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ABSTRACT 

Motile cryptofaunal invertebrate assemblages in Catalina Island’s 
rhodolith beds in relation to physical structure and live rhodoliths. 

by 
Kristin Meagher Robinson 

Master of Science in Marine Science 
California State University Monterey Bay, 2015 

 
Rhodoliths (Corallinaceae, Rhodophyta) are unattached, branching, calcareous red 

algae that are important foundation species in near shore marine systems.  Aggregations, or 
beds, produce habitat that is a mixture of hard substrate and soft sediment supporting diverse 
assemblages of both crypto- and macrofauna.  At Catalina Island, CA (33º44’55”N, 
118º50’22”W), beds of relatively small rhodoliths were recently documented within several 
bays and coves.  To better understand the associated community, this study describes the 
cryptofaunal invertebrate assemblages associated with live rhodolith (LR), dead rhodolith 
(DR) and sand (S) habitats within three sites (Cherry Cove, Isthmus Harbor, Avalon Harbor).  
Motile invertebrates (> 0.5 mm) were removed from sediment cores, identified to lowest 
certain taxonomic level and enumerated.  Percent dry weight of eight size classes of sediment 
and percent dry weight of live rhodoliths were calculated. All three habitats had different 
sediment compositions with LR and DR habitats being more similar to each other than to S.  
Of the 184 morphotypes found across all habitats and sites, 142 were within LR, 109 within 
DR and 91 within S.  LR hosted greater mean abundance of invertebrates (479.4 ± 42.0 
ind./core) and greater mean taxonomic richness (43.3 ± 2.3 taxa/core) than either DR (226.5 
± 34.0 ind./core, 26.8 ± 1.2 taxa/core) or S (152.7 ± 17.3 ind./core, 24.3 ± 1.5 taxa/core) 
across all sites.  Invertebrate community composition differed by habitat with LR and DR 
supporting slightly different communities that more strongly differed from S.  Community 
composition differed significantly by site within S (ANOSIM, R = 0.968, p <0.001) and 
weakly within the LR (R = 0.702, p < 0.001) and DR (R = 0.534, p < 0.001).  Live rhodolith 
habitat was dominated by the gastropod Amphithalamus sp. (28.0%), the tanaid Zeuxo sp. 
(14.9%), an aorid amphipod (8.5%), and two species of ostracods (8.4% and 6.5%), while 
sand was dominated by the syllid Exogon sp. (40.1%) and other polychaete worms.  
Nematodes (27.6%) and oligochaetes (18.6%) were most abundant within the DR habitat.  
Abundance of intact rhodoliths (live + dead, > 4750 µm) in the substrate explained more 
variation in invertebrate abundance and taxonomic diversity than percent dry weight of live 
rhodolith material (live only, > 500 µm) suggesting that physical structure provided by intact 
rhodoliths has an influence on the associated invertebrate assemblages.  This study 
demonstrates that despite their small size (< 2 cm) the rhodolith beds at Catalina Island 
support an abundant and diverse invertebrate community.  Further research will help identify 
the mechanisms supporting the observed rhodolith associated invertebrate diversity identified 
in this study.   
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INTRODUCTION  

 Physical structure of the marine environment can influence associated 

communities (e.g. soft-sediment versus rocky reef) (Gray 1974, Bell & McCoy 1991, 

Thrush et al. 2003, Anderson 2008).  These structures influence biological (e.g. 

propagule retention) and environmental processes (e.g. water motion), and competitive 

interactions among species, which all influence the associated community (reviewed by 

Bertness et al. 2014).  This is exemplified in soft-sediment habitats where species 

composition has a strong relationship with sediment size (Gray 1974, Thrush et al. 2003, 

Anderson 2008).   Muddy sediments (particles < 0.05 mm diameter)  generally support 

deposit feeders while sandy sediments (particles up to 1.0 mm in diameter) contain 

suspension feeders (Sanders 1958, McCall & Tevesz 1982, Byers & Grabowski 2014).  

Physical factors, such as sediment grain size, are not the only source of structure in a 

habitat, as the organisms themselves can provide structure and modify the physical 

parameters (Jones et al. 1994, Jones et al. 1997).    

Habitat modifiers can transform a landscape from two to three dimensions thereby 

increasing biotic and structural complexity, promoting diversity (Rhoads & Young 1971, 

Jones et al. 1994, Bruno et al. 2003, Altieri & van de Koppel 2014).  Three 

dimensionality can mitigate environmental stresses (Levine et al. 1999), provide refuge 

from predation (Kamenos et al. 2004b), increase food supply (Bruno & Bertness 2001), 

and provide retention of propagules and sediment (Bruno & Kennedy 2000).  Some 

habitat modifiers are the most conspicuous organisms in a system, and they are 

considered foundation species when their effects are disproportionate to their biomass 

(sensu Dayton 1972).   
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Kelps, corals, and sea grasses are well-studied foundation species that serve 

important roles in creating three-dimensional habitats with increased functional diversity 

(McRoy & Helferrich 1977, Connell 1978, Foster & Schiel 1985).  Comparisons of intact 

kelp forests to overly grazed areas (urchin barrens) show both higher abundances of 

associated species and greater species diversity within the kelp (Graham 2004).  Andrews 

(1945) found that most of the animals within kelp holdfasts were larvae or juveniles of 

animals that inhabit kelp bed as adults, suggesting holdfasts might act as nursery grounds.   

Coral reefs increase propagule retention by altering water flow and providing chemical 

cues to larval recruits (Koehl et al. 2001, Reidenbach et al. 2009).  Sea grass beds 

decrease mean water flow, resulting in seed retention and sediment stabilization (Bruno 

2000).  The collective literature is still small compared to kelps and corals, but 

aggregations of unattached calcified red algae (rhodolith beds) have been shown to 

support higher abundance and diversity of associated species (Steller et al. 2003), provide 

settlement cues to larvae (Steller and Caceres-Martinez 2009), and act as nursery habitat 

(Kamenos et al. 2004c); all features of a foundation species (Altieri & van de Koppel 

2014).  

Rhodoliths (Corallinaceae, Rhodophyta) are unattached, branching, calcareous red 

algae that are important foundation species in nearshore systems (Foster 2001, Steller et 

al. 2003, Nelson 2009).  Rhodoliths can form massive aggregations (beds), found 

worldwide in tropical, temperate, and polar waters (Foster 2001), with new beds still 

being described in the northeastern Pacific (Konar et al. 2006, Parnell et al. 2006, 

Tompkins 2011).   Like other coralline algae, rhodoliths have extracellular deposition of 

calcium carbonate, but do not require attachment to hard substrate (Nelson 2009).   Most 
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rhodoliths have very slow growth rates only about 1-5 mm/yr. (Littler et al. 1991, 

Tompkins 2011).  Beds generally form over what would otherwise be sandy habitat, and 

create a complex, three-dimensional structure (Foster 2001; Steller & Foster 1995).    

On a geographic scale rhodolith beds are not uniform in size, shape or sediment 

composition (Keegan 1974, Bosence 1979, Steller & Foster 1995, Neill et al. 2015).  

Rhodoliths are fragile and prone to fragmentation (Marrack 1999, Hall-Spencer & Moore 

2000, Kamenos et al. 2003, Nelsen 2009).  In most cases, beds are a mosaic of large 

intact rhodoliths, rhodolith fragments, and fine calcium carbonate sand (Tanadjaja 2010).  

Some beds grow over areas of muddy sediment (Keegan 1974, Neill et al. 2015).  Beds 

can be mixtures of multiple rhodolith species, with each species having different growth 

forms (foliose, fruticose; Riosmena-Rodriguez et al. 1999, Hinojosa-Arango & 

Riosmena-Rodriguez 2004, Amado-Filho et al. 2007, Villas-Boas et al. 2013).  

Differences in associated assemblages of both flora and fauna seem to coincide with 

differences in sediment characteristics (Keegan 1974, Bosence 1979, De Grave 1999) and 

rhodolith species (Hinojosa-Arango & Riosmena-Rodriguez 2004).  Within a bed, larger 

rhodoliths support a high diversity and abundance of invertebrates than small fragmented 

ones (Steller et al. 2003, Foster et al. 2007, Teichert 2014). 

Rhodoliths provide hard substrate for both algal epibionts and small (0.5 – 5.0 

mm) cryptic invertebrates referred to as cryptofauna (Keegan 1974, Bosence 1979, 

Steller et al. 2003, Foster et al. 2007).  These cryptofaunal organisms are found at lower 

abundances or absent from adjacent sand habitat lacking rhodoliths (Steller et al. 2003).  

It is theorized that the branching nature of rhodoliths creates microhabitats with 

decreased water flow, and retention of detritus and propagules (Keegan 1974, Bosence 
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1979, Steller et al. 2003; Foster et al. 2007; Nelson 2009). Their hard structure offers 

protection from predation to many cryptofaunal and algal species (Kamenos et al. 2004b, 

Kamenos et al. 2006), as well as nursery habitat to commercially important scallops 

(Kamenos et al. 2004c; Steller & Caceres-Martinez 2009).  Within the cryptofauna, a 

mixture of organisms that prefer gravel, sand or hard substrate can be found within a 

single sample (Foster 2001, Nelson 2009).   

Worldwide, cryptofauna represent a large proportion of the total invertebrate 

species found within rhodolith beds.  In Baja California, rhodolith beds support over 100 

species of cryptofaunal invertebrates (Hinojosa-Arango & Riosmena-Rodriguez 2004, 

Foster et al. 2007) at an average density of 14.4 individuals per cm3 (Steller et al. 2003).  

Dominant taxa within these beds are crustaceans, annelids, and cnidarians (Steller et al. 

2003; Hinojosa-Arango & Riosmena-Rodriguez 2004; Foster et al. 2007).   Beds in 

temperate European waters support a greater diversity ranging from 180 to 466 taxa of 

invertebrates identified, with polychaetes and crustaceans as the most dominant taxa 

(Barbera et al. 2003, Bordehore et al. 2003; Grall et al. 2006).  Cryptofaunal 

communities in Brazilian beds (depending on season) were also dominated by 

polychaetes (63%) or amphipods (70%), while mollusks (both bivalves and gastropods) 

constituted only about 5% of the fauna (Figueiredo et al. 2007).  In comparison, beds off 

Alaska, Canada and Norway are dominated by chitons (Mollusca; Konar et al. 2006, 

Gagnon et al. 2012, Teichert et al. 2014).  Some of the species found on or within these 

beds were previously undescribed (Clark 2000) and could be rhodolith-obligates.   

Because of the potential for new species and the high variability in diversity and bed 
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characteristics, communities of new beds need to be described before more complex 

interactions can be investigated.   

Despite the potential importance of rhodolith beds as a habitat, standardized 

methods for sampling the associated fauna do not exist.  In Baja California Sur, 

rhodoliths can grow to a size greater than 10 cm in diameter (Steller and Foster 1995), 

which allows for the collection of a single rhodolith to investigate cryptofaunal 

abundance.  Other beds, such as the Abrolhos bank, Brazil (Berlandi et al. 2012) and 

Catalina Island, USA (Tompkins 2011), are composed of smaller rhodoliths (2-4 cm 

diameter), making selection of a single rhodolith impractical for cryptofaunal counts, 

resulting in use of cores for sampling.  Berlandi et al. (2012) compared polychaete 

diversity between two Brazilian beds that required different collection methods (coring 

and quadrats) because of the bed characteristics.  This complicated interpretation of 

results because cores included sediment-dwelling polychaetes, which inflated results.  

Without standardize methods, meaningful comparisons between beds become 

challenging, if not impossible.   

Rhodolith beds were recently documented around Catalina Island, part of the 

Channel Island archipelago off southern California (Parnell et al. 2006, Tompkins 2011).  

Seven rhodolith beds have been described off Catalina Island, all located within coves or 

harbors on the leeward side of the island (Tompkins 2011).  Five of the beds (Big 

Fishermen’s, Isthmus, Cherry, and 4th of July Cove) are located close together within 

five miles of the town of Two Harbors, while Avalon Harbor and Emerald Cove are 

located at the far ends of the island (Fig. 1).  All beds appear to be dominated by a single 

rhodolith species, Sporolithon australe (sensu R. Riosmena-Rodriguez) that averages 20-
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50% live cover throughout the beds (Tompkins 2011).  The rhodoliths are relatively 

small, with the majority of the individuals being 5 – 15 mm in diameter (Tompkins 

2011).  Beneath the rhodolith cover is a mixture of sandy sediment composed of both 

calcium carbonate and silicate materials (Tompkins 2011, Gabara 2014).  While 

investigating nutrient flow and food webs within the rhodolith beds, Gabara (2014) found 

an average of 20.9 infauna taxa (cryptofauna + infauna) per 6.5 cm diameter core; 

however he did not identify organisms down to species or relate diversity to rhodolith 

size and percent cover.   

In order to address major gaps in knowledge of a common coastal California 

benthic habitat, the objectives of this study were to:  

1.) Identify the motile species of cryptofaunal invertebrates making up the 

assemblages of Catalina Island rhodolith beds. 

2.) Describe patterns of cryptofaunal invertebrate assemblages between different 

habitat types (live rhodolith cover, dead rhodolith cover and no rhodolith cover) and sites 

at Catalina Island.  

3.) Determine if motile cryptofaunal invertebrate abundance and taxonomic 

richness correlates with amount of live rhodolith material or amount of intact rhodoliths.   

METHODS 

Study Sites: 

All live rhodolith beds studied herein were located on the northeast coast of 

Catalina Island, CA (33o 44’50”N, 118o 50’22”W; Fig. 1).  Estimates of bed size, depth 

and amount of rhodolith cover were made by Tompkins (2011) in 2009 (Appendix A).  

Catalina rhodolith beds were found within sheltered bays and consisted of areas of live 
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rhodolith cover, interspersed amongst patches of dead or fragmented rhodoliths and sand 

(Tompkins 2011).  Within all beds, the layer of live rhodolith material varied in depth, 

but was generally less than 5 cm.  Below the rhodolith layer was a mixture of fine and 

coarse sediments.  Mooring chain arrays located within these beds along with 

bioturbation by fishes and invertebrates are possible sources of the crushed rhodolith sand 

(Tompkins 2011, pers. obs.).  The beds sampled for this study were located in Avalon 

Harbor (7.8 - 21 m depth), Isthmus Harbor (4.3 - 6.1 m depth), and Cherry Cove (5.8 - 

7.3 m depth).   These sites were selected because they were the three largest beds and had 

similar bed and rhodolith characteristics except for depth and total bed size (Appendix A, 

Tompkins 2011). 

 

Figure 1.  Seven rhodolith beds located around Catalina Island, southern California.   

Surveys conducted in 2009 documented beds within Emerald Bay, Cherry Cove, 4th of 
July Cove, Isthmus Harbor, Big Fishermen’s Cove, and Avalon Harbor.  Dark outside 
boundaries indicate >10% dead rhodolith cover while inner light boundaries indicate 
>10% live cover (reprinted with permission, Tompkins 2011). 
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Sample Collection: 

Samples were collected on SCUBA from three different sites (Avalon Harbor, 

Isthmus Harbor, and Cherry Cove) during December 2013.  Within each site, sampling 

was stratified between three sedimentary habitats distinguished by > 90% cover of live 

rhodolith (LR; rhodolith had pigmentation), > 90% cover of dead rhodolith (DR; 

rhodolith lacked pigmentation), or > 90% non-rhodolith sand (S; no observable 

rhodoliths/fragments).  Cores of LR and DR were collected from within rhodolith beds, 

while S cores were collected from an adjacent non-carbonate sandy area at a similar 

depth.  Six cores (5 cm in height and 7 cm in diameter) were haphazardly collected from 

each habitat type with at least 2 m between each core.  Cores were transferred into plastic 

bags and sealed at depth.   

All samples were transported back to Wrigley Marine Lab (Wrigley).  Each 

sample was transferred to a glass jar and preserved by adding enough 37% formaldehyde 

to make a final concentration of 10% buffered formalin solution within each jar.  

Formalin did not remove pigmentation from rhodolith material, so rhodolith material that 

was alive at time of collection could be distinguished from dead rhodolith material based 

on the amount of visible pigmentation.   

Processing of Samples: 

Preserved samples were transported back to Moss Landing Marine Laboratories 

(MLML) and sat in formalin solution for 48 hours before processing.  Samples were 

gently poured onto a 0.5 mm mesh screen and rinsed with fresh water.  The resulting 

mixture of sediment and invertebrates greater than 0.5 mm were examined under a Leica 

dissecting microscope at 6.3x magnification; all motile invertebrates were removed and 

placed in 70% ethanol for further identification.  
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Motile invertebrate specimens were sorted into “morphotypes” based on shared 

visible morphological characteristics.  Each morphotype was considered the equivalent of 

a “species” for statistical analysis.  Individuals within each morphotype were enumerated 

with at least one individual selected as a voucher specimen and photographed for use in 

an informal identification guide.  Each morphotype was identified to lowest taxonomic 

level for which the author was confident using invertebrate taxonomic keys by Carlton 

(2007) and Lissner & Blake (1998).  Specimen identifications were refined and/or 

confirmed, when possible, by consulting museum collections at MLML and taxonomic 

experts (Amphipoda: A. Wood, Mollusca: J. Geller, Ostracoda: G. Hecht, Polychaeta: L. 

Harris, M. Marraffini, T. Phillips).  Within the lowest taxonomic level reached, if 

multiple groups existed, as evidence by morphological characteristics, they were 

differentiated by numbers (e.g. gastropod 1, gastropod 2).   

For each habitat type (LR, DR, S), any intact rhodoliths or rhodolith fragments 

that had ≥ 10% pigmentation were considered live rhodolith material and removed from 

other sediment.  Dead rhodoliths (< 10% pigmentation) and dead rhodolith fragments 

were left mixed with other sediment such as shell fragments and clastic sediment.  All 

sediment, including live rhodolith material, was sieved through a modified version of the 

Wentworth scale, resulting in eight size classes (Table 1; Wentworth 1922).  After 

sieving, each fraction was dried at 60°C until all water evaporated and sediment remained 

at a constant weight.  Each size class and live rhodolith fraction were weighed and 

compared based on percent weight of the total sample.   
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 Classification 
Sediment size fractions (µm) Wentworth 1922 This study 
  > 4750  Pebble gravel Intact rhodoliths 
 2000 – 4750 Granule gravel  
 1000 – 2000 Very course sand Rhodolith fragments 
 500 – 1000 Course sand  
 250 – 500 Medium sand  
 125 – 250  Fine sand Sand 
 63 – 125 Very fine sand  
 < 63 Silt Silt 

Table 1. Breakdown of sediment size classes and classification terms for analysis of 

sediment profiles.  Modified from Wentworth 1922. 

Statistical Analysis:  

Only motile invertebrates were used for statistical analysis because encrusting 

sessile organisms were not found within the S group and are difficult to determine 

accurate abundance counts.   As a result, this study potentially misestimates the degree of 

community differences.  As noted above, each morphotype was treated as a species, 

which may result in an under-estimation of true species richness due to the potential for 

cryptic species or over-estimation in the case of intraspecific polymorphism.  Abundance, 

taxonomic richness and percent dry weight of sediment were expressed as per core for 

statistical analysis.   

Two-way analysis of variance (ANOVA) was used to compare the variables of 

mean invertebrate abundance, taxonomic richness, amount of intact rhodolith, and 

amount of live rhodolith material between habitats and across sites.  Taxonomic richness 

and live material met test assumptions while total abundance and intact rhodoliths failed 

the assumption of equal variance, even after transformation of the data.  However the 

ANOVAs were considered robust because of equal sample size and the assumption of 

normality was met.  To test for a correlation between intact rhodoliths and live material 
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with invertebrate mean abundance and taxonomic richness, a simple linear regression was 

used.  The data were tested to ensure all assumptions were met.  All univariate 

calculations were done using software package SPSS 22 (IBM® SPSS® Statistics, 2013) 

 To compare composition of sediment profiles and associated motile invertebrates 

between habitats and sites, multi-dimensional scaling ordinations (MDS) were calculated.  

For sediment, Euclidian distance matrices were calculated to compare multivariate 

differences of the percent dry weight of each sediment size class per core.  Since 

sediment was already standardized to percent dry weight, no transformation of the data 

was done before calculating the resemblance matrix.  Bray-Curtis similarity matrices 

were used for invertebrate assemblage composition utilizing the abundance counts for all 

morphotypes after the data were square root transformed.  A two-way analysis of 

similarity (ANOSIM) was used to test for differences in sediment size and invertebrate 

assemblages between sites and habitats.   The similarity percentage analysis (SIMPER) 

was calculated to determine the taxa contributing the most to similarities within habitats 

and sites and the dissimilarities among different habitats and sites.  All calculations were 

done using software package PRIMER-E (Plymouth Routines in Multivariate Ecological 

Research, 6.0) 

RESULTS 

Sediment Size by Habitat and Site: 

 Two-way ANOSIM test detected significant differences in sediment composition 

between habitat types across all sites (R= 0.805, p < 0.001) and between sites across all 

habitat types (R= 0.517, p < 0.001).  Pairwise comparison of R values for both habitat 

type and site, indicated habitat type was a stronger contributor to the observed differences 
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between cores than site (Table 2).  LR and DR habitats clustered more closely together in 

MDS plots than either clustered to S habitat, regardless of site (Fig. 2).   However, some 

DR and LR cores were intermixed in MDS plots (Fig. 2), showing that the two “habitats” 

were not discrete with respect to sediment size.    

 

Figure 2.  Comparison based on sediment size classes.  Two-dimensional 
multidimensional scaling (MDS) plot comparing percent dry weight of the eight sediment 
size classes (> 4750 µm –  < 63µm) from the fifty-four cores collected from Catalina 
Island, CA.  Habitat type shown by color: Live Rhodolith (black), Dead Rhodolith (gray), 
and Sand (white).  Sites indicated by shape: Avalon Harbor (circles), Isthmus Harbor 
(triangles), Cherry Cove (squares). 

Table 2.  Two-way ANOSIM values for sediment characteristics.  Analysis based on 
percent dry weight of eight sediment size classes (> 4750 µm – < 63µm) with pairwise 
comparison by site and habitat type. 

Sites R p 
  

Habitat R p 
Avalon x Isthmus 0.517 0.001 

  
LR x DR 0.616 0.001 

Avalon x Cherry 0.557 0.001 
  

LR x S 0.947 0.001 
Isthmus x Cherry 0.501 0.001 

  
DR x S 0.948 0.001 

Global 0.517 0.001 
  

Global 0.805 0.001 
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To determine the sediment sizes driving the differences between the habitat types, 

sites were combined.  All three habitat types had a different dominant sediment size class. 

S habitat was dominated by 125 - 250 µm size class (phi = 3), while the larger size 

classes (>1000 µm, phi < 0) dominated the rhodolith habitats (Fig. 3).  The greatest 

difference between LR and DR sediment profiles was the amount of intact rhodoliths (> 

4750 µm, Table 3).   

 
Figure 3.  Sediment profiles by habitat type.  Mean percent dry weight (± SE) of each 
sediment size class within each habitat type, all sites combined: Live Rhodolith (LR, 
solid line, n = 18), Dead Rhodolith (DR, dash line, n = 18), Sand (S, dotted line, n = 18).  
The sediment size classes were converted to the phi scale on the x-axis: -2 = > 4750 µm, 
5 = < 63 µm.   

Table 3. SIMPER pairwise comparison of dissimilarities between habitat types 

based on sediment size classes.  Top number is average squared distance (dissimilarity) 
between compared habitat types followed by sediment size classes that contribute the 
most to the distance between the compared habitat types:  Live Rhodolith (LR), Dead 
Rhodolith (DR), and Sand (S).   

LR x DR  LR x S  DR x S 
0.10  0.51  0.43 

> 4750 49.18%  125 – 250 32.25%  125 – 250 33.70% 
2000 - 4750 19.79%  2000 – 4750 16.06%  1000 – 2000 21.75% 
1000 – 2000 17.67%  250 – 500 15.65%  63 – 125 15.68% 
250 – 500 5.45%  63 – 125 13.70%  250 – 500 12.39% 
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No live rhodolith material was found within the S habitat type, but varying 

amounts of live rhodolith material (≥ 10% pigmentation) was found within LR and DR 

cores (Fig. 4).  Between sites, there was no significant difference in percent live rhodolith 

material among LR habitat type but there was a significant difference among the DR 

(Fig.4; two-way ANOVA: Habitat F1,30 = 41.268, p < 0.001; Site F2,30 = 7.245, p = 0.003, 

Interaction F2,30 = 1.755, p =0.190).  Post-hoc analysis revealed that within DR habitat 

type, Avalon Harbor (18.8% live) had a significantly higher amount of live rhodolith 

material than the other sites (4.29% & 1.43% live), which was not significantly different 

from the LR habitat types (22.9% - 29.0% live).  The interaction of site and percentage of 

live rhodolith material was not significant because in both habitat types, Avalon Harbor 

had the highest amount of live rhodolith material and Cherry Cove had the lowest 

amount.   

 

 

Figure 4.   Mean percent dry weight (± SE) of live rhodolith material (≥ 10% 

pigmentation) by habitat type and site (n = 6).   
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Invertebrate Abundance and Taxonomic Richness: 

 Fifty-four cores from three habitat types from three sites at Catalina Island 

produced a total of 15,515 motile invertebrates that constituted 184 morphotypes within 

nine phyla (Appendix B).  With all sites combined, there were 142 taxa located within the 

LR habitat, 109 taxa within the DR habitat, and 91 taxa within S.  Overall the most 

abundant groups were crustaceans (39.3%), polychaetes (21.5%), and mollusks (17.2%), 

with crustaceans and polychaetes being the most specious groups with 48 and 63 

morphotypes, respectively.   Total abundance of cryptofaunal invertebrates varied 

between both habitats and sites (Table 4). 

Table 4.  Mean abundance of motile cryptofaunal invertebrates scaled to per m
2
 

densities by site and habitat type.   

 Avalon Harbor Isthmus Harbor Cherry Cove Average 
Live Rhodolith 93,599 107,848 172,340 124,596 
Dead Rhodolith 40,757 60,854 74,974 58,861 
Sand (S) 57,259 18,278 43,572    39,703 
 

 When averaged across all sites, LR (479.4 ± 42.0 ind./core) had more than double 

the number of motile cryptofaunal invertebrates as DR (226.5 ± 34.1 ind./core) and more 

than three times the amount as S (152.8 ±17.4 ind./core).  A two-way ANOVA confirmed 

that both site and habitat type were significant and revealed a significant interaction 

between site and habitat (Table 5).  The significant interaction was driven by 

disproportionately higher abundance within S (220.3 ± 13.3 ind./core) relative to DR 

(156.8 ± 20.3 ind./core) at Avalon Harbor, while the other two sites had the lowest total 

abundances within the S habitat type (Fig. 5).   
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Figure 5.  Mean motile cryptofaunal invertebrate abundance (± SE) per core 

relative to habitat and site.  Arranged by habitat type: Live Rhodolith (Live), Dead 
Rhodolith (Dead), and Sand (Sand) and site: Avalon Harbor (Avalon), Isthmus Harbor 
(Isthmus), and Cherry Cove (Cherry), n = 6. 

Table 5.  Two-way ANOVA for total invertebrate abundance by site and habitat 

type with pairwise Tukey post hoc output. 

Source df MS F p 
Site 2 102036.241 8.309 0.001 
Habitat 2 528380.907       43.029      < 0.001 
Site*Habitat 4 57691.185 4.698 0.003 
Error 45 12279.530   
Note. df = degrees of freedom, MS = Mean Square, alpha = 0.05 
 
Habitat Type 

 
p 

  
Site 

 
p 

Live Rhodolith x Dead Rhodolith < 0.0001  Avalon x Isthmus 0.986 
Live Rhodolith x Sand < 0.0001  Avalon x Cherry 0.003 
Dead Rhodolith x Sand 0.125  Isthmus x Cherry 0.002 
Note: alpha = 0.5  
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In general, taxonomic richness was almost double within LR habitat type (43.4 ± 

2.3 taxa per core) than DR or S habitat type (26.9 ± 1.2 and 24.3 ± 1.3 taxa per core, 

respectively), when averaged across all sites.   Two-way ANOVA revealed a statistically 

significant interaction (p < 0.001) between site (p = 0.001) and habitat type (p < 0.001), 

which were also significant factors.  The significant interaction was driven by a higher 

taxonomic richness (54.5 ± 2.6 taxa/core) within LR from Cherry Cove compared to the 

LR from other sites (Isthmus Harbor = 38.3 ± 1.4 taxa/core, Avalon Harbor = 37.3 ± 3.2 

taxa/core) and Isthmus Harbor had significantly lower taxonomic richness within its S 

(18.8 ± 1.5 taxa/core) than DR habitat type (28.0 ± 1.5 taxa/core; Fig. 6).  There was no 

difference in taxonomic richness at the other two sites between DR (Avalon Harbor = 

26.8 ± 2.4 taxa/core, Cherry Cove = 25.8 ± 2.6 taxa/core) and S (Avalon Harbor = 28.2 ± 

1.6 taxa/core, Cherry Cove = 26.0 ± 1.9 taxa/core).   
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Figure 6.  Mean taxonomic richness for motile cryptofaunal invertebrates (± SE) per 

core relative to habitat and site.  Arranged by habitat type: Live Rhodolith (Live), Dead 
Rhodolith (Dead), and Sand (Sand) and site: Avalon Harbor (Avalon), Isthmus Harbor 
(Isthmus), and Cherry Cove (Cherry), n = 6. 

Table 6.  Two-way ANOVA for invertebrate taxonomic richness by site and habitat 

type with pairwise Tukey post hoc output. 

Source df MS F p 
Site 2 231.796 8.191 0.001 
Habitat 2 1925.685 68.045 < 0.0001 
Site*Habitat 4 237.741 8.401 < 0.0001 
Error 45 28.300   
Note. df = degrees of freedom, MS = Mean Square, alpha = 0.05 
 

Habitat Type p  Site p 
Live Rhodolith x Dead Rhodolith < 0.0001  Avalon x Isthmus 0.377 
Live Rhodolith x Sand < 0.0001  Avalon x Cherry 0.031 
Dead Rhodolith x Sand 0.329  Isthmus x Cherry 0.001 
Note: alpha = 0.05     
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Invertebrate Assemblages: 

 A two-way ANOSIM test indicated that there were significant differences 

between sites across all habitat types (R= 0.740, p < 0.001; Table 7A) and between 

habitat types across all sites (R= 0.945, p < 0.001; Table 7B).  Pairwise comparisons of R 

values for site and habitat type indicate habitat type was a stronger contributor to 

observed differences between cores (Table 7).  There were subtle differences in 

morphotype frequencies between individual cores, but overall the three habitat types 

clustered separately on a MDS plot with LR and DR being most similar (Fig. 7).  Among 

S cores, each site was clustered, while LR and DR were not segregated by site (Fig. 7).   

 

 

Figure 7.  Comparison of cryptofaunal invertebrate assemblages based on the 

abundance of each morphotype.  Two-dimensional multidimensional scaling plot of 
community composition based on total abundance of motile cryptofaunal invertebrates 
within 184 morphotypes from fifty-four cores collected from Catalina Island, CA.  
Habitat types: Live Rhodolith (black), Dead Rhodolith (gray), Sand (white).  Sites: 
Avalon Harbor (circles), Isthmus Harbor (triangle), Cherry Cove (squares).   
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Table 7. Two-way ANOSIM pairwise comparisons based on community 

composition. A.) Sites: Avalon Harbor (Avalon), Isthmus Harbor (Isthmus) and Cherry 
Cove (Cherry) across all habitat types and B.) Habitat types: Live Rhodolith (LR), Dead 
rhodolith (DR) and Sand (S) across all sites.   
A.) Sites R p 

 
B.) Habitat Type R p 

 Avalon x Isthmus 0.637 0.001 
  

LR x DR 0.888 0.001 
 Avalon x Cherry 0.758 0.001 

  
LR x S 1.000 0.001 

 Isthmus x Cherry 0.876 0.001 
  

DR x S 0.988 0.001 
 Global 0.740 0.001 

  
Global 0.945 0.001 

 

The more noticeable clustering of S cores by site compared to DR and LR, 

suggested a possible interaction between habitat type and site.  To test this, one-way 

ANOSIM values were calculated for site within each habitat type.  Within each habitat 

type, cores clustered by site (Table 8), but S had the highest R values (Table 8A), 

consistent with the separation by site seen in Figure 7 for S.  For all three habitat types 

Cherry Cove and Isthmus Harbor had the greatest pairwise separation (Table 8).   

Table 8. One-way ANOSIM values, testing the degree of separation between sites 

within a single habitat type: Live Rhodolith (LR), Dead Rhodolith (DR), and Sand 

(S).  

A.) S only R p B.) DR only R p 
 Avalon x Isthmus 0.989 0.002 

 
Avalon x Isthmus 0.396 0.004 

 Avalon x Cherry 0.996 0.002 
 

Avalon x Cherry 0.513 0.002 
 Isthmus x Cherry 1.000 0.002 

 
Isthmus x Cherry 0.717 0.002 

 Global 0.968 0.001 
 

Global 0.534 0.001 
 

          
    

C.) LR only R p 
 

     
Avalon x Isthmus 0.504 0.002 

 
     

Avalon x Cherry 0.765 0.002 
 

     
Isthmus x Cherry 0.909 0.002 

 
     

Global 0.702 0.001 
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Live rhodolith invertebrate assemblages were dominated by mollusks, crustaceans 

and polychaetes (Table 9). The gastropod Amphithalamus sp. was the most abundant 

invertebrate.  It constituted over 20% of the invertebrate abundance per core and in some 

LR cores numbered over 300 individuals.  This species was also found in DR cores but at 

lower abundances (3.5-11% abundance per core and averaging 12 individuals per core) 

and was absent from all S cores.  Most of the other common taxa were located in all three 

habitat types but at varying abundances (Appendix B).  The S habitat was dominated by 

the syllid polychaete Exogon sp. with average abundances constituting over 25% of each 

core (Table 9).   This morphotype was also found in LR and DR at lower abundances.   

Table 9.  Morphotypes with the ten highest mean percent abundance (± SE) for each 

site within each habitat type. A = amphipod, B = bivalve, G = gastropod, I = isopod, O 
= ostracod, P = polychaete, T = tanaid 

Live Rhodolith (LR) 

Avalon   Isthmus   Cherry 
Amphithalamus sp., 
G  

20.01% 
(4.04%) 

 

Amphithalamus sp., 
G 

20.65% 
(2.33%) 

 

Amphithalamus sp., 
G 

30.46% 
(5.32%) 

Aoridae 1, A 10.96% 
(2.51%) 

 

Zeuxo sp., T 13.66% 
(2.55%) 

 

Zeuxo sp., T 18.34% 
(3.48%) 

Zeuxo sp., T 9.80% 
(4.08%) 

 

Macrocypris sp., O 10.61% 
(0.57%) 

 

Anatanis sp. , T 7.47% 
(1.30%) 

Macrocypris sp., O 9.76% 
(3.07%) 

 

Aoridae 1, A 10.49% 
(2.18%) 

 

Nematoda 1 5.24% 
(1.16%) 

Neonesidea sp., O 6.22% 
(2.00%) 

 

Neonesidea sp., O 8.83% 
(1.23%) 

 

Aoridae 1, A 4.93% 
(1.48%) 

Exogon sp., P 5.52% 
(0.91%) 

 

Oligochaeta 5.88% 
(1.21%) 

 

Spionidae 1, P 3.51% 
(1.05%) 

Nematoda 1 4.25% 
(1.70%) 

 

Phoxocephalidae 1, 
A 

4.19% 
(3.01%) 

 

Neonesidea sp., O 2.56% 
(0.50%) 

Leptochelida sp. 1, 
T 

2.80% 
(0.59%) 

 

Exogon sp., P 3.11% 
(0.31%) 

 

Exogon sp., P 2.50% 
(0.81%) 

Oligochaeta 2.75% 
(1.10%) 

 

Spionidae 1, P 3.04% 
(0.70%) 

 

Oligochaeta 1.99% 
(0.59%) 

Caprellidae 1, A 2.65% 
(0.38%) 

 

Nematoda 1 3.00% 
(0.52%) 

 

Macrocypris sp., O 1.54% 
(0.52%) 
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Dead Rhodolith (DR) 

Avalon   Isthmus   Cherry 

Oligochaeta 15.28% 
(1.85%) 

 

Neonesidea sp., O 23.31% 
(5.22%) 

 

Nematoda 1 49.01% 
(9.92%) 

Nematoda 1 13.86% 
(3.25%) 

 

Nematoda 1 15.73% 
(3.75%) 

 

Exogon sp., P 8.88% 
(3.07%) 

Exogon sp., P 11.94% 
(1.37%) 

 

Oligochaeta 15.12% 
(2.02%) 

 

Neonesidea sp., O 8.16% 
(3.93%) 

Neonesidea sp., O 11.72% 
(1.84%) 

 

Macrocypris sp., O 9.06% 
(1.81%) 

 

Oligochaeta 7.74% 
(1.53%) 

Amphithalamus sp., 
G 

9.79% 
(4.03%) 

 

Exogon sp., P 6.09% 
(0.95%) 

 

Amphithalamus sp., 
G 

5.73% 
(1.80%) 

Macrocypris sp., O 3.63% 
(1.50%) 

 

Amphithalamus sp., 
G 

4.45% 
(0.99%) 

 

Polychaeta 19 2.36% 
(1.17%) 

Spionidae 2, P 3.59% 
(2.44%) 

 

Amphipoda 5 3.42% 
(1.30%) 

 

Nematoda 2 1.93% 
(0.67%) 

Scalibregmatidae, 
P  

3.24% 
(2.95%) 

 

Amphipoda 3 3.26% 
(1.94%) 

 

Sipuncula 3 1.40% 
(0.62%) 

Nematoda 4 2.29% 
(0.84%) 

 

Spionidae 1, P 1.82% 
(0.59%) 

 

Cumacea  1.14% 
(0.83%) 

Apanthura 

californiensis, I 
1.49% 

(0.54%) 
 

Oweniidae, P  1.62% 
(0.67%) 

 

Polychaete 47 1.03% 
(0.61%) 

        Sand (S) 

Avalon   Isthmus   Cherry 

Exogon sp., P 34.02% 
(2.79%) 

 

Exogon sp., P 30.86% 
(3.82%) 

 

Exogon sp., P 25.39% 
(2.26%) 

Polychaeta 11 12.03% 
(3.70%) 

 

Myodocopida 1, O 22.04% 
(4.74%) 

 

Amphipoda 3 12.85% 
(3.02%) 

Nematoda 1 8.47% 
(1.23%) 

 

Spionidae 1, P 6.36% 
(2.09%) 

 

Phoxocephalidae 1, 
A 

9.37% 
(1.37%) 

Spionidae 1, P 5.46% 
(0.85%) 

 

Lumbrineridae, P  6.18% 
(1.69%) 

 

Myodocopida 1, O 8.85% 
(3.19%) 

Nereididae 1, P 4.67% 
(0.69%) 

 

Amphipoda 3 3.41% 
(1.53%) 

 

Amphipoda 5 6.08% 
(1.62%) 

Sabellidae, P 3.88% 
(0.62%) 

 

Tellina sp., B 2.38% 
(0.78%) 

 

Nereididae 1, P 4.29% 
(0.75%) 

Phoxocephalidae 1, 
A 

2.71% 
(0.88%) 

 

Phoxocephalidae 1, 
A 

2.30% 
(0.62%) 

 

Polychaeta 11 4.07% 
(3.83%) 

Maldanidae, P  2.55% 
(0.56%) 

 

Terebellidae 1, P 2.20% 
(0.65%) 

 

Sabellidae, P  2.89% 
(0.65%) 

Nematoda 2 2.40% 
(1.67%) 

 

Neonesidea sp., O 1.69% 
(1.69%) 

 

Polychaeta 13 2.70% 
(0.57%) 

Myodocopida 1, O 6.28% 
(1.82%) 

 

Sabellidae, P 1.51% 
(0.61%) 

 

Leptochelida sp. 1, 
T 

2.48% 
(1.06%) 
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To evaluate which invertebrate groups were driving the assemblage differences 

between habitat types, all sites were pooled for SIMPER analysis.  LR habitat was 

dominated by the gastropod Amphithalamus sp., the crustaceans Zeuxo sp., Aoridae 1, 

ostracods Macrocypris sp. and Neonesidea sp., the syllid Exogon sp. and Nematoda.  DR 

habitat was dominated by Nematoda, Oligochaeta, Neonesidea sp. and Exogon sp., while 

sand was dominated by the polychaetes Exogon sp., Spionidae 1, Nereididae 1, and 

Sabellidae and the crustaceans Myodocopida 1, Phoxocephalidae 1, (Table 10).   The 

SIMPER pairwise comparison revealed which morphotypes worked best as 

discriminators between the habitat types by presence or absence.  Table 10 shows that 

most of the taxa accounting for the majority of the differences in habitat types were 

morphotypes found in either the LR or DR habitat and were absent from or at low 

abundances in the S habitat.  The only S morphotype to make the top seven 

discriminators (Table 10) was the syllid polychaete Exogon sp., which is the most 

abundant taxa within S, but only qualified for comparing S to DR.    The morphotypes 

listed as discriminators between LR and DR (Table 10) are found in both habitat types, 

but more were found in LR (Table 9) 
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Table 10.  Similarity percentages (SIMPER) analysis of invertebrate morphotypes 

by habitat type.  Top row gives percent similarity within each habitat type. Listed 
morphotypes contributed to 50% of the similarity within a given habitat type.  Bottom 
portion shows pairwise percent dissimilarity between habitat types: Live Rhodolith (LR), 
Dead Rhodolith (DR) and Sand (S) and top seven morphotypes that contributed to the 
differences.  R values are one-way ANOSIM values for habitat only.  

 

Live Rhodolith 

 

Dead Rhodolith 

 

Sand 

63.53% 
 

52.99% 
 

59.54% 
Amphithalamus sp. 12.81% 

 
Nematoda 1 16.53% 

 
Exogon sp. 20.55% 

Zeuxo sp. 9.01% 
 

Oligochaeta 1 14.12% 
 

Myodocopida 1 8.76% 
Aoridae 1 7.50% 

 
Neonesidea sp. 12.97% 

 
Phoxocephalidae 1 7.19% 

Macrocypris sp. 6.44% 
 

Exogon sp. 11.06% 
 

Spionidae 1 6.89% 
Neonesidea sp. 6.04% 

 
  

 
  

 
Nereididae 1 4.83% 

Exogon sp. 4.98% 
 

  
 

  
 

Sabellidae  4.75% 
Nematoda 1 4.52% 

 
      

 
      

 

LR vs. DR  LR vs. S  DR vs. S 
60.2%  78.3%  75.4% 

Amphithalamus sp. 7.43%  Amphithalamus sp. 8.60%  Nematoda 1 7.58% 
Zeuxo sp. 7.31%  Zeuxo sp. 6.07%  Neonesidea sp. 6.12% 
Aoridae 1 5.96%  Aoridae 1 5.18%  Oligochaeta  5.70% 
Nematoda 1 4.04%  Macrocypris sp. 4.25%  Amphithalamus sp. 4.04% 
Macrocypris sp. 2.93%  Neonesidea sp. 3.83%  Exogon sp. 3.54% 
Anatanais sp.  2.84%  Oligochaeta  2.81%  Macrocypris sp.  3.13% 
Leptochelida sp. 1 2.60%  Nematoda 1 2.79%  Amphipoda 3 2.81% 
 

 Invertebrate assemblages can also be compared by the number and abundance of 

obligate species.  There were 42 morphotypes of motile cryptofaunal invertebrates found 

solely within LR and 16 morphotypes found within the S (Appendix B).  The unique 

morphotypes within LR were from several phyla, including Annelida, Arthropoda, 

Mollusca, and Echinodermata.  Some notable “rhodolith-specific” invertebrates were one 

morphotype of sipunculid, small spider crabs, sea mites, chitons, limpets, sea stars, and 

sea urchins.  Leptochelida sp. 2 (Tanaidacea) was the most abundant of the “rhodolith-

specific” invertebrates at 6.0 ± 0.6 individuals per core in Cherry Cove.  There were a 
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few taxa that were only found in the DR habitat, however these morphotypes were rare 

with most represented by one individual.  It is possible that these morphotypes do live 

within the LR habitat type, but are so rare that the sample effort of this study was too 

small to detect them.  The species unique to S were mostly polychaetes and bivalves with 

one species of sand-dwelling gastropod (Gastropoda 17).   

Physical Structure Versus Live Material: 

   Within rhodolith habitat, there is a continuous gradient between what is 

subjectively called live rhodolith habitat and dead rhodolith habitat.  The two substrate 

characteristics that offer the greatest difference between LR and DR habitats were the 

amount of intact rhodoliths and amount of live rhodolith material (Table 2, Fig. 4).   

Simple linear regression was used to compare these traits between all LR and DR cores 

versus total invertebrate abundance and taxonomic richness.  This confirmed that total 

abundance (total abundance = 568.802*(percent sediment> 4750 µm) + 281.289, F1,34 = 

4.987, p = 0.032, r2 = 0.128) and taxonomic richness (taxonomic richness = 

48.431*(percent sediment> 4750 µm) + 29.035, F1,34 = 14.369, p = 0.001, r2 = 0.297) were 

positively correlated with percent dry weight of intact rhodoliths (Fig. 8A&C).  Total 

invertebrate abundance per core (F1,34 = 1.613, p = 0.213, r2 = 0.045) was not correlated 

with percent dry weight of live rhodolith material while there was a weak but positive 

correlation with taxonomic richness (taxonomic richness = 36.2900*(percent live 

rhodolith material) + 29.045, F1,34 = 6.750, p = 0.014, r2 = 0.166; Fig. 8B&D).  It 

appeared that intact rhodoliths (>4750 µm) explained more variation in the abundance 

and taxonomic richness per core for the associated invertebrates than percent live 

rhodolith material, but only accounted for about 12% to 30% of the variation.   
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Figure 8.   Total cryptofaunal invertebrate abundance and taxonomic richness 

relative to intact rhodoliths and live rhodolith material.  Only counts from Live 
Rhodolith and Dead Rhodolith habitats used in graphs. A.) Percent dry weight of intact 
rhodoliths (> 4750 µm) against total invertebrate abundance per core (p = 0.032, r2 = 
0.128), B.) Percent dry weight of total live rhodolith material against total invertebrate 
abundance per core (p = 0.213, r2 = 0.045), C.) Percent dry weight intact rhodoliths (> 
4750 µm) against taxonomic richness per core (p = 0.001, r2 = 0.297), D.) Percent dry 
weight of total live rhodolith material against taxonomic richness per core (p = 0.014, r2 = 
0.166).    

DISCUSSION   

This current study supports the growing body of evidence that the presence of 

rhodoliths support high abundance and diversity of invertebrates relative to other 

sedimentary benthic habitats (Steller et al. 2003, Figueiredo et al. 2007, Foster et al. 

2007, Gagnon et al. 2012, Neill et al. 2015).  The live rhodolith habitat at Catalina Island 
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supported greater motile cryptofaunal invertebrate abundance, taxonomic richness, and 

number of “obligates” than adjacent dead rhodolith or sand habitats.  The relatively high 

abundance and diversity of polychaetes and crustaceans found in Catalina rhodolith 

habitats is consistent with other habitat modifiers, such as kelp holdfasts (Andrew 1945, 

Foster & Schiel 1985), and was consistent with other rhodolith invertebrate communities 

(De Grave 1999, Steller et al. 2003, Foster et al. 2007, Berlandi et al. 2012). However, 

the high abundance of a single genus of gastropod (Amphithalamus spp.; 20,000-50,000 

ind./m2) seems to be unique to the Catalina Island rhodolith beds.  This gastropod genus 

is known to associate with attached coralline algae and gravel along the California coast 

(Carlton 2007, J. Pearse, personal communication).  By documenting the associated 

cryptofaunal invertebrate assemblages of Catalina Island rhodolith beds, this study was a 

first step towards understanding this understudied coastal ecosystem.     

The rhodolith beds at different sites at Catalina Island appear to support similar 

invertebrate assemblages.  The site related differences in taxonomic richness between live 

rhodolith sites seem to be driven by the presence of different rare morphotypes and 

varying abundances of the dominant morphotypes.  Studies of other rhodolith bed 

invertebrate assemblages either remove rare species from their analyses (De Grave 1999, 

Gabara 2014) or do not sort to species level (Gagnon et al. 2012).  Rare species are 

important for understanding the ε-diversity (absolute diversity) for a habitat and should 

not be overlooked during diversity studies (Zajac et al. 2013).  These species can account 

for 30-40% of the total species found in some rhodolith beds (Reira et al. 2012, Neill et 

al. 2015) and in this study they account for 24.6% of taxa found in live rhodolith habitat.  

More sampling is needed to determine if site differences are merely patch differences 
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within the same larger community or if these rare species are indicative of unique 

communities.   

Invertebrate assemblages, in this study, strongly clustered by site in sand habitat 

while invertebrate communities only loosely clustered by site in rhodolith habitats, 

suggesting rhodoliths might mitigate site differences.  Environmental factors can 

influence the sediment profiles of soft-sediment that in turn influence the associated 

invertebrate communities (e.g. Gray 1974, Thrush et al. 2003, Anderson 2008, Byers & 

Grabowski 2014). If environmental factors are driving the differences between sand 

habitats at the different sites, it is possible that rhodolith (live and dead) presence has a 

unifying effect on invertebrate assemblages.  This facilitation has been studied in other 

systems.  Mussel beds have been shown to mitigate the environmental stresses impacting 

different sites, resulting in greater similarity in the associated invertebrate communities 

between mussel plots across sites than between plots lacking mussels across sites (van 

der Zee et al. 2015).  Other possible mechanisms for the observed differences in 

community assemblages is that rhodolith branches can increase the amount of detritus 

retained, thus increasing the amount of available food (Grall et al. 2006, Gabara 2014).  

Further research is needed to identify the possible mechanisms for this unification of 

associated invertebrates due to the presence of rhodoliths.   

Even though site differences were subtle, various abiotic factors might influence 

these differences.  Avalon Harbor is geographically further away from the other sites and 

the bed is located twice as deep as the other beds.   However, Avalon Harbor had similar 

abundance and taxonomic richness values as Isthmus Harbor, while Cherry Cove had the 

highest invertebrate abundances and number of rare morphotypes compared to the other 
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sites within live rhodolith habitat.  Cherry Cove did have the lowest amount of silt (< 63 

µm) for each habitat.  The amount of silt could have negative impacts on the structure 

and function of invertebrates associated with rhodolith beds (Grall & Glémarec 1997) and 

should be considered in future investigations.   

Avalon Harbor provided an unexpected insight into the importance of rhodoliths 

as physical structure versus living substratum.   The invertebrate community in the dead 

rhodolith habitat at Avalon Harbor was similar to the other dead rhodolith sites.  

However, the size classes that contain rhodolith fragments (500 – 4750 µm) contained 

similar amounts of percent dry weight live rhodolith material as the live rhodolith habitat.  

If living tissue was a strong factor for habitat selection by motile cryptofaunal 

invertebrates, then Avalon Harbor’s dead rhodolith habitat should have clustered with the 

live rhodolith habitat instead of the other dead rhodolith habitat sites, but this was not 

observed in the present study.  Across all sites, percent live material did not correlate 

with the total abundance while the largest size class of sediment (i.e. intact rhodoliths) 

did positively correlate.  Figueiredo et al. (2007) found that when rhodolith sizes were 

similar, there was no statistical difference in the motile invertebrate community between 

recolonized live and dead rhodoliths.  However, the presence of live rhodolith material 

has been found to be an important factor to recruiting of planktonic larvae (Steller & 

Caceres-Martinez 2009).  I hypothesize that the motile invertebrates in this study were 

attracted to the intact rhodolith, because of physical structure rather than living surface.   

Replication of studies can strengthen hypotheses and illuminate possible errors in 

methods or presence of unknown factors (Underwood 1990).  Another Catalina Island 

rhodolith community study, recorded 20.9 taxa per core and a mean abundance of 25,915 
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ind./m2 of the cryptofaunal invertebrates within live rhodolith habitat (Gabara 2014).  The 

two-fold greater taxonomic richness and the five-fold greater mean abundance reported in 

this study may be due to methodological differences.  Though both studies collected 

samples during December 2013, Gabara (2014) also collected cores during April 2013.  

Gabara (2014) density estimates were from 24 cores (6.5 x 10 cm) taken in areas of > 

50% pigmented rhodoliths while this study took 18 cores (7 x 5 cm) from areas of > 90% 

pigmented rhodolith.  As a consequence, both studies recorded different amounts of intact 

rhodoliths (> 4750 µm; Gabara 2014 = 4.3% -7.3%, this study >20%).  Invertebrates 

were also sorted to different levels of taxonomic resolution.  Gabara (2014) sorted to 

higher taxonomic levels (e.g. gammarid, gastropod, ostracod, polychaete), while the 

present study attempted to sort to species level, as inferred from distinct morphotypes.  

However, even accounting for these differences, a major difference was the lack of 

gastropods detected by Gabara (2014) within the cryptofauna.  In this study, 

Amphithalamus sp. was the most abundant animal within live rhodolith habitat and was 

still noticeable within the dead rhodolith habitat.  It is possible that Amphithalamus sp. 

has a very patchy distribution within the bed, and random chance resulted in Gabara 

(2014) sampling areas of low abundance, while this study sampled areas of high 

abundance.    

Differences in collection methods and substrate and faunal definitions make 

comparisons to other sites within the rhodolith literature challenging.  Studies from Bahía 

Concepción, Baja California Sur, consistently reported between 104-118 taxa within the 

cryptofauna (Medina-Lopez 1999, Hinojosa-Arango and Riosmena-Rodriguez 2004, 

Foster et al. 2007), which are lower numbers than found in this study (142 taxa).  
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However, in these previous studies rhodoliths were collected by hand instead of coring.  

The inclusion of near-surface infauna into the cryptofaunal assemblages by coring is 

probably inflating the Catalina Island diversity.  Neill et al. (2015), using cores, found 

197 invertebrate taxa within two New Zealand rhodolith beds and Sciberras et al. (2009) 

found 244 faunal taxa in Malta.  Higher latitude beds have reported lower diversity with 

only 61 taxa found in Norwegian beds (Teichert et al. 2014). However, not all the 

northern studies identified invertebrates down to the species level causing possible 

underestimation of diversity (Konar et al. 2006, Gagnon et al. 2012).  European rhodolith 

beds have some of the highest reported diversities with the Atlantic and Mediterranean 

having over 450 species of invertebrates. These studies failed, however, to differentiate 

between different faunal types (e.g. infauna vs cryptofauna), size classes, or substrate 

conditions (Barbera et al. 2003).  Even when faunal type is taken into consideration, 

comparisons are still challenging because of the lack of universal conformity of 

definitions and methods.   

Using definitions from previous studies (Steller et al. 2003, Foster et al. 2007), 

some of the associated invertebrates identified in this study, could be classified as 

epifauna (living on top of the rhodolith) or infauna (living within the sediment below 

rhodoliths) instead of cryptofauna (living within the rhodolith).  However, due to the 

small size of the rhodoliths at Catalina Island (Tompkins 2011), differentiating these 

groups was nearly impossible.  Also, given the potential for cryptofaunal invertebrates to 

be found on the outside of large rhodoliths (Gagnon et al. 2012) or within the sediment 

(Steller et al. 2003), I suggest that all future work involving associated invertebrates use 

cores or grabs large enough to sample several rhodoliths.  This method will ensure that 
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invertebrates using the spaces between interlocking rhodoliths are not excluded from the 

cryptofauna.  Cores and grab sampling allows for densities to be calculated in either m3 

or cm3, and comparisons could then be made between beds of different rhodolith sizes.  If 

necessary, a division by size could be made between large invertebrates that are easily 

observed versus smaller, more cryptic, organisms that require investigation under a 

dissecting scope. Standardization of methods and terms in future studies would allow 

communities to be compared across biogeographical scales and among different rhodolith 

species. 

While this study concludes that Catalina Island rhodolith beds support higher 

species richness and abundances than adjacent sand habitat, the mechanisms driving these 

patterns are unclear.  Observations from this study support the hypothesis that rhodolith 

structure is the main driver determining invertebrate diversity and abundance.  Further 

research is needed, along with standardized methods, to better understand the ecology of 

the associated invertebrates and the benefits rhodoliths provide as a foundation species 

worldwide.  
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APPENDIX A 

 

LOCATION, DEPTH, AND SIZE OF CATALINA 

ISLAND RHODOLITH BEDS SAMPLED  (MODIFIED 

FROM TOMPKINS 2011). 

 

  



 

 

 

Site 
Latitude 

(N) 

Longitude 

(W) 

Live Cover 

(m2) 

Dead Cover 

(m2) 

Depth Range 

(m) 

     Min. Max. 

Avalon Harbor 33.3477 118.3246 9,765 4,093 7.8 21 

Isthmus Harbor 33.4441 118.4982 1,148 7,939 4.3 6.1 

Cherry Cove 33.4515 118.5022 2,627 5,543 5.8 7.3 

 

Appendix A. Location, depth, and size of Catalina Island rhodolith beds sampled for cryptofauna 
in this study.  Data based on surveys conducted in 2009 (modified from Tompkins 2011). 
 
  



 

 

APPENDIX B 

MEAN ABUNDANCE OF MOTILE INVERTEBRATES 

BASED ON HABITAT AND SITE FOR CATALINA 

ISLAND RHODOLITH BEDS COLLECTED 

DECEMBER 2013 
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