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depth. Half of the plates were cleared of all non-native species using a brush and a forceps to 

establish the “F. enigmaticus removal” treatment, leaving only the oysters on the plates (Fig. 

15b). On the second half of the plates, non-native species other than Ficopomatus enigmaticus 

were removed to establish the “F. enigmaticus present” treatment, using forceps, a soft brush, 

and scraper, leaving only the oysters and F. enigmaticus.  

In addition to measuring oyster morphometrics in the field, ImageJ64 photo analysis 

software was used in all of the field experiments to determine the area (cm2) of each oyster. A 

line was drawn across each plate to standardize size (10 cm), and then a number was added on 

top of each juvenile oyster in each image. The area was measured by tracing the outside of the 

shell to determine area (cm2) and recorded for that individual oyster throughout the study.  

PhotoQuad software was used to determine percent cover of F. enigmaticus from the 

photographs taken every two weeks. PhotoQuad software was used to overlay a quadrat onto the 

images taken during each sampling event. A 100-point uniform quadrat was used to sample the 

percent cover of F. enigmaticus on the plates. 
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Figure 15. Juvenile Ostrea lurida settlement plates in the field experiment A) outplanted oysters 
(March 2015) B) oysters on final sampling date (July 2015). 
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Data analysis 

A RM-ANOVA was used to examine the trajectories of changing percent cover of F. 

enigmaticus to establish that my treatments worked. Repeated Measures Analysis of Variance 

(RM-ANOVA) in JMP Pro 12 was used to examine relationships between percent cover of       

F. enigmaticus at two tidal heights over time and the growth rate of the oysters. The Greenhouse-

Geisser (G-G) adjustments of degrees of freedom were used when the assumption of within-class 

sphericity was not met.  This follows the recommendations of Von Ende (2001).  

A two-way Analysis of Variance (ANOVA) in JMP Pro 12 was used to examine the 

relationship of height, treatment and height by treatment for the presence and removal 

experiments.  

  !

RESULTS 

Effect of Ficopomatus enigmaticus on juvenile Ostrea lurida  

 Ficopomatus enigmaticus settled more quickly at -0.3 m below MLLW than at +0.3 m 

above MLLW and by the culmination of the study had covered a mean of >70% of the settlement 

plates compared to ~10% at +0.3 m MLLW (RM-ANOVA, Time: G-G ε = 0.324, F7,27 = 43.330, 

P < .0001; Fig. 16). A RM-ANOVA was used to test for time and treatment effects. The results 

indicated percent cover of F. enigmaticus increased between sampling dates and there was a 

significant difference between tidal height (Time*Treatment: G-G ε = 0.324, F 7,27 = 30.272,  

P < .0001; Fig. 16).  
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Figure 16.  Percent cover of Ficopomatus enigmaticus on juvenile Ostrea lurida settlement 
plates. Mean calculated by sampling date. Error bars +SE at two tidal heights (-0.3 m and +0.3 m 
MLLW). 
 
 
 
 At the lower tidal height of -0.3 m MLLW, juvenile O. lurida grew most quickly during 

the first few months in the field regardless of treatment. A RM-ANOVA was used to test for time 

and treatment effects. The results indicated oyster size increased between sampling dates (RM-

ANOVA, Time: GG ε = 0.772, F4,9=295.34, P=0.0003) in both treatments.  In addition, there was 

no significant difference in the size trajectories among the treatments, indicating that juvenile 

oysters grew at similar rates in the presence and absence of F. enigmaticus (RM-ANOVA, 

Time*Treatment: GG ε = F4,9 = 0.542, P = 0.721; Fig. 17a). 

 At the upper tidal height of +0.3 m MLLW, juvenile O. lurida grew most quickly after 

the first month in the field. There was a significant effect of time on oyster size, indicating that 

oysters grew bigger throughout the course of the experiment (RM-ANOVA, Time: GG ε = 

0.424, F4,9 = 806.920, P < .0001). Similarly to the findings at the lower tidal level, the 
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experimental treatments had no effect on the size trajectories of juvenile oysters, indicating that 

growth did not differ between the treatments with F. enigmaticus present or removed (RM-

ANOVA: Time*Treatment, GG ε = 0.424, F4,9 = 0.170, P = 0.812; Fig. 17b). 

 

 

Figure 17. Juvenile Ostrea lurida area (cm2) in presence and absence of Ficopomatus 
enigmaticus. Measured as a mean of oyster size per plate and mean of all plates by date  
A) -0.3 m MLLW B) +0.3 m MLLW. 
 
 
 
 A total of 320 juvenile oysters were outplanted across 16 settlement plates (n=20 oysters 

per plate). The oysters remained in the Elkhorn Slough for five months during which time 

Ficopomatus enigmaticus was allowed to settle on half the plates at each tidal height (-0.3 m and 

+0.3 m MLLW). The remaining plates were cleaned of all sessile organisms except juvenile 

Ostrea lurida. Juvenile oyster growth rates were also calculated as the average percent change in 

area per plate across the two treatments. Using this metric (% change in area), a two-way 

ANOVA showed a significant effect of tidal height on oyster growth (F1,12 = 7.779, P = 0.016), 

B A 
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such that juvenile oysters consistently grew fastest at tidal heights below MLLW. However, I did 

not detect a significant effect of the Ficopomatus treatment on growth of juvenile oysters (F1,12 = 

0.166, P = 0.691), and there was no interaction of tidal height and non-native removal treatment 

(F1,12 = 0.089, P = 0.772; Fig 18), suggesting that growth differences among the treatments were 

consistent at each tidal height. !

 
 

 
Figure 18. Percent change in area of juvenile Ostrea lurida in presence and absence of 
Ficopomatus enigmaticus +SE. Mean percent change in area (cm2/d).  
 
 
 The change in growth of juvenile oysters was re-analyzed after F. enigmaticus had settled 

and covered a mean of >25% of the plates at -0.3 m tidal height. This percentage was chosen 

because the total percent cover of F. enigmaticus never reached 50% cover at +0.3 m MLLW. A 

two-way ANOVA was conducted to analyze the results, finding a significant effect of tidal 

height (F1,12 = 7.362, P = 0.019), with greater oyster growth observed at -0.3 m MLLW. There 

was no significant effect of treatment (F1,12 = 0.061, P = 0.809), nor an interaction between 

height and treatment (F1,12 = 0.681, P = 0.425; Fig.19).  
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Figure 19. Percent change in area of juvenile Ostrea lurida in the presence and absence of         
F. enigmaticus +SE, after F. enigmaticus reached >25% cover at -0.3 m tidal depth (March- July 
2015).  
 
 
 
DISCUSSION 

 This study found that settlement of Ficopomatus enigmaticus was directly affected by 

tidal height, with increased settlement below MLLW. The presence or absence of F. enigmaticus 

had no significant effect on juvenile oyster growth, unlike the previous adult study (Chapter 1). 

This result is supported by a previous study by Deck (2007), in San Francisco and Tomales Bays, 

which reported no effect of sessile species on growth of juvenile O. lurida. 

 Juveniles grew rapidly in the first few months in the Elkhorn Slough, with their growth 

stabilizing after four months in the field (at 7 months of age). The oysters at the lower tidal 

height (-0.3 m MLLW) were slightly larger than those at +0.3 m MLLW), regardless of 

treatment. This is similar to the study by Deck (2007), which found that subtidal oysters had 

increased growth versus those in the intertidal, due to food availability. 
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  The second half of this study also demonstrated a significant effect of tidal height on 

oyster growth, though the pattern reversed with increased growth above MLLW. This result 

suggests an effect of F. enigmaticus settlement at -0.3 m MLLW. In addition, the oysters at -0.3 

had completely covered the plate by the second half of the study causing density dependent 

competition to occur, where those at +0.3 had space available on the plates to continue growing. 

In a previous study, Wasson (2010) found that competition did not play a major role in the 

mortality of juvenile O. lurida. 

 The other difference between the adult and juvenile experiments was an artifact of the 

experimental design. The juvenile plates had 20 oysters per plate, versus the solitary adults. The 

presence of neighbors on the juvenile plates may have mitigated some of the physical factors, 

including desiccation or heat stress above MLLW.  Facilitation by conspecifics or other sessile 

species is important during juvenile life stages of O. lurida (Deck 2007).  Having neighbors 

results in neutral to positive effects during oyster’s early life stages (Miriti 2006; Schiffers and 

Tielborger 2006; Deck 2007). 

  In conclusion, if O. lurida are established before non-native species settle it is suggested 

that they will continue to grow with little impact from non-native species. The negative effects 

demonstrated in previous studies have been by competitors on O. lurida recruitment (Deck 

2007). To fully understand how future populations of O. lurida will be affected, additional 

research needs to be done which includes continuing to examine the effect of known non-native 

species on larval oyster settlement and survival.  

 What we do know is that recruitment levels are currently low (Wasson et al. 2015) and 

strong recruitment events may only occur every few years (Deck 2007). For these reasons along 
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with the addition of multiple stressors altering the Elkhorn Slough Estuary, I recommend 

laboratory rearing and outplanting of juvenile O. lurida.  This work has demonstrated the 

potential for outplanting laboratory reared juvenile O. lurida, 5 months of age or older, to aid in 

the recovery of the native oyster population in Elkhorn Slough. 
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APPENDIX A 
 
 

GENETIC ANALYSIS OF SPECIES  
 

FROM ELKHORN SLOUGH 
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Table 3. Molecular identifications of organisms. Shows top result of BLAST query of Genbank 
with percent sequence similarity.  Identities of 2 organisms recruited to settlement tiles were 
determined using molecular analysis. Six samples were successfully amplified by PCR and sent 
for Sanger sequencing. Of these samples all 6 sequences, showed strong quality sequences that 
could be used for analysis. 

Field 
Identification 

Number 
of 

Samples 

Molecular 
Identification 

Accession 
Number 

 

Percent 
Identical 

 

Final Identification 

Molgula sp. 5 Molgula manhattensis JQ742953 99 Molgula manhattensis 
Mytilus sp. 1 Mytilus trossulus KF931968 99 Mytilus trossulus 
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