggiatoaceae, that 

require hydrogen sulfide (Bernhard et al. 2004).  Sulfide is toxic to most eukaryotes and an 

environment with a high sulfide concentration is expected have less meiofauna diversity because 

only the organisms adapted to tolerate sulfide would survive.  Pesticides are another potential 

factor and may be found at whale-falls, but not seeps or vents.  Pesticides bioaccumulate in large 

mammals such as whales (O’Shea and Tanabe, 2003) and these pesticides might be found at 

greater concentration near the carcass, whereas at a short distance from the carcass there would 

still be some nutrient enrichment but a lesser concentration of toxins such as organochlorines.  

Different species of meiofauna likely have varying resistance to pesticides and if this is the case 

it would further decrease diversity near the carcass.  I did not obtain data on organochloride or 

other pesticide concentrations in the sediment, so the effect of pesticide on whale-fall meiofauna 

remains open to speculation. 

 Some organisms survive in a sulfide-rich environment despite its toxicity.  One possible 

mechanism for this survival is bacterial symbiotes that oxidize sulfide and mitigate the harm to 

their host.  Nematodes are the dominant group in meiofauna communities in many habitats 

(Montagna et al., 1989; Buck and Barry, 1998; Robinson et al., 2004; Van Gaever et al., 2009a) 

and they also were numerically the most abundant group in most of my samples.  Some 

nematodes have thiophilic, sulfide-oxidizing bacteria as ecto- or endosymbionts (Nussbaumer et 
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al. 2004, Musat et al. 2007).  I did not investigate whether the nematodes in my samples had 

these symbiotes but if those in the 0-m cores did, where sulfide concentration is expected to be 

greatest, that would explain why the nematodes were able to survive in that sediment where most 

meiofauna did not. 

I did not collect data on the habitat characteristics that caused the differences in the 

meiofauna communities along the distance gradient and among the three sites, apart from the age 

and depth of each site, but others have collected data that are useful, particularly Goffredi et al. 

2008 and Treude et al. 2009, whose figures I will refer to below.  Nutrient enrichment is likely to 

be a major factor, supporting the greater meiofauna biomass I found 3 – 7 m from the carcass 

(although this alone does not explain why biomass was less at 0 m).  Enrichment is greatest at 0 

m from a whale carcass (Goffredi et al. 2008: Fig. 3) and declines roughly linearly with distance 

from the carcass, therefore, something may be suppressing the organisms immediately under the 

bones or driving the abundance and biomass greater at intermediate distances, or both.  Bacteria 

are prey for many meiofauna, so their distribution around the whale likely had an effect on 

meiofauna distribution.  Goffredi and Orphan (2010) reported bacteria, as measured by protease 

activity, at the 2,893-m site were most abundant under the whale and steadily decreased with 

increasing distance from the whale.  They also showed that bacteria at 0 m distance were less 

diverse although there were more of them (greater abundance).  Particulate organic carbon 

(POC) is another indicator of overall food availability for meiofauna.  Goffredi et al. (2008) 

reported POC, similar to the pattern of bacteria activity, was greatest at 0 m distance and 

decreased linearly.  This linear decrease the food for many meiofauna would explain the pattern 

from 3 m and further, but food limitation does not explain the lesser biomass at 0 m as there is 

plenty of food at 0 m distance. 
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 Chemical gradients in the sediment under a whale carcass, such as sulfide and low pH, 

limit meiofauna’s ability to live directly under the carcass but do not spread as far as the halo of 

nutrients.  Treude et al. (2009) reported gradients of several chemicals that may affect meiofauna 

abundance, at a whale-fall at 1,675 m depth in the Santa Cruz basin.  pH changes with depth of 

sediment over a range of 7.4 to 7.6 within the top 3 cm; pH is greater at the sediment surface and 

decreases to a minimum of 7.4 to 7.5 at 3 cm depth (Treude et al. 2009: Fig. 3).  There is not a 

clear trend in pH with distance from the whale but the lowest pH of 7.4 was found at 0 m 

distance.  Oxygen concentration decreases to almost zero within the top 3 cm of sediment and 

the decrease is sharper near the whale and more gradual far from the whale (Treude et al. 2009: 

Fig. 3).  Sulfide accumulates around the whale carcass as a result of increased bacteria 

metabolism in the sediment and suppresses the growth of meiofauna (Fenchel & Reidell 1970, 

Powell et al. 1980).  Treude et al. (2009) reported the amount of sulfate reduction, and 

concentrations of methane, sulfate, and sulfide, the percent dry weight of sulfur, nitrogen, and 

total organic carbon, and acridine orange direct counts, a measure of bacteria abundance; all of 

these are shown in Treude et al. 2009: Fig. 4.  Sulfate reduction was greatest under a carcass, and 

sharply decreased about 1 m away.  Methane was greatest under a carcass and less at distances of 

1 – 9 m.  Sulfate was similar at all distances.  Sulfide was greater at 0 m than 1 m, but there were 

no data for further distances.  Sulfur was greatest under the carcass then decreased.  Nitrogen 

was greatest 0 – 0.5 m then decreased but the difference was small, 0.5 to 1.1% dry weight.  

Total organic carbon was greatest for 0 – 0.5 m distance then decreased, which was the same 

pattern as Goffredi et al.'s (2008) results for particulate organic carbon.  Acridine orange direct 

count was greatest at 0 to 1 m distance (there are no data for 0.5 m) then decreased.  The lesser 

meiofauna biomass in the 0-m cores is similar to the pattern observed at cold seeps, where 
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sulfide toxicity prevents most organisms from surviving at the seep but there are abundant 

organisms near the seep where the deleterious sulfide concentration is less (Buck et al. 2004, 

Buck et al. 2013.  The data from Goffredi et al. (2008) and Treude et al. (2009) support my 

assumption that the halo of carbon in the sediment is more widely spread around the carcass than 

that of sulfide, which is found at approximately 100-fold greater concentration less 0 – 0.5 m 

from the carcass than at further distances (Treude et al. 2009: Fig. 4).  Sulfide toxicity was likely 

to be the most important chemical factor decreasing meiofauna biomass under the whale carcass. 

 Predation, by larger organisms that are attracted to the food and shelter provided by the 

whale-fall habitat, is another potential suppressor of biomass near the carcass (Smith et al. 1989).  

Even in the later stages when there was no flesh remaining, the bones may provide shelter and 

attract prey organisms to the site: the bones' physical structure affects the flow of seawater and 

acts as a drift fence, concentrating objects and particles that would otherwise be swept away 

(Smith et al. 1989). 

 The effects of depth, age, and size of the carcasses also should be considered when 

examining differences among the three sites.  Oxygen concentration and depth influence which 

meiofauna species will be present (Giere 2009), and the three sites in my study span a depth 

range of 2,260 m, with the two shallower sites in the oxygen minimum zone.  Low oxygen 

conditions are favorable for anaerobic, sulfate-reducing bacteria that increase the concentration 

of hydrogen sulfide in the sediment at the center of a whale-fall or cold seep (Treude et al. 2009, 

Buck et al. 2013); this may explain why the difference between the 0-m and 3-m cores was 

greatest at the 633-m site, which was in the oxygen minimum zone and had the least 

concentration of oxygen in the seawater among the three sites (Table 1). 
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 The striking difference between the 2,893-m site and the two shallower, newer sites was 

the absence of intact large bones, which may be another important factor.  The relationship 

between biomass and distance from the carcass was weakest at this oldest and deepest site, which 

was to be expected because the bones had degraded and the site is gradually returning to the state 

it was in before the carcass was present.  Few bone pieces remained at this site but a darkly 

stained spot on the seafloor was still visible (Lundsten et al. 2010).  The relationships of biomass 

versus distance from carcass for the two shallower, newer sites were similar to each other.  The 

633-m site had the greatest maximum biomass values and the strongest effect of distance on 

biomass, though it is unknown whether that is the result of depth, age of the carcass, or another 

trait that differed among the sites but could not be teased apart.  If the trends in biomass and 

diversity are driven primarily by chemical gradients in the sediment then it is likely age of the 

carcass that would be a significant factor because the gradients would take time to accumulate 

and then diminish after the carcass has completely decayed away; time series data would be 

necessary to test that hypothesis. 

A possible confounding factor for one or more of my sites is sediment transport in the 

canyon.  The forams at the 2,898-m site included some forams that live at shallower depths, 

which demonstrated that sediment had been transported from shallower parts of the canyon into 

the site (Mary McGann, personal communication). Therefore, the results from this site may have 

been influenced by input of sediment from higher in the canyon.  Landslides in submarine 

canyons bring sediment from the canyon wall to deeper sites (Lee 2005).  This process 

introduced noise that could obscure differences among cores at that site, although the cores 

should all have been affected equally by introduced sediment.  If sediment transport happens 

often and meiofauna are buried under deeper, hypoxic sediment, this could be the cause of the 
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overall lesser meiofauna biomass at the 2,893-m site, although the age of the carcass also was 

likely a factor. 

 The sample sizes for this project were small, as is unfortunately the case for many 

projects involving deep-sea sediments, due to the expense and complexity of collecting samples 

from the deep seafloor.  Obtaining a broad overview of the meiofauna communities at whale-

falls is a necessary first step but there is still a lot of work to be done before we have a thorough 

understanding of this system.  I am confident that I have a good estimate of the abundance and 

biomass of the more common taxa, nematodes and forams, but I may not have sampled enough 

sediment to provide accurate information about the less common taxa, whose distribution may be 

so sparse that they could be present but missed unless a larger area of sediment is collected.  I 

found no cumaceans at the 2,893-m site, and I found kinorynchs only at the 633-m site.  I cannot 

tell whether these are accurate representations of the actual abundance of these taxa; it is possible 

they are present at the other sites but their abundance was so minimal that my sediment cores did 

not happen to catch one.  The value of this project was determining the effect of the whale 

carcass on total biomass.  It is less clear what effect the carcass had on diversity and more work 

needs to be done, both with more sediment cores and more specific taxonomic identification.  It 

also would be useful to examine the meiofauna at more whale-fall sites, ideally with multiple 

whales at the same depth and multiple carcasses of the same age, species and approximate size at 

different depths, in addition to measurements of chemical parameters that may confer habitat 

quality such as sulfides, pH, oxygen, and pesticides. 

Conclusion 

 Meiofauna are a substantial component of the ocean's ecosystems, and they have only 

recently been studied extensively.  Meiofauna are a critical and easily overlooked part of the 
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carbon and nitrogen cycles, and they are part of the larger food web including bacteria and 

microalgae, on which they graze, and larger organisms that prey on them.   

 The study of organisms inhabiting whale-falls highlights another aspect of whales' 

importance to the ocean ecosystem that is not widely known.  No other organism has such 

robust, oily bones that form the whale-fall habitat for most of its duration.  Whale-fall 

macrofauna may not depend on whales, for example Osedax can live on other types of bones 

(Rouse et al. 2011), but no other organism besides whales has such a large skeleton that would 

remain intact on the seafloor for as long or provide a sudden pulse of so much carbon to the 

seafloor.  In the absence of large marine vertebrate bones, whale-fall community organisms may 

not go extinct but their distribution would be affected.  The depopulation or extinction of whales 

also might impact other chemosynthetic communities, if whale-falls provide stepping stones for 

dispersal of organisms among seepage sites. It is possible there is a threshold density of whale-

falls below which they can no longer adequately serve this function.  The first publication on 

organisms living on whale-fall was in 1989, after whaling had severely depleted the numbers of 

large whales.  Collecting more data over time as whale populations recover or decline would 

make it possible to determine the effects of whale population size on whale-fall communities.  

Deep-sea chemosynthetic communities are so different from the familiar communities of 

terrestrial ecosystems that humans inhabit that they appear almost alien to us.  It is important 

both to avoid damaging these communities by human activity and to improve our understanding 

of them to better understand the diversity of life. 
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Table 1: The three sites where samples were collected for this project.   

depth location species 
carcass 
length 

implanted 
or 

discovered start date 
date 

sampled 

age of 
carcass 

(months) 

average 
seawater 

[O2] 
push cores collected and their 

distances from the carcass 
633m 36.802°N 

-121.994°W 
gray whale 
(Eschrichtius 
robustus) 

10m implanted 11 April 2007 5 June 2011 50 0.4129 2 (0m), 2 (3m), 2 (7m), 2 
(13m), 1 (18m) 

1,019m 36.772°N 
-122.083°W 

blue whale 
(Balaenoptera 
musculus) 

17m implanted 5 October 2005 2 June 2011 68 1.4532 2 (0m), 3 (3m), 2 (7.5m), 1 
(15m), 1 (18m) 

2,893m 36.613°N 
-122.434°W 

gray whale 
(Eschrichtius 
robustus) 

10m discovered 6 February 2002 3 June 2011 112 2.2381 2 (0m), 2 (3m), 2(6m), 2 
(15m), 1 (20m) 
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Table 2: Count of individual organisms per sediment area (cm2), divided into taxonomic groups.  Blank indicate no individuals of that 
group were found in the core(s) at that site and distance.  This does not necessarily mean these taxa are absent entirely from these 
locations, only that my sampling did not collect any. 
 

 distance:  0m   3m  6m 7m 7.5m 13m 15m 18m 20m 
depth: 633m 1,019m 2,893m 633m 1,019m 2,893m 2,893m 633m 1,019m 633m 1,019m 2,893m 633m 1,019m 2,893m 

amphipod 2.28   5.55     2.04   4.15   2.63   2.63 11.82   2.07 
copepod   2.63 7.35   6.57 1.44     5.25 3.94     7.88  2.07 

cumacean   1.31        4.15 2.63            
foram 276.41 290.19 111.46 154.77 157.57 181.33 205.49 133.81 209.43 472.70 66.97 236.35 301.35 100.45 184.64 

gastrotrich   3.94 2.39 0.93  1.44 1.31         7.88      
gnathostomulid         3.94   6.57            

isopod   1.31     1.76   3.11   2.63          
kinorinch     0.93                    
nauplius             1.31            

nematode 68.53 28.89 571.06 218.17 270.93 192.87 127.37 139.00 185.80 168.07 207.46 116.86 265.89 240.95 130.70 
nemertean           1.04       3.94    2.07 

oligochaete 14.85 5.25 10.45 51.28 15.76 1.44 11.82   1.31 15.76   10.50 9.85 1.97   
other arthropod    1.31   1.31 1.76 1.31   1.31 1.31 7.88 5.25   1.31   

other invertebrate    1.31                      
polychaete    7.35 35.43 20.35 13.00 4.60   3.28 9.19 1.31 15.76 13.79  7.26 

priapulid        0.72                  
protist 50.26 73.53 188.88 93.23 182.51 65.41 22.32 45.64 140.50 90.60 34.14 15.76 43.33 30.20 32.16 
tanaid       1.31 0.72     2.63            

turbellaria     4.78   1.31 1.44 1.31         1.31 0.98     
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Figure 1: Locations of the three sites sampled for this project in the Monterey canyon and Soquel canyon, labeled by their depths. 
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Figure 2: Examples of 16 of the 19 taxonomic groups the meiofauna were sorted into. (a) amphipods, (b) copepods, (c) cumaceans, 
(d) forams, (e) gastrotrichs, (f) gnathostomulids, (g) isopods, (h) kinorynchs, (i) nauplii, (j) nemerteans, (k) nematodes, (l) 
oligochaetes, (m) polychaetes, (n) priapulids, (o) tanaids, (p) turbellarians.  Not pictured are “other arthropods,” “other invertebrates,” 
and “other protists,” as they were more variable in appearance. 
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Figure 3 : Distributions of average sediment grain sizes for the three sites, labeled by their depths.  The size distributions are similar 
enough that it is reasonable to assume any difference in the meiofauna communities among the sites is not due to differences in 
sediment grain sizes. 
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Figure 4: Distribution of total meiofauna biomass (µgC) per area (cm2) of sediment versus distance (meters) from the carcass for the 
three sites, labeled by their depths.  The 633-m site is also the newest, having been on the seafloor for 50 months when it was sampled.  
The 1,019-m site was 68 months old and the 2,893-m site was at least 112 months old (the exact age is unknown because this whale 
was discovered already on the seafloor whereas the other two were implanted by MBARI). 
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Figure 5: Meiofauna community composition by biomass of broad taxonomic categories in (a) 
the 633-m site, (b) the 1,019-m site, and (c) the 2,893-m site. 
 
a. 633-m site 

 
b. 1,019-m site 

 
 
 
c. 2,893-m site 
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Figure 6: Alpha diversity (Shannon-Weiner diversity index) for the three sites, labeled by their depths. 
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Figure 7: PCA on (a) square root transformed biomass and (b) square root transformed counts of meiofauna per sediment area.  Each 
shape/color represents a different site: the 50-month/633-m depth site, the 68-month/1,019-m depth site, and the 112-month/2,893-m 
depth site.  The number labels on the points are the distances (meters) from the carcass.  The factors are the taxonomic groups (groups 
that contributed the least to either PC1 or PC2 were not labeled, for readability).  The plot for counts (b) was generated using the data 
in Table 2 and the plot for biomass was generated using the same matrix but with biomass per sediment (µg C per cm2) in place of 
counts. 
 
a. 
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Figure 8: Simpson’s evenness for the three sites labeled by their depth (meters), using the formula E = (1/D)/s, where D = Simpson's 
Diversity Index (D = ∑pi

2) and s = the total number of taxa in the sample, calculated using the data in Table 2. 
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