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ABSTRACT

DETERMINING ECOTYPE PRESENCE AND THE CALL REPERTOIRE OF KILLER
WHALES (ORCINUS ORCA) RECORDED NEAR POINT HOPE, ALASKA IN THE
SOUTHEASTERN CHUKCHI SEA

by
Brijonnay Madrigal

Master of Science in Marine Science
California State University Monterey Bay, 2019

As apex predators, killer whales (Orcinus orca), can have large impacts on ecosystems.
These impacts can be dependent on ecotype presence. In the North Pacific, three genetically
distinct ecotypes exist that differ in diet, range, morphology, and vocal behavior. Killer
whales occur in the Chukchi Sea but, few data exist regarding ecotypes present. Since killer
whale ecotypes differ in vocal behavior, they can be distinguished based on call type, call
rate, and bandwidth. An Autonomous Underwater Recorder for Acoustic Listening
(AURAL) device was deployed 75 km off Point Hope, Alaska in the southeastern Chukchi
Sea to identify which killer whale ecotypes were present in this region. A total of 1315 killer
whale calls were detected on 38 days during the summers of 2013 to 2015. Calls were
manually grouped into six categories based on the general call contours: multi-part,
downsweep, upsweep, modulated, single modulation and tonal. Most detections were tonal
calls (n =607, 46%), and multi-part calls (n = 351, 27%) that contained high frequency and
low frequency components. Comparison of the current call dataset with published literature
showed similarities in peak frequency with other transient populations. These results indicate
occasional presence of transient killer whales in the southeastern Chukchi Sea. This study
provides the first comprehensive, catalogue of transient killer whale vocalizations in this
region.
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INTRODUCTION

Killer whales, Orcinus orca, are apex predators and as such can have large
impacts on ecosystems through top-down predation (Estes et al., 1998; Williams et al.,
2004). Killer whales are delineated into ecotypes, which are genetically distinct groups
that differ in geographical range, morphology, social structure, vocal behavior, and diet
(Ford, 1989, 1991; Deeke et al., 2005). To assess potential predation impacts on the
ecosystem, it is important to identify the ecotypes present in an area.

Three killer whale ecotypes occur in the North Pacific and Alaskan waters:
resident, transient, and offshore. Resident killer whales are fish specialists. They travel in
stable, matrilineal groups of 3-80 individuals and display high site fidelity with typical
home ranges of less than 200 km (Baird et al., 1992; Deeke et al., 2005; Saulitus et al.,
2005; Fearnbach et al., 2014). Bigg’s killer whales (or transients) feed on marine
mammals. They travel in less stable associations of up to 15 whales or as solitary
individuals, and transition away from matrilineal associations once sexually mature
(Morton, 1990; Baird et al., 1992; Ford & Ellis, 1999). Transients have large home
ranges, and photo identification has documented Alaskan transient ranges spanning from
the Aleutian Islands to Barrow, AK in the northeastern Chukchi Sea, a distance of
approximately 2,000 km (Clarke et al., 2013). Offshore killer whales are seldom found in
coastal waters; they maintain a distance of >15 km from shore and can travel one-way
distances of over 4,000 km (Ford et al., 1996; Dahlheim et al., 2008). Although little is
known regarding this ecotype, it is thought that they prey primarily on fish, with evidence
of predation on sharks from observations and stomach content analysis (Morin et al.,
2006; Dahlheim et al., 2008).

In addition to the behavioral differences described above, ecotypes differ
acoustically. Killer whales use vocal communication for a variety of functions, including
maintaining contact or group cohesion, mediating social interactions, and foraging (Ford
and Fisher, 1983; Ford, 1984). Killer whales produce three types of vocalizations that
serve different functions: clicks, whistles, and pulsed calls (Ford and Fisher, 1983).
Short-duration broadband clicks are used in echolocation, which functions in feeding and

navigation (Barrett-Lennard, 1996; Au et al., 2004). Whistles are narrowband signals that



function in close-range communication (Thomsen et al., 2001; Riesch et al., 2008).
Pulsed calls are the most common vocalization used for communication and are
composed of a series of pulses produced in such rapid succession as to sound tonal
(Watkins, 1968). Pulsed calls are usually stereotyped and can be identified based on
discrete frequency contours, duration, inflection points and sideband intervals (Ford,
1989, 1991). This call type is often used to distinguish ecotypes.

Previous studies used frequency characteristics of pulsed calls to compare
ecotypes (Foote & Nysteun, 2008; Filatova et al., 2015). Residents vocalize in higher
frequency ranges (500 Hz - 1 kHz), to avoid detection by salmonid prey that have a low
frequency hearing sensitivity (Filatova et al., 2015). Transient calls generally have a
lower peak fundamental frequency than residents (<500 Hz vs 500-1500 Hz,
respectively). These lower frequency calls will propagate further under water, and
because transients travel in smaller and more fluid groups, this may be important in
communicating over longer distances (Bigg et al., 1990; Ford et al., 1998). The offshore
ecotype produces calls with a higher minimum frequency (>0.5 kHz) than other ecotypes,
which may be a technique used to avoid masking by low frequency, chronic wind noise
that is characteristic of offshore waters (Foote & Nysteun, 2008).

In addition to fundamental frequency differences, call rate and repertoire diversity
can also be used to discriminate ecotypes. Residents produce pulsed calls as the primary
mode of communication when spatially distant; they are also often produced when
foraging (Ford and Fisher, 1983). Residents vocalize frequently, have diverse repertoires
consisting of 6-17 call types, and pods have specific dialects (Ford, 1991; Saulitis et al.,
2005; Deeke et al, 2010). In contrast, transients are less vocal to avoid detection by prey
with a similar auditory frequency range; they have repertoires of only approximately 6
call types, and primarily vocalize when milling after a kill so as not to disclose their
presence and location to prey during the hunt (Deeke et al., 2000; Deeke, et al., 2005).
Few descriptions or comparisons exist of offshore pulsed calls (see Filatova et al., 2012;
Simonis et al., 2012; Foote & Nysteun, 2008 for exceptions).

In the North Pacific, both residents and transients occur in the Gulf of Alaska and
Bering Sea (Muto et al., 2016). However, less is known about the killer whale
populations in the Chukchi Sea (Muto et al., 2016) (Figure 1). The southern Chukchi Sea
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Figure 1. Approximate distribution of (a)North Pacific transient stocks: Gulf of
Alaska/Aleutian Islands/ Bering Sea, AT1 and West Coast (b) Alaska Resident and

Northern Resident from Muto et al. (2016). The thin black line around Alaska denotes the
U.S. Exclusive Economic Zone (EEZ).




is one of the most productive areas in the world (Springer et al., 1996; Grebmeier et al.
2006). Water masses originating in the Bering Sea transport nutrient-rich water through
the Bering Strait to the southern Chukchi Sea and support the advection of zooplankton
(Springer et al., 1996; Grebmeier et al., 2006; Grebmeier et al., 2012). This supply of
nutrient-rich waters and the advection process results in high productivity in the spring
and summer. Because of this high productivity, the Chukchi Sea is a feeding ground for
many seasonally migrant cetacean species, including gray whales (Eschrichtius
robustus), fin whales (Balaenoptera physalus) and humpback whales (Megaptera
novaeangliae). Killer whales have been documented in the Chukchi Sea from aerial and
boat-based surveys since the 1980s (Ljungblad & Moore, 1983; Lowry et al, 1987,
George & Suydam, 1998; Aerts et al., 2013; Clarke et al., 2013; Vate Brattstrom et al.,
2019), and many of these sightings have included observations of predation events on
marine mammals, indicating the killer whales were transients (Ljungblad and Moore,
1983; Clarke et al., 2013; Huntington & Quakenbush, 2013; Vate Brattstrom et al., 2019).
Although acoustic detections of killer whales have been reported in the Chukchi Sea,
some of which have been classified as transient (Clarke et al., 2013; Hannay et al., 2013;
Stafford, 2019), none of these studies have provided information on call characteristics or
a description of call types. Overall, there is little published research identifying resident
presence in the Chukchi Sea apart from a few sightings in 2013 (Vate Brattstrom et al.,
2019).

The lack of detailed acoustic analysis of killer whale ecotypes in this region is in
part a result of a lack of dedicated effort until recent years. Due to the difficulties of
accessing the Chukchi Sea, long-term passive acoustic monitoring is a powerful tool that
can determine ecotype presence without the need for a full-scale survey. In this study, we
sought to identify killer whale ecotype presence at a site in the southern Chukchi Sea by
characterizing pulsed calls recorded during three consecutive summers. We predicted that
transients would be the primary ecotype detected at this site, based on prey availability,
previous observations, and home range. Identifying ecotype presence at this site would
increase our knowledge on the spatio-temporal distribution of killer whales in the Arctic

and have implications for ecosystem management in this area. This study also provides



the first vocal catalogue of killer whale calls recorded in the Chukchi Sea, which can be

used as baseline for future acoustic studies in the Alaska region.

METHODS

STUDY SITE AND DATA COLLECTION

Data used in the current study were collected as part of the Arctic Whale Ecology
Study (ARCWEST, Vate Brattstrom et al., 2019). Passive acoustic data were collected
using Autonomous Underwater Recorders for Acoustic Listening (AURAL') devices,
deployed on subsurface moorings in the southeastern Chukchi Sea (Figure 2).

Data used in the current study were from a mooring location approximately 75 km
southwest of Point Hope. The recorders, which were approximately 6 m above the
seafloor, sampled at 16 kHz on a duty cycle of approximately 30% (Table 1). Moorings
were deployed annually from mid- August of 2012 to mid- September 2015 (Table 1). A
preliminary manual analysis conducted by NOAA’s Alaska Fisheries Science Center
(AFSC) Marine Mammal Lab indicated a distinct peak in detections from June to August
every summer, likely due to the ice cover during the majority of fall and winter.
Previously published literature also indicated that killer whales were most commonly
visually observed in the southeastern Chukchi Sea and off Point Hope during the summer
(Frost et al., 1992; Clarke et al., 2013; Huntington & Quakenbush, 2013). Therefore, data
used in this study were limited to a subset of data from June through August in 2013,
2014 and 2015.

ACOUSTIC ANALYSIS

Acoustic recordings, in 5-10 minute wave files, were processed individually.
Spectrograms were first manually inspected in Adobe Audition (CC 2018) to determine
presence of killer whale pulsed calls. The percentage of files containing calls was
calculated for each day, and the percentage of files was compared and rectified with
AFSC pre-analyzed data. Files containing pulsed calls were then run through a semi-

automated detector using custom code in MATLAB (R2016b) (Figure 3) in order to

! Multi-Electronique, Inc., Rimouski, QC, Canada. Reference to trade names does not
imply endorsement by the National Marine Fisheries Service, NOAA.
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Table 1. Table of mooring information from 2012-2015 including location, depth,
deployment/retrieval dates, recording time periods and number of days with recordings.

Recorder Recorder Days with  Duty

Latitude Longitude  Depth Start Date End Date Recordings Cycle

Year (°N) (°W) (m) (min)
2012 67.90895 168. 19462 58  8/22/2012 8/23/2013 366 85/300
2013 67.90745  168. 20265 55  8/24/2013 9/29/2014 401 80/300
2014 67.90793  168.20217 68  9/17/2014 9/20/2015 368 80/300




8

extract each call for further processing. To detect calls, the semi-automated detector used
an energy threshold set to 35% of the envelope maximum for the file. This threshold was
determined based on testing of the detector against a subset of ten files from the data set
with a known number of manually identified calls. When the audio exceeded the
threshold level, the signal was clipped into a single wave file that included the original
signal (call) and buffers, 1.5 seconds before the start of the call (the point where the
signal exceeded the energy threshold) and 1.5 seconds after the end of the call (the point
where the energy dropped below the threshold) in order to ensure the entire call was
included. Unfortunately, this analysis generated many false positive detections (average
false positive rate = 75%), and the detection accuracy was low with an average of 21% of
calls detected (average false negative rate = 79%). False positives were manually
removed from the data set. For example, in Figure 3 although there are 7 calls present,
only 4 calls were detected by the auto detector, including one false positive at 566
seconds. This method allowed us to determine with reasonable accuracy the number of
days killer whales were present, and it produced enough calls to determine ecotype.
However, we were not able to generate daily call rates because of the false negatives, the
duty cycle data and the fact that the number of callers was unknown.

From the extracted calls, false positives were manually removed, and then the
fundamental frequency contour was traced from spectrograms (512 FFT, 16 kHz, Hann
50% overlap, 31 ms TAR (Time Analysis Resolution)) using the manual contour
extraction method in ROCCA (Real-time Odontocete Call Classification Algorithm) for
PAMGUARD 1.15.14 software module (Oswald and Oswald, 2013). The following
seven parameters were extracted from the contour trace and used to compare call
categories: minimum frequency (Hz), maximum frequency (Hz), start frequency (Hz),
end frequency (Hz), duration (s), bandwidth (Hz), peak frequency (Hz) and frequency
slope mean (Hz/s) (Table 2; Figure 4). Peak frequency of the call was determined from
the contour points file and based on the highest energy value.

The analyst selected the start and end points of the call and then ROCCA
automatically extracted the call contour by stepping through the spectrogram one time
slice (Time Step Size- 15.63 ms) at a time and calculating the peak frequency within a

specific frequency band for each time slice. The upper and lower limits of that frequency
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Table 2. Variables measured by ROCCA and used to characterize and compare calls in
this study.

Variable Name Explanation (Oswald, 2013)

Start frequency Frequency at the start point of the call (Hz)

Ending Frequency Frequency at the end point of the call (Hz)

Minimum Lowest frequency of the call (Hz)

Frequency

Maximum Highest frequency of the call (Hz)

Frequency

Duration Duration of the call (Seconds)

Bandwidth Maximum frequency - minimum frequency (Hz)

Peak Frequency Determined by the contour point file and was based on the peak
frequency that corresponded with the highest energy value of
the call. (Hz)

Frequency Slope Overall mean change in frequency over time (Hz/second)

Mean
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Figure 4. Parameters extracted in ROCCA from connected contour points (red line). (a)
Amplitude spectrum including the peak frequency (Hz) (b) Spectrogram (FFT size 1024,
16 kHz, Hamming 50% overlap) of a killer whale pulsed call including start frequency

(Hz), end frequency (Hz), duration (s), minimum frequency (Hz), and maximum
frequency (Hz).
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band were defined by the peak frequency of the previous time slice +/- the noise
sensitivity. Noise sensitivity in ROCCA was adjusted for each individual call to extract
the best contour match (Oswald and Oswald, 2013). Isolated contour points were adjusted
manually for each call to best match the contour trace. The criteria for calls to be
included in this study were as follows: (1) detected by automatic detector; (2) non-
overlapping; (3) start/end time was clear so contour could be selected and detected in
ROCCA; (4) end and start of the call were not cut-off by audio clip because detector

clipped the call in creating the wave file.

VOCAL CATALOGUE OF PULSED CALLS

Alpha-numerical naming systems have been developed to catalogue killer whale
vocalizations (Ford, 1984, 1987; Deeke et al., 2005; Saulitus et al., 2005; Rehn et al.,
2011). However, naming schemes differ among locations and are often study specific. A
unique alpha-numerical system was developed to delineate catalog categories for this
region based on previously published killer whale catalogues from other regions (Ford,
1987; Yurk et al., 2002; Filatova et al., 2007). This system incorporated a three-part
naming system to delineate call types including geographical location, call type based on
general contour shape and subcategories of call types. The letter abbreviation “CH”
indicated recording location (Chukchi Sea). General contour shape was expressed
alphabetically using lowercase letters corresponding to each contour, using features such
as start and end frequency, maximum and minimum frequency, duration, and frequency
slope.

Calls were first manually categorized by a single observer (BM) into call types
based on contour shape and were compiled into a vocal catalog. Six call contour
categories were used: multi-part calls (p), downsweep (d), upsweep (u), modulated (m),
single modulation (s), and tonal (t) (Table 3). The ‘Multi-Part’ (CHp) call type was
defined as being composed of a combination of 1-3 low frequency components (LFC)
and 1 high frequency components (HFC) (Table 3). LFC and HFC have been used
previously to describe acoustic components of killer whale pulsed calls (Filatova et al.,
2015). ‘Upsweep’ (CHu) calls had a start frequency that was lower than the end
frequency. The ‘Downsweep’ (CHA) calls had a higher start frequency than end
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Table 3. General call contour categories including the number of calls and call sub-
categories. Abbreviations are included along with a description of each call category.

Contour # of
Category Abbreviation n sub-categories Description
) Calls comprised of 2-4 parts. Includes high

Multi-part p 351 11 frequency (HFC) and low frequency
components (LFC).

Downsweep d 175 4% Descending call contour, higher start
frequency than end frequency.
Ascending call contour with lower start

%

Upsweep b 2 6 frequency than end frequency.

Modulated m 60 5% Call with greater than 2 modulations.

Single S 31 2 Call with 1 inflection.

Tonal t 607 T* Linear calls with a bandwidth <225 Hz
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frequency. ‘Tonal’ calls (CHt) were linear calls with a bandwidth of <225 Hz.
‘Modulated’” (CHm) calls have two or more modulations and were counted manually to
determine modulation rate (Figure 5). ‘Single’ calls (CHs) were calls with only one
modulation.

Within these six call contour categories, automated sub-categorization of call
types was conducted in R (v 3.6.1 R Development Core Team, University of Auckland,
New Zealand). Hierarchical cluster analysis in the R package pvclust (distance measure
(method.dist)= euclidean, agglomerative method (method.hclust)= average) was used to
divide single part call types (e.g. downsweep) into subcategories based on minimum
frequency, maximum frequency, start frequency, end frequency, peak frequency,
duration, and frequency slope mean. For the tonal category (described below), only 4
parameters were used (start frequency, end frequency, duration, and frequency slope
mean) due to the high correlation between the variables. An unbiased, multi-scale
bootstrapping (number of bootstrap replications: nboot=1000) resampling calculated the
p-value associated with each cluster of the dendrogram output as well as the
Approximately Unbiased p-value (AU-red) and Bootstrap Probability (BP-green).
Clusters with an AU greater than 95% (red rectangles on dendrograms) were strongly
supported by the call parameters. For multi-part calls, the cluster analysis was not used,
and sub-categories were determined manually based on stereotyped HFC and LFC parts.
Due to very high stereotypy and repetition, this call categorization was unambiguous.
Subcategorical variation within each call category was denoted numerically in the call

name based on the order the call grouping appeared in the branching of the dendrogram.

STATISTICS
Call category verification

Descriptive statistics (i.e., mean and standard deviation) of all parameters were
calculated to compare call types in this study. A Principal Component Analysis (PCA)
was conducted in R to assess the similarity between the call categories based on five
factors: minimum frequency, maximum frequency, peak frequency, start frequency, and

end frequency. These parameters were chosen because they were used in call
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Figure 5. Diagram depicting the modulation rate (number of modulations/second)
calculation for modulated calls.
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categorization and produced optimal clustering. A One-way ANOVA and Tukey post
hoc test was conducted in the Statistical Package for Social Sciences (SPSS) to test for
differences between call categories using seven parameters: start frequency (Hz), end
frequency (Hz), minimum frequency (Hz), maximum frequency (Hz), peak frequency
(Hz), duration (s) and frequency slope mean (Hz/s). Due to the large range of number of
calls in each call type (60-607 calls) a randomized subsample of 50 cals from each call
categories was used for ANOV A comparisons to avoid skewing results. One call type
(CHs) only contained 31 calls; this category was not subsampled and the entire dataset

was used.

Comparison with other studies

A one-way ANOVA and Tukey post hoc comparison of means test was used to
compare minimum frequency and peak frequency mean values of all Chukchi Sea calls
(CH, current study) with minimum frequency and peak frequency values for resident,
transient, and offshore calls as described in Foote and Nysteun (2007) and peak
frequency values in Filatova et al. (2015) (Table 4). A histogram comparison of call
contour points was also conducted for six Alaskan and NE Pacific populations including
four resident killer whale populations (Kamchatka, Alaska, Northern Residents and
Southern Residents) and two transient killer whale populations (West Coast Transients
and False Pass transients). As part of this analysis, both LFC and HFC contour points
were plotted and compared to graphs from Filatova et al. (2015) containing both LFC and
HFC of calls because differences in histogram distributions served as an indicator of

ecotype.

RESULTS

Of a total of 10,991 wave files (1798h) from the three summers (June-Aug of
2013, 2014, and 2015), 410 wave files (4%) contained killer whale calls and were
included in analyses (2013: 30h; 2014: 25h; 2015: 12h). Of 276 days analyzed, 38
contained killer whale pulsed calls and were included in the study. A total of 1315 pulsed

calls were extracted and met the criteria for analysis. The majority of calls (n=800) were



Table 4. Literature and corresponding analysis.
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Literature Ecotypes Compared Analysis Parameters
Compared
Foote & Nysteun Resident One-Way Minimum Frequency
(2007) Transient ANOVA Peak Frequency
Offshore Tukey post hoc
Filatova et al. (2015) Residents (Kamchatka, Histogram of Peak Frequency
Alaska, Northern, Contour Points
Southern)
Transients
(West Coast, False Pass)
Filatova et al. (2015) North Atlantic Boxplot Peak Frequency
Resident
Transient
Yurk et al. (2002) Alaska Residents Call Contour Side Band Interval
Ford (1987) Northern & Southern Comparisons Duration

Deceke et al. (2005)
Saulitis et al. (2005)

Residents
West Coast Transients
ATI1 & Gulf of Alaska
Transients
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recorded in 2013 (61%) with the most calls recorded in July (June: n= 132 calls, July-
5609 calls, August- 99 calls). Of the 3 months, July contained the most detections (76%)
over 21 days (n=21) within all three years (2013: n=10 days; 2014: n=8 days; 2015: n=3
days) (Figure 6). The mean minimum, maximum, and peak fundamental frequency of all
calls (LFC only) combined was 610 Hz (+ 159 Hz), 858 Hz (+ 245 Hz), and 724 Hz (+
204 Hz), respectively. Mean duration of all calls was 0.75 s (£ 0.40 s).

CALL CATEGORIES

Results from the PCA supported the call type categorization (Figure 7; explained
variance ratio: 0.85). Most of the variance in the data is explained by PC1 which is driven
by maximum and minimum frequency. The separation of call categories along the PC2
axis is driven by the start, peak and end frequency (Hz). The dendrogram outputs
resulting from the hierarchical cluster analysis showed discrete sub-categories within
each call type (Figure 8, Appendix A-F).

The two most common call types, CHp and CHt (Figure 9), together comprised
73% of all calls detected. CHt was the most common call type (n=607 calls, 46% of all
calls), produced on the most days overall (n=35 days). This call type had a mean peak
frequency of 709 Hz (+ 158 Hz), mean duration of 0.82 seconds (+ 0.35 s) and a low
average bandwidth (116 = 53 Hz) (Table 5). Average frequency slope mean of CHt was
15.4 Hz/s (= 140). A small percentage of CHt calls (4%) had a short duration (mean =
0.39 s + 0.2 s), high frequency part (mean peak frequency = 2706 Hz + 264 Hz) before
the low frequency tonal call.

CHp was the second most common call type and comprised approximately a
quarter of total calls (n=350, 26%; n=16 days). LFC mean peak frequency was 667 Hz (+
220 Hz), with a mean duration of 0.4 s (+ 0.3 s) and an average bandwidth of 223 Hz (+
154 Hz) (Table 4). HFC mean peak frequency was 1826 Hz (+ 621 Hz), with a mean
duration of 0.6 s (= 0.3 s) and an average bandwidth of 472 Hz (+ 459 Hz). The LFC and
HFC had an average frequency slope mean of 197 Hz/s (+ 1002 Hz/s) and 356 Hz/s (+
1488), respectively. The LFC had a maximum frequency <2 kHz and the HFC had a

maximum frequency range of 640-6700 Hz.
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Figure 6. Number of calls detected in each month (June-August) for 2013-2015
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Figure 7. PCA analysis comparing call types using five features: minimum frequency,
maximum frequency, peak frequency, start frequency, and end frequency (explained
variance ratio= 0.85).
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Cluster dendrogram with AU/BP values (%)
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Figure 8. Dendrogram of downsweep call type from a hierarchical cluster analysis. Call
categories (CHd1-CHd4) are indicated by the five color bubbles above including a
variable call category (pink bubble).
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Figure 9. Representative examples of the subcategories within each call category (1024
FFT size, 16 kHz, Hamming 50% overlap): (a) multi-part (CHp), (b) modulated (CHm),
(c) single modulation (d) (CHs), downsweep (CHdA), (e) upsweep (CHu) and (f) tonal
(CHt). Figure 8a contains brackets indicating the different parts of the call including low
frequency components (L) and high frequency components (H). The black box on the

CHt8 spectrogram in Figure 91, indicates the part 1 characteristic of a small subset of
tonal calls.
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The downsweep calls, CHd (n=175, 13%; n=20 days), had a mean peak frequency
of 844 Hz (+ 225 Hz), with a mean duration of 0.95 s (£ 0.4 s) and an average bandwidth
of 418 Hz (£ 254 Hz) (Table 5). CHd was the only call type with an overall negative
average frequency slope mean of -279 Hz/s (+ 267 Hz/s).

The upsweep calls, CHu (n =92, 7% of calls; 20 days), had a mean peak
frequency of 909 Hz (£ 259 Hz), with a mean duration of 0.9 s (= 0.5 s) and an average
bandwidth of 465 Hz (+ 238 Hz) (Table 4). Average frequency slope mean of CHu was
709 Hz/s (+ 858 Hz/s), the highest positive average frequency slope mean of all call
types.

The modulated calls, CHm (n = 60, 5% of calls, 9 days) contained 5% of all calls,
with an average modulation rate of 3.6 mod/s. CHm calls had a mean peak frequency of
849 Hz (+ 188 Hz), with a mean duration of 0.9 s (+ 0.3 s) and an average bandwidth of
493 Hz (+ 293 Hz) (Table 5). Average frequency slope mean of CHm calls was 7.1 Hz/s
(£ 442 Hz/s). The low slope value and high variability is the result of the fluctuation of
the slope caused by the modulations.

Single modulation calls, CHs, were the least common call type comprising only
2% of total calls (n=31, 2%; n=11 days). CHs calls had a mean peak frequency of 754 Hz
(+ 205 Hz), with a mean duration of 0.5 s (+ 0.2 s) and an average bandwidth of 329 Hz
(£ 215 Hz) (Table 5). Average frequency slope mean of CHs calls was 186 Hz/s (= 599
Hz/s).

Only the CHp calls contained an HFC and the HFCs of the CHp calls were
significantly higher in minimum, peak, maximum, start and end frequency than all other
call type categories (one-way ANOVA, p<0.001, Tukey post hoc comparison of means,
p<0.001) (Figure 10 and Supp. Table 2). CHu calls had a significantly higher minimum
frequency than CHm (ANOVA, p<0.0001; Tukey, p=0.047) (Figure 10 and Appendix
G). The CHu calls also had significantly higher peak and maximum frequencies than
CHp LFC (ANOVA, p<0.001, Tukey, peak: p= 0.001, max: p=.002) and CHt calls
(ANOVA, p<0.001, Tukey, peak — p=0.007, max - p<0.0001; Figure 10 and Appendix
G). Call duration was also a discriminatory factor among call types (Figure 10 and
Appendix G). The CHp LFC was significantly shorter in duration than all other call types
except for CHs (ANOVA, p<0.001, Tukey, p<0.0001; Figure 10 and S2).
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(Hz); (b) peak frequency (Hz); (¢) maximum frequency (Hz); (d) duration (s); (e) start

frequency (Hz); (f) end frequency (Hz); (g) bandwidth (Hz); (h) frequency slope mean
(Hz/s) across all six call categories. Multi-part = (CHp) LFC only; downsweep = CHd;
upsweep = CHu; modulated = CHm; single = CHs; and tonal = CHt. Asterisks indicate
significance at the 0.5 level with the corresponding call types (indicated with brackets).
Double asterisks (**) indicate significance that call category and all other categories.
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This is likely due to the inclusion of part 1 and 3 of the CHp calls notably in CHp?2,
CHp3, CHp4 and CHpS5 categories which are characteristically short in duration. CHs
was significantly shorter in duration than all categories excluding CHp ANOVA,
p<0.001, Tukey, (CHd, CHm, CHu: p<0.0001 and CHt: p=.006; Figure 10 and S2). Start
frequency did not show significance across any categories, although end frequency of
CHu calls was significantly higher than all other call categories (ANOVA, p<0.0001;
Tukey, CHp, CHd, CHm, CHt: p<0.0001, CHs: p=0.003). CHu slope rate was
significantly different than CHd (ANOVA, p<0.001, Tukey, p<0.0001), CHm (ANOVA,
p<0.001, Tukey, p=0.026) and CHt (ANOVA, p<0.001, Tukey, p=0.034) but was not
significantly different from CHp. This may be due to the linearity of many of the CHp
parts. As expected, the bandwidths of CHt calls were significantly lower than all call
types, including CHp HFC but excluding CHp LFC (ANOVA, p<0.001, Tukey,

CHp HFC: p<0.0001; CHd: p =0.010; CHu: p= 0.039; CHm: p<0.0001; CHs: p =
0.010). Alternatively, CHm calls had a significantly higher bandwidth than CHt
ANOVA, p<0.001, Tukey, (p<0.0001), CHs (ANOVA, p<0.001, Tukey, p = 0.028) and
CHp LFC calls (ANOVA, p<0.001, Tukey, p<0.0001). The higher bandwidth of this call
type is likely due to the peaks of the modulations.

SUB-CATEGORIES

Dendrograms for all categories except for CHp showed branching indicating 2-11
subcategory classifications (example in Figure 8). CHs had the fewest number of call
categories (n=2) and CHp had the most call subcategories (n=11) (Figure 9). CHt5 was
the most common subcategory (n=343) followed by the CHp4 subcategory (n=106). The
majority (77%) of the CHp4 calls were detected on one day (10 July 2013).

ECOTYPE COMPARISONS WITH PREVIOUS LITERATURE

To determine which ecotypes were detected in the Chukchi Sea, we compared the
minimum and peak frequency of each call ( LFC only in the CHp call type) to published
data for resident, transient, and offshore calls (Foote and Nystuen, 2008; Filatova et al.,
2015). Filatova et al., (2015) compared HFC and LFC peak frequency and fundamental

frequency points of calls across three ecotypes: North Atlantic (Iceland and Norway),
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resident (Kamatchka, Alaska, Southern resident, Northern resident) and transient (West
Coast and False Pass) populations.

Peak frequency of calls in the present study (Chukchi Sea, CH) overlapped with
the peak frequency range of West Coast transients and Gulf of Alaska transients found in
False Pass of the Aleutian Islands (Figure 11; Filatova et al., 2015). Call contour
fundamental frequency points extracted (including LFC and HFC) in ROCCA were
plotted as a histogram to compare with populations described in Filatova et al. (2015)
(Figure 12). Histograms of resident calls from Filatova et al. (2015) show a bimodal
distribution, with a second peak at 5-9 kHz corresponding to the HFC. The Filatova et al.
transient histograms are unimodal; there is no distinct second peak. Therefore, CH call
histograms are most similar to the transient call histograms described in Filatova et al.
(2015), with a unimodal distribution and a peak in points in 0-1 kHz bins (Figure 12).

Foote and Nysteun (2008) compared variation in mean peak frequency (lowest
frequency of the spectrogram) and mean minimum frequency (frequency with the highest
amplitude between 0 and 10 kHz) from a random subsample of 30 calls from each
ecotype (Southern residents and West Coast transients recorded in Haro Strait, WA, and
offshore whales recorded in Johnstone Strait, BC). The results of the one-way ANOVA
and Tukey post-hoc comparison of means test showed that the minimum frequency of the
CH calls (excluding the HFC) was significantly lower (one-way ANOVA, F= 13.694, p<
0.001) than the offshore (Tukey, p=0.023) calls described in Foote and Nystuen (2008)
but did not differ from resident and transient calls. The peak frequency of CH calls
(excluding the HFC) was significantly lower (one-way ANOVA, F=17.531, p<0.001;
Tukey, Peakesident, Poffshore: p<0.001; Peakansient: p=0.001) than all three ecotypes in Foote
and Nystuen (2008). A scatterplot comparison of minimum and peak frequency values of
all ecotypes show that CH calls were within the lower limits of all three ecotypes (Figure
13). However, this may be due to the difference in the methodology Foote and Nysteun
(2008) used to extract the peak frequency. The fundamental frequency contour was used
in this study whereas the frequency with highest amplitude between 0 and 10 kHz was
used in Foote and Nysteun (2008). If the same methods had been used to extract peak
frequency, we would see an upward shift in the data with considerably more overlap in

resident and transient values.
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Figure 11. Boxplot of low-frequency component call peak frequencies of Eastern North
Atlantic (Iceland/Norway-ecotype unknown), resident (Kamchatka, Alaska, Northern,
Southern) and transient (West Coast, False Pass) killer whale populations from Filatova
et al., 2015. Chukchi whale calls (red) indicate frequency overlap with transient killer

whales.
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Figure 12. (a) Histogram of fundamental frequency points extracted from spectrogram
contours of calls (LFC and HFC) from 4 resident killer whale populations (Kamatchka,
Alaska, Northern Residents and Southern Residents) and 2 transient killer whale
populations (West Coast Transients and False Pass transients) in the North Pacific from
Filatova et al. (2015) Figure 4 (b) A histogram of the fundamental frequency contour
points of all the calls (LFC and HFC) extracted in this study.
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DISCUSSION

KILLER WHALE PRESENCE IN THE CHUKCHI SEA

The aim of this study was to describe killer whale presence and call repertoire in
the Chukchi Sea, and ultimately to determine which ecotype(s) of killer whales were
present in the Chukchi Sea in the summer. During three summers of recording, 1315
killer whale calls were extracted and included in the analysis. Calls were detected every
year on a total of 38 days, most in July. This indicates that killer whales occur regularly
in this area in the summer. This is consistent with new data suggesting that killer whale
presence is increasing in the southern Chukchi Sea as sea ice decreases (Stafford, 2019).
Typically, annual loss of sea ice in the spring causes open-water periods in the summer
which allows for subarctic cetacean species to inhabit higher latitudes to feed. However,
globally warming temperatures continues to deplete Arctic sea ice, which causes an
earlier sea ice retreat in the spring and later formation of sea ice in the fall. This is
extending the open-water periods and allowing for an increase in subarctic species like

killer whales in ice free areas such as the Chukchi Sea (Stafford, 2019).

ECOTYPE DETERMINATION

It is important to acknowledge that although there are published call examples
from all North Pacific resident and transient stocks, there are a limited number of
published calls from the Gulf of Alaska/Aleutian Islands/Bering Sea transient stock, of
which only a small sample (n=8) were tentatively classified as Gulf of Alaska calls
(Saulitis et al., 2005). Call spectrograms of the Chukchi Sea dataset were compared to
published calls from a variety of call catalogues, although none were a match. The
Chukchi calls are unique and do not resemble call contours from pre-existing catalogs.
One of the most distinguishing features in the Chukchi dataset was the presence of
multiple call components in the pulsed calls. CHp1-CHpS5 call types (characterized by 2-4
distinct call parts) were not found in any other data set and comprised 54% of the CHp
call type.

Although the spectrogram comparisons yielded no complete matches, frequency
features and call contour comparison with previous research (Filatova et al.,2015) suggest

that the calls detected off Point Hope, Alaska were produced by transients (Figure 11 and
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Figure 12). Although CH data occurred in the lower limits of minimum and peak
frequency data from Foote & Nystuen (2007), the comparison with Filatova et al. (2015)
is more relevant because the data set included Alaskan transient calls.

Other non-call sounds were also detected that lent support to the hypothesis that
the calls were produced by transient whales. On 12 July 2013, at least 40 pulsive fluke
cavitation sounds were detected (Figure 14), suggesting a marine mammal predation
event might be underway (J Ford and J. Pilkington, pers. comm.?). Fluke cavitation in
transients is caused by the rapid acceleration in speed of the flukes when hunting
(Nachtigall & Moore, 2012). If this was a predation event on marine mammals, this
supports our conclusion that the calls recorded were from transient killer whales.
Transient killer whales would benefit from the abundance of potential prey in this region.
Gray whales are a primary prey source for transient killer whales and are present in high
densities in the southern and eastern Chukchi Sea in summer and fall. In particular, Point
Hope, AK is a hotspot for feeding gray whales (Clarke & Moore, 2002; Moore, 2003;
Bluhm et al., 2007; Clarke et al., 2015; Vate Brattstrom, et al., 2019). The recordings
used in this study were also used for a passive acoustic study on gray whales, and a peak
in gray whale calling was noted in July and August in 2013-2015 at PH1 (Vate
Brattstrom, et al., 2019), which overlaps with our July peak in killer whale detections
(Figure 15). This is strong evidence of high prey availability for transients at our
recording location.

IMPLICATIONS
Temporal and spatial overlap with gray whales

Understanding the impact of killer whales on a particular area is difficult without
knowing the true extent of their distribution. Visual observations of transient killer
whales in the Chukchi Sea have been made for decades, and more recently, acoustic
detections have supported transient presence; however, it remains unknown if residents

also occur in the Chukchi Sea. The data presented here support the regular, seasonal

2 John Ford, University of British Columbia & James Pilkington, Fisheries and
Oceans Canada Pacific Biological Station. Email communication. 28 April 2019 & 1
May, 2019.
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occurrence of transients in this area, as pulsed calls similar to transient calls in other
populations were detected over multiple days within three consecutive summers. Vocal
behavior in transient killer whales primarily occurs after predation events or during
surface active periods, as they tend to remain silent while foraging to avoid detection
(Deeke et al., 2005). Overall, transients vocalize significantly less than residents (3 vs.
20.4 calls/indiv/hour, respectively; p=0.023; Deeke et al., 2005) and this, combined with
the nature of duty cycled recorders and the high missed call rate of the detector suggests
that these data likely underrepresent transient killer whale presence during the summer
months near Point Hope. The location of PH1 is a known Biologically Important Area for
gray whales and serves as an important feeding ground for gray whales, including calves,
in the summer and fall (Clarke et al. 2015) (Figure 16). Killer whales are known to target
calves which also increases the likelihood these animals are frequenting the area to feed.
The concentration of calls on specific days indicates periods when transients might be
passing through the area; and these periods coincide with gray whale vocalizations, in
areas where calves are known to occur. Changing climate is resulting in extended open
water periods that may leave baleen species, like grays and bowheads, more susceptible
to killer whale predation (Higdon and Ferguson, 2010; Reinhart et al., 2013). Bowhead
and killer whale populations are also increasing while seabird and fish populations are
declining (Higdon and Ferguson, 2010). This net increase in apex predators will

ultimately exert more top-down pressure on the ecosystem.
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Stock designation

Current stock assessments only recognize one stock of transients in Alaskan
waters: the Gulf of Alaska/Aleutian Islands/Bering Sea transient stock. Based on the
location and our acoustic results, it is likely that these Chukchi transients are from this
stock. Zerbini (2007) estimated that the Alaskan transient population numbers ~251
individuals. Although we cannot currently estimate whale abundance at PH1 using a
single recorder, these data provide insight into the seasonal occurrence of transient killer
whales at that location.

Baleen whales in the Arctic not only serve as a vital resource for marine species
but also as an important human resource. Point Hope is one of the more traditional
whaling villages in Alaska, with a long history of subsistence hunting of several marine
mammal species (AEWC, 2012). Alaskan native communities have historically targeted
bowhead whales and occasionally gray whales (Marquette & Braham, 1982). At Point
Hope, catches consist of almost exclusively bowhead whales (Marquette & Braham,
1982; AEWC, 2019). Although gray whales are the primary targets for killer whales,
bowhead predation by killer whales also occurs (Higdon and Ferguson, 2010; Reinhart et
al., 2013, George et al., 2017). In addition, the presence of killer whales during the
harvest season could disrupt the behavior of the target species. Therefore, an increase in
transient killer whale presence in this area may also impact coastal communities that
practice subsistence whaling and rely on large baleen whales for survival.

An important outcome of this study was the development of a vocal catalogue.
Currently, there are numerous, detailed catalogues of resident calls (Ford, 1987, 1989,
1991; Yurk et al., 2002; Miller and Bain, 2002; Filatova, et al., 2007; Deeke et al., 2010),
but far fewer transient call catalogues (but see Ford, 1987; Deeke et al., 2005; Saulitus et
al., 2005). Among those transient catalogues, very few provide spectrograms and
descriptions of calls produced by populations in Alaska (but see Deeke et al., 2005;
Saulitus et al., 2005); Saulitus et al. (2005) were the first to provide a tentative
classification of some Gulf of Alaska transient calls, but didn’t provide clear descriptive
statistics or identify call components. This study provides the first detailed catalogue of
calls produced by transients in the Chukchi Sea. Many unique and previously

unidentified calls were described, which contribute to our understanding of the acoustic
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behavior of Gulf of Alaska/Aleutian Islands/Bering Sea transient killer whales in this

area. These data provide new insight into transient acoustic behavior and call diversity in

the Chukchi Sea.

CONCLUSION

This study investigated killer whale presence in a logistically difficult region of
the southeastern Chukchi Sea using passive acoustic data. Transient killer whales were
detected every year of the study, in every summer month off Point Hope, AK, indicating
a regular seasonal occurrence in this area. Understanding the distribution of ecotypes is
essential in initiating targeted management and conservation efforts. Killer whales have
complex vocal repertoires; vocal repertoire catalogues are important for call organization,
delineating dialects, and describing and comparing geographic variation in repertoires.
This work provides the first comprehensive description of call types for killer whale
pulsed calls in this region. Future studies are encouraged to provide acoustic details of
reported calls to facilitate call comparisons amongst populations. These data can serve as

a baseline for future acoustic work on killer whales in the Arctic.
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