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a diaper, plan an invasion, butcher a hog, conn 
a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, 
comfort the dying, give orders, take orders, cooperate, act alone, solve equations, analyze 
a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, 

- Robert Heinlein, 1973 

grumbled, and mightily. They paid me no attention. 

- Michael Crichton, Eaters of the Dead: The Manuscript of Ibn Fadlan Relating his 
Experiences with the Northmen in AD 922
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ABSTRACT 

The Biogeochemical Behavior and Speciation of Mercury in the Sea Surface Microlayer: 
Implications for Transport to Watersheds via Fog 

By 

Alexander J. Olson 
Master of Science 

California State University Monterey Bay, 2018 

Neurotoxic monomethylmercury (MMHg) found in coastal Central California 
marine advective fog is thought to be a source of elevated MMHg levels throughout the 
terrestrial coastal foodweb. While not currently present at hazardous concentrations for 
human exposure directly (17-54 pM), MMHg in fog along the coast poses potential 
health and ecosystem threats via food-web bioaccumulation and biomagnification 
processes. The likely marine source and the mechanism of its transport remain unknown.  

While 2014 vertical profiles from coastal California show surface waters (<6 m) 
relatively deplete in MMHg (25-185 fM), similar to other ocean basins, surface grab 
sampling revealed elevated concentrations of MMHg in the uppermost (top ~100 m) 
portion of the water column known as the surface microlayer (SML). When corrected for 
dilution during sampling, this could represent a SML concentration of MMHg as high as 
1.3 nM, orders of magnitude greater than the localized seawater and fog water; as well as 
the first such known measurements.  

Further refined sampling in 2015 of nearshore and offshore waters of California 
and Oregon supported 2014 findings, with underlying bullk water and SML 
concentrations from 16 - 380 fM and 4  48 fM respectively (Enrichment factors (EF) of 
2.5  30) These are the first such measurements of MMHg in the SML to our knowledge. 
SML concentrations were highly variable, likely due to the variable and patchy nature of 
the SML and its constituents. This may also account for little variability among different 
surface areas of glass sampling methods. While not statistically significant, these EFs 
trend with certain oceanographic conditions (temperature, solar radiation, and 
fluorescence [Chl-a proxy]) suggesting photodegradation and or photodemethylation as 
major factors affecting enrichment.  

Although limited, bubble induced SML sea spray aerosol (SSA) production, and 
thus the ejection of MMHg into the atmosphere as fog nuclei, was also shown to be a 
potential contributing mechanism to MMHg in fog. Incubation experiments of acidified 
bulk seawater points to acidolysis of gaseous Dimethylmercury (DMHg) into MMHg as 
the major pathway of MMHg into regional marine advective fog. Continued 
comprehensive monitoring via California coastal fog sampling sites (FogNet) and coastal 
marine features and processes are needed to establish and discern changes in spatio-
temporal patterns of the MMHg marine-terrestrial flux. 
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CHAPTER 1
M F

Introduction
Mercury (Hg) is a pervasive heavy metal occurring at trace concentrations in the

. Hg emanates from the crust to the hydrosphere and atmosphere via natural 

primary sources such as volcanoes, calderas, and other geothermal vents, with fluxes 

estimated at ~200 Mg/yr-1 (Pirrone et al., 2010; Driscoll et al., 2013; Amos et al., 2015,

Table 1). Due to its unique physico-chemical properties, Hg has been used for a wide

variety of applications throughout history, thus exacerbating the natural flux of this 

Table. 1 Literature Estimates of Primary Hg to the Environment  (Amos et al., 2015)
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element into the biosphere (Sun et al., 2006; Horowitz et al., 2014). The release of Hg as 

by products in energy production, combustion of coal in power plants, mining and 

manufacturing processes (such as smelting, dry-cell batteries and caustic soda (NaOH) 

production) account for much of the historic anthropogenic fluxes since the onset of the 

Industrial Revolution, as well as small- and large-scale artisanal gold mining extending as 

far back as 3000BC (Lamborg et al., 2002; Amos et al., 2013; Obrist et al., 2018). 

Globally the atmospheric flux of Hg has increased about 3-5-fold since ~1850, with the 

current estimated global atmospheric Hg reservoir at 4.4-5.3 Gg, an order of magnitude 

(15x) above natural levels. Anthropogenic emissions primarily originate from heavily 

populated and developing countries within Europe and Asia, particularly India and China, 

due to the increasing prevalence of coal-fired power plants (Fig. 1, Streets et al., 2018). 

Although the majority of Hg from power plants and industry is deposited locally (within 

100 km), some Asian emissions and 

dust are transported globally by 

tropospheric winds across the Pacific 

Ocean to North America (Mason et 

al., 1994). This long-range 

atmospheric transport and deposition, 

considered the largest sources of Hg 

transport and flux, reaches even the 

most remote areas making Hg 

pollution a truly global concern 

(Mason et al., 1994; Driscoll et al., 

2013; Steding & Flegal, 2002).  

Due to its lipophilic nature, 

methylated Hg is greatly 

bioaccumulated and biomagnified up 

the food web with factors of 10,000x 

to 100,000x from water to 

phytoplankton alone (1st trophic 

transition) (Fisher & Reinfelder, 1995; Pickhardt & Fisher, 2007; Lawson & Mason, 

Figure 1. Atmospheric mercury emissions from 
coal combustion, 1850-2010, by sector (a) and 
world region (b). From Streets et al., 2018  
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1998; Moye at al., 2002).  Thereafter, it increases by a factor of about 10 for each further 

trophic transfer, up to fish and birds (Scheuhammer, 1991; Mason et al., 1996; Lasorsa et 

al., 1995).  

Onshore measurements of the neurotoxic species monomethylmercury (MMHg, 

CH3Hg+) in coastal Central California marine advective fog water show concentrations 

100 times that of local rain, a previous subject of study for transpacific Hg pollution 

(Weiss-Pienzas et al., 2012). Marine fog is a major source of water to the maritime 

chaparral complex and redwood forests and the animals and vegetation in these regions 

(Ingraham et al., 1995; Dawson, 1998). Its association with elevated MMHg 

concentrations in ecosystem biota from the same geographical locations (Ortiz et al.,

2014; Rytuba, 2014), suggests marine fog as a transportation and consolidation 

mechanism for toxic marine mercury to the coastal terrestrial realm. While all Hg species 

can be toxic at varying concentrations, MMHg has been the cause of most mercury 

poisoning cases, primarily through the consumption of contaminated seafood (Renzoni et 

al., 1998). This makes MMHg the greatest concern when compared to other Hg species 

in nature (Table 2, U.S. EPA. Integrated Risk Information System IRIS, 2001).  

Natural and anthropogenic sources of elemental Hg (Hg0) and MMHg are known 

to cycle throughout the marine and terrestrial environments, yet there is limited 

understanding of Hg reaction mechanisms at atmospheric interfaces with land and sea, 

which can determine Hg speciation and pathways (Ariya et al., 2015; Subir et al., 2012; 

Subir et al., 2011).  

Wet atmospheric deposition is the main source of Hg to the open ocean, mostly as 

oxidized, divalent Hg (Hg2+ or Hg (II)) (Mason et al., 1994), while rivers are a dominant 

source to the coastal zone. Hg(II) can then be methylated, scavenged by sinking particles 

from the water column or reduced (biologically or photochemically) to Hg0 and evade 

into the atmosphere (Fig. 2, Lamborg et al., 2014). Losses of Hgo and Hg2+ from the 

water column appear to be gaseous evasion of Hg0 to the atmosphere and particle 

transport of Hg 2+ to the sediments. Continental shelf sediments, nearshore marshes, and 
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rivers provide sources to coastal waters, while sedimentation, biological uptake, 

photochemical decomposition, and advective transport offshore act as sinks (Lamborg et 

al., 2014). 

MMHg production occurs under a specific set of redox conditions, initially 

documented in anoxic sediments harboring sulfate reducing bacteria (SRB) capable of 

methylating Hg as a byproduct of cellular metabolism (Compeau, 1985). However, 

unexplained microbial methylation has also been shown to occur in both oxic and 

relatively hypoxic environments in the open ocean, often in oxygen minimum zones 

(OMZs) within the water column (Fig. 3 Topping & Davies, 1981; Mason & Fitzgerald, 

1993; Monperrus at al., 2007; Heimbürger et al., 2010; Lamborg et al., 2014). More 

recent evidence suggests a larger group of potential methylating anaerobic bacteria than 

previously thought (Gilmour at al., 2018; Gilmour at al., 2011; Parks et al., 2013).  

Mercury Species (Abbreviation) 
[seawater conc.] 

Properties  
[vapor pressure]

Major Forms 

in Seawater 

Elemental (Hg0) Hg0 

[18  115.2 fM]a 

Silver liquid at most temperatures 

Volatile [0.002 mmHg] 

Toxic fumes 

1/2 of Hg emissions b 

Hg0

Ionic (HgII)  
Hg2+ 

[<0.2  6.9pM]b 

Highly reactive 

Short residence time 

1/2 of Hg emissions b 

HgCl2

Dimethyl- (DMHg) 
(CH3)2Hg 

[<10  670 fM]c

Neurotoxin, gas at room temperature 

Volatile [50-82 mmHg] d (CH3)2Hg

Monomethyl- 

(MMHg)

CH3Hg+

[<0.02  500 fM]c

Neurotoxin, readily passes into tissue 

Volatile [9 mmHg] e 

CH3HgCl 

CH3Hg  ligand 

Table 2: Major mercury species and properties 

a Mason et al., 2017 (Hg0 = 90% of dissolved gaseous mercury); b Morel et al., 1994; c Gworek et al., 2016; 
d Witt et al., 1991; e  Kim & Zoh, 2012;  
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in the ocean. Blue arrows highlight biogeochemical transformations of mercury. Black 
arrows denote fluxes among the atmosphere, water, sediments, and biota. All of the mercury 
species can be transported hydrologically between the coastal zone, surface ocean, and deep 
sea, with bioaccumulative CH3Hg+ also transported by bioadvection (white arrows; 
Fitzgerald et al., 2007)

Figure 3. From Lamborg et al., 2014, Representative profiles of monomethylmercury 
(CH3Hg+) and total methylated ( CH3Hg) in seawater, illustrating a connection to dissolved 
oxygen distributions. Filtered CH3Hg+ in (a) Northeast Atlantic Ocean (recent work of 
author Bowman), and (b) subtropical North Pacific Ocean (Hammerschmidt and Bowman, 
2012).  CH3Hg in unfiltered water of the (c) sub-Arctic North Pacific (Sunderland et al., 
2009), (d) Southern Ocean (Cossa et al., 2011), and (e) Mediterranean Sea (Cossa et al., 
2009). Dashed lines denote the depth of the sediment-water interface.
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Most Hg coastal studies have been conducted on the eastern seaboard of North 

America, a region characterized by a high density of coal fired power plants, with 

abundant riverine inputs and a wide continental shelf. California, however, is 

characterized by long range atmospheric sources (Asia), little fluvial input and a narrow 

shelf system.  

In this study, we investigated coastal nearshore and offshore processes in the 

California Current System that may be responsible for a flux of MMHg to the lower 

troposphere, marine fog, and perhaps the production of MMHg within the air-sea 

boundary layer.  (a measure of volatility and solubility) for MMHg 

(1.6x10-5, 15°C) compared to DMHg (646, 25°C) (Schroeder & Munthe, 1998) suggests 

MMHg to be much less likely to evade to the atmosphere as a gas (as DMHg does), and 

instead exist in a liquid or bound to a solid phase. Evasion of particulate or dissolved 

MMHg into fog would have to pass through the dynamic air-sea boundary zone, also 

known as the sea surface microlayer (SML). Working from the hypothesis that open 

ocean and coastal MMHg production was associated with anoxic environments and 

methylating bacteria, various microenvironments and reservoirs thought to be important 

for mercury flux were measured. Here we report the vertical distribution of MMHg and 

DMHg, total gaseous and total mercury in the southern, central and northern regions of 

the California Current. These profiles have been determined for nearshore stations over 

the continental shelf as well as in cyclonic and anticyclonic eddies within the offshore 

regions of the California Current. Sampling within cyclonic and anticyclonic mesoscale 

eddies afforded the advantage of being able to sample upwelling regions in the absence of 

the normal coastal wind-driven upwelling that characterizes the California Current from 

March through June. These include investigations of the possible formation of MMHg in 

coastal nearshore sediments, oxygen minima, and microenvironments such as plankton 

and the SML. The SML is of particular concern as it separates the marine realm from the 
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METHODS 

Study Site(s) 

34 ocean sampling sites sampled during the summers of 2014 & 2015 extended 

from Ventura, California to Newport, Oregon (Fig. 4) aboard research vessels R/V Point 

Sur (June 2014, August 2014), R/V Robert Gordon Sproul (June 2015) and R/V Oceanus 

(August 2015). These cruises targeted various coastal and offshore compartments (water 

column, sediments, neuston and mesoscale surface anomalies). Stations were chosen to 

compliment FogNet terrestrial sites (Weiss-Penzias et al., 2016) and mesoscale eddies.  

Eddies were detected using satellite altimetry, with near real time contoured images sent 

daily (Fig. 4). Compiled mean surface level anomalies from multiple satellites were 

distributed by Aviso (http://www.aviso.altimetry.fr/, Ssalto/Duacs). Data was imaged 

using Interactive Data Language®, a product of Exelis Visual Information Solutions, Inc. 

A number of stations were revisited over the 4 cruises (Appendix A).  

Seawater 

Bottle depths were chosen to capture features such as density gradients, maxima 

and minima in, chlorophyll, oxygen, turbidity, temperature, etc. During CTD casts 

attempts were made to trip bottles as close to the sediments as possible. This was always 

weather and operator dependent but usually within 2 to 5 meters of the bottom. Dimethyl 

mercury (DMHg) and total gaseous mercury were determined on board, whereas both 

MMHg and total mercury samples were returned to the lab for subsequent analysis. To 

test whether photodemethylation or acidolysis of DMHg may be occurring in surface 

seawater and in the more acidic fog water fraction, THg, MMHg and DMHg seawater 

samples for water column profiles were collected from 10 liter Niskin bottles deployed 

on a CTD rosette and lowered on conducting hydrowire from research vessels in 2015. 

The bottles were acid cleaned, rinsed with MQ water and had silicone internal closures to 

minimize metal contamination from springs or rubber. Sampling blanks were determined 

by filling the  Niskin bottles with MQ water for a period of one hour, then sampling the 

bottles in the same way that seawater samples were processed. DMHg and Gaseous 

Elemental Mercury (GEM) analysis used modified techniques described in Bowman &  
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Figure 4. Fog collection stations on land and at sea (diamond), as well as 
hydrographic (CTD collections) (+) stations along coastal Oregon and California. 
Red Max and Blue Max refer to upwelling (blue) and downwelling (red) cyclonic 
eddies. Repeat sampling stations not shown.
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Hammerschmidt, 2011 and Lamborg at al., 2012 (Fig. 6). For at sea analysis of volatile 

gaseous Hg species (DMHg & Hg0), samples are immediately sparged with N2 after CTD 

collection. Evading Hg is collected onto inline column traps (Tenax- DMHg, Gold  Hg0) 

that are subsequently pyrolized into a Tekran® model 2500 cold-vapor atomic 

fluorescence spectrophotometer. Peaks are measured against standardized QA/QC 

methods. Method Detection Limit was 11fM. Analysis of THg followed techniques 

described by Gill & Fitzgerald, 1987 and modified EPA Method 1631 and Horvat et al. 

1993, while MMHg analysis followed modified techniques described in EPA method 

1630 and Munson et al., 2014. Post-sparging transfer (A) and storage acidification (B) of 

sample for later analysis. Shoreside lab chemistry of MMHg (C) via pH reduction with 

H2SO4 and volatilization by NaB(Et)4 onto Tenax columns, with similar analysis to Fig. 

6 (D).   

Tenax 
Gold 

Figure 5.  At sea analysis of volatile gaseous Hg species (DMHg & Hg0)  



Fog

To further characterize fog MMHg concentrations in relation to coastal 

microenvironments, fog samples were collected according to Weiss-Pienzas et al., 2012, 

using a modified active strand cloudwater collector based on the Caltech Active Strand 

Cloudwater Collector (CASCC) design (Demoz et al., 1996). For shipboard fog 

sampling, the collector was mounted on a 6-meter tower at the bow (R/V Point Sur), or 

atop the wheelhouse in a configuration that would avoid contamination from stack 

gasses, rigging and bow-wake sea spray (R/V Sproul, R/V Oceanus). If wind direction 

was not favorable for uncontaminated sampling, the sampling fan was not turned on. The 

CASCC was acid washed and rinsed with MQ water between samples and kept closed 

between collections.  Prior to collection, blanks were taken by spraying 5% HCl, then 

MQ water into the opening of the CASCC, and 250 mL of blank rinse water was 

collected. Fog samples (THg & MMHg) were analyzed as freshwater using modified 

methods described above (preserved to 0.5% HCl). 

Figure 6. At sea and shoreside analysis of MMHg 

Tenax 



11

Sediments 

To investigate if shelf sediments were a significant source of methylated mercury, 

replicate sediment cores were taken using a multicore device (MC 800 & MC 400 

Multicore, Ocean Instruments, San Diego) that preserved the sediment/water interface.  

Only sealed and intact cores were incubated in a refrigerator at bottom water temperature 

for two days, before the overlying water was analyzed for mercury species. Replicate 

cores were sectioned then had porewaters extracted via centrifugation prior to analysis of 

mercury species. The upper few centimeters of undisturbed cores were sectioned at the 

following depth increments:  0.5, 1, 1.5, 2, 3, 4, 5 cm.  Porewaters were extracted via 

centrifugation and the MMHg gradients were used to calculate fluxes into the overlying 

water column based upon molecular diffusion alone. For the fluxes listed below, we used 

the formula: 

FD = - w
2

w is the, molecular diffusivity 

coefficient of 5 x 10-6 cm2 sec-1, C is the concentration of MMHg in pore water, x is the 

sediment depth (Choe et al., 2 can be estimated from porosity using 

the relationship 2 = 1- 2)  (Boudreau, 1996). Sediment solid phase, pore waters and 

overlying waters incubated onboard were analyzed for MMHg and THg. 

Neuston & Sea Surface Microlayer 

To resolve and constrain any potential fluxes at the air-sea interface during 2014 cruises, 

the upper 10-1000um of sea surface or SML (Sea Surface Microlayer) were sampled in 

with an acid cleaned 2L polycarbonate bottle. This method was exploratory and meant to 

detect large enrichments despite dilution. Assuming a 10µm SML thickness (Wurl & 

Obbard, 2004), and idealized sample collection at the diameter of the polycarbonate 

bottle, a dilution factor was calculated (Fig. 8). This dilution factor was applied to these 

surface grab samples post-analysis to estimate the expected theoretical concentration of 

MMHg at the air-sea boundary layer.  
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RESULTS & DISCUSSION 

Vertical Profiles 

THg and Hg0 concentrations were typically 1000x larger than methylated species 

(MMHg & DMHg). Shallow shelf profiles (30-100m) of all mercury species measured 

were generally well mixed with no substantial gradients, likely due to dynamic 

circulation of water over the shelf environment, as well as coarse sampling (Fig.9 & 10). 

Deeper (~1000) offshore profiles of THg and Hg0 gently increased with depth (Figure 

11). Methylated species indicate a sharp surface mixed layer depletion, with 

concentrations slowly increasing with depth (Fig 12 & 13), prompting a few potential 

explanations.  

MMHg complexing with dissolved organic compounds, its adsorption onto 

particles, and phytoplankton uptake, all subject to removal from the mixed layer via the 

biological pump, could influence this pattern (Hammerschmidt and Bowman, 2012; 

Figure 7. SML sampling, targeting the air-sea interface and dilution factor calculations.  

ATMOSPHERE

OCEAN
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Lamborg et al., 2016). Photodemethylation and photodegradation within the photic zone 

may also play a role in surface water MMHg depletion (DiMento & Mason, 2017). 

DMHg, as a volatile gaseous species, likely degasses and evades into the atmosphere. 

Both species have the potential to influence fog concentrations through the air-sea 

boundary. DMHg fate and pathways within this coastal zone of study is discussed later in 

Chapter 3. 

Figure 8. Mercury species distributions in the water column overlying shelf sediments. 
Vertical profiles for Hg0 (open sqaures) and THg (filled squares) from selected stations 
showing characteristic trends for these species. 
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Figure 9. Methylated mercury species distributions (fM) in the water column 
overlying shelf sediments. Vertical profiles for DMHg (open squares) and MMHg 
(filled squares) from selected stations showing characteristic trends for these species. 
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Figure 10. Vertical 1000m 
profiles for Hg0 (open 
squares) and THg (filled 
squares) from selected 
offshore stations showing 
characteristic trends for 

concentrations [pM].  
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Figure 11. Vertical 1000m 
profiles for DMHg (open 
squares) and MMHg 
(filled squares) from 
selected stations showing 
characteristic trends for 

concentrations (fM). 
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Sediments 

Shelf pore waters (20-90m) were generally elevated with respect to MMHg, 

which resulted in benthic fluxes from 0.1-1.7 pmoles m-2 day-1 (Table 4.). However, these 

fluxes are ~10% of the air-sea flux at the ocean surface. Comparatively, MMHg benthic flux 

values from the US east coast measurements ranged from 7  13 pmoles m-2 day-1. 

(Hammerschmidt & Fitzgerald, 2006) East coast sediment production rates account for 50-80% 

of water column concentrations (Balcom et al., 2004). These 20-fold differences are likely driven 

by the respective bathymetry of the coastal shelves. The shallower, broader east coast shelf 

environment generally receives more organic carbon, anthropogenic and riverine inputs that 

comprise coastal shelf sediments (Seaber et al., 1987; Oczkowski et al., 2016), resulting in a 

higher benthic flux into a smaller water column. The narrower west coast shelf appears to have a 

markedly smaller influence on MMHg water column concentrations.

Table 3.  Sediment-water diffusive flux estimates for continental shelf stations. 

Sea Surface Microlayer 

Surface grab sampling of the air-sea interface on the 2014 cruises has shown this 

layer to be slightly enriched in MMHg (Fig. 14). When calculating for dilution of the 

sampling method, estimated SML MMHg concentrations increased by 1500 (~10pM) 

(Fig. 15), an enrichment orders of magnitude higher than most trace metals in the SML 

(Table 2). This suggests higher than expected exposure implications for organisms and 

Station 

MMHg Pore water 

pM 

MMHg Benthic flux 

pmoles m-2 day-1

Ventura 0.140 0.1 

Conception 0.473 0.4 

Cambria 1.018 0.7 

Long Marine Lab 1.660 1.2 

Shelter Cove 0.738 0.5 

Port Orford 0.360 0.3 

Coos Bay 2.175 1.7 

Florence 0.693 0.5 



18

materials (microplastics) inhabiting this micro-environment (See Chapter 2). Yet the 

surface grab methodology was not the most accurate available, thus requiring a refocus of 

effort targeting the microlayer. With a finer resolution we can adequately confirm these 

preliminary results. 

12. Diluted (uncorrected) surface grab MMHg SML and underlying water 
(UW) samples taken during a series of California Current cruises described in Coale et 
al., (2018).

020
4060
80100120140 Surface Grab UW
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Chapter 2

The Sea Surface Microlayer (SML) 

n observed and queried as 

far back as Aristotle; however, only recently have they been understood with the advent 

of new technology and analytical techniques (Aristotle, No.38; Franklin & Brownrigg, 

1774; Rayleigh, 1890; Pockles, 1891; Langmuir, 1917; Langmuir, 1938; Ewing, 1950). 

While conceptualized earlier, Sieburth (1983) was the first to propose the SML as a thin 

(~10- gel-like hydrophobic organic material present at 

the air-sea boundary. Planktonic organisms such as diatoms contribute proteins and 

carbohydrates and lipids that form a significant portion of the SML (Fig. 16, Engel et al.,

2017; Cunliffe & Murrel, 2009; Galgani & Engel, 2013). SML environments are unique 

in that they are the interface for chemical, biological and physical processes, as well as a 

dominant feature for buoyant life forms such as fish eggs and larvae. The accumulation 

110
1001000100001000001000000 Diluted vs Undiluted MMHg SML Grabs Surface Grab Undiluted Underlying Water

Figure 13. Diluted (uncorrected) surface grab samples shown relative to undiluted 
(corrected) SML MMHg estimated concentrations (fM). 
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of nutrients and contaminants at the SML yields high concentrations of these constituents 

(Wurl & Obbard, 2004).  

A mercury (Hg) and MMHg enriched SML may represent a source of MMHg to 

coastal marine fog. It is from this layer where ocean wave and foam generated bubbles 

are ejected into the atmosphere as sea spray aerosols (SSA), often becoming cloud 

condensation nuclei (CCN) (Fuentes et al., 2010; Prather et al., 2013; Garbe et al., 2014). 

SSA are one of the largest natural contributors to global atmospheric aerosols, consisting 

primarily of NaCl crystals coated in sulfates, organic species, carbonates and other 

hygroscopic salts (Ault et al., 2013). Increasing wind may increase microlayer thickness 

until disrupting the SML, and decrease the organic fraction of SSA material (Gantt et al.,

2011). Due to the lipophilic nature of MMHg, significant partitioning of MMHg from the 

bulk mixed layer into the SML may make it preferentially susceptible to aerosolization 

(Aller et al., 2005). This chapter investigates the role the SML plays in the cycling of 

mercury species from the oceans to the terrestrial environment via fog transport and other 

coastal processes. 

Figure 14. Conceptual model of the Sea Surface Microlayer. Engel et al., 2017 
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Surfzone Aerosols 

Fog collections spanning ~450km offshore and inland of the California  Oregon 

sampling region exhibit peaks in MMHg and MMHg/THg ratios at the land-sea interface 

(Fig. 17 , Coale et al., 2018), suggesting the nearshore coastal regions and or surf zone 

are greater potential sources of MMHg aerosol than offshore for potential marine fog 

uptake. Marine aerosol composition encompasses the wide range of terrestrial and marine 

materials that become entrained in the atmosphere (Prospero, 2002). The surf zone is 

responsible for generating aerosol concentrations at ~1-2 orders of magnitude greater 

than offshore environments (Leeuw et al., 2000).  The SML is an overlooked potential 

source of MMHg to the atmosphere and coastal fog, originating from the aerosolization 

of this compound via escaping gas bubbles (Gantt et al., 2011).  
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METHODS 

Study Site 

34 ocean sampling sites sampled during the summer of 2015 extended from 

Ventura, California to Newport, Oregon (Fig. 18) aboard research vessels R/V Robert 

Gordon Sproul (June) and R/V Oceanus (August). As a part of Chapter 1, these cruises 

are the same that focused on measuring marine compartments (water column, sediments, 

neuston and mesoscale surface anomalies). From 2016-2018, SML and surface water 

sampling was conducted locally within Monterey Bay using small workboat platforms 

from Moss Landing Marine Labs (MLML). Using methods described in Chapter 1 and 

Coale et al. (2018), all THg, MMHg, and DMHg samples collected in this study observed 

-certified clean 

collection bottles, baggies and containers. 



24

Figure 16. 2014 - 2015 cruise sampling stations (red dots), 2015 SML sampling 
stations (yellow dots), and FogNet terrestrial fog sites (white dots). 
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SML 

In order to test the potential MMHg enrichment of the sea-surface microlayer 

relative to underlying water (~0.16m  2m bulk mixed layer depth), samples targeting 

these two regions were collected during two 2015 cruises along the coastal zone between 

Port Hueneme, CA and Newport, OR. Subsequent sampling from 2016-2018 occurred 

locally within Monterey Bay, ~2 miles NW of Moss Landing, CA. Depending on the 

analyte, the SML is sampled by various operationally defined methods (Stortini et al., 

2012). 2015 SML samples in this thesis were collected using three glass dip sampling 

methods (Fig. 19), two of which are established methods in the literature:  

1) 40 x 52 cm glass plate based on a large body of SML studies (Harvey& Burzeil, 1972)  

2) 122 x 9 cm dia. glass tube based on Ebling & Landing, 2015 

3) Experimental design five 122 x 3.5 cm dia. clustered glass tubes 

Prior to cruises, microlayer sampling glass plates and tubes were washed in 1% 

Micro® solution, rinsed with DI water, and then rinsed thoroughly in 10% hydrochloric 

acid (HCl). Glass was then rinsed with MilliQ filtered water and bagged.  

1 3 2 

Multi-Tube 
Glass Plate Glass Tube 

Figure 17:  Glass samplers:   1)  Glass Plate     2)  Glass Tube    3)  Glass 
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When sea state allowed (Beaufort scale <= 2:  4-7 kts, 0.5m wave height), a small 

workboat/inflatable was deployed upwind of the ship to avoid any potential sea spray or 

exhaust from the larger vessel. Prior to targeted SML collection, glass samplers were 

dipped upwind of the work boat to minimize contamination, condition glass surface to 

ambient underlying water and rinse residual HCl from at-sea cleaning. Glass samplers 

were dipped as smoothly as possible into the water to within ~10cm of the handle, 

retracted similarly and drained into a 250mL glass bottle using a plastic funnel. A silicon 

squeegee was used to scrape water and any material from the plate into the glass bottle. 

After sampling glass equipment and funnels were rinsed thoroughly with 5% HCl and 

MilliQ to prepare for the next sampling station. SML enrichment indexes were calculated 

as: 

MMHgSML / MMHgUW = MMHg Enrichment Factor 

THgSML / THgUW = THg Enrichment Factor

where MMHgSML and THgSML is the concentration of MMHg and THg in the SML, and 

were compared to underlying water ( MMHgUW and THgUW ). UW samples were 

collected using CTD rosette Niskin bottles (~2m) when at sea and by hand (0.3m) from a 

workboat locally in Monterey Bay. A more comprehensive intercomparison between 

glass sampling methods was conducted after insufficient at-sea collections. 

Aerosol Generator & Sea Spray 

To measure and compare potential MMHg concentrations of aerosolized SML 

material to other coastal compartments, a novel aerosol generator was constructed. A 

2 (5.08cm) PVC pipe frame and foam pontoons (Fig. 20) created aerosols within a 

polycarbonate dome via air bubbles entrained by water jets. A 3600gph (gallons per hour) 

pond pump sprayed underlying seawater out of a 1  (2.54cm) PVC pipe manifold with ¼ 

in (0.635cm) holes spaced 10 cm along the manifold and directed downwards. This 

created a series of jets that would entrain air bubbles and subsequently burst within the 

dome.  Above the polycarbonate dome, a box attachment holding a large 203 x 264mm 
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glass fiber filter (Membrane Solutions) was connected to a vacuum fan, generating 

airflow onto the filter. The filter box was held flush over an opening in the dome to 

maximize flow. The aerosol generator was side-towed windward by a small whaler 

deployed locally from MLML and offshore (~5-8 km) in conditions less than or equal to 

a Beaufort Scale 2 to minimize chances of filter dilution by surface wind waves and 

swell. The filter box and vacuum components were also used to collect SSA from shore 

to compare to generated aerosols (Fig. 21). 

Filter samples were collected, frozen immediately and processed in a large walk 

in freezer within 90 days. Approximately 1/2 - 1/3 of exposed filter area was soaked in 

~250mL 0.2% H2SO4 solution for extraction to be analyzed after at least 48hrs. Analyses 

used modified techniques described in Hammerschmidt & Fitzgerald, 2006 and 

Hammerschmidt & Bowman, 2012. Extraction solutions were analyzed on a Tekran® 

model 2500 cold-vapor atomic fluorescence spectrophotometer as seawater. Roughly 1/4 

of the exposed filter area was soaked in MQ to be analyzed for Cl-. 

Ion Chromatography 

Major anion concentrations for SML, fog, aerosol filter and sea spray filter 

samples were determined via ion chromatography with suppression conductivity 

detection and 29mM KOH eluent, using Cl-, SO4
2-, NO3, and NO2 ion standards (Coale et 

al, 2018). While the chloride ion is not as accurate of a sea salt tracer as the sodium ion 

and degrades with increased atmospheric residence time, most samples were freshly 

collected within 1- 12hrs (Laskin et al., 2012).  
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Figure 18. Aerosol generator in side-tow sampling configuration

Filter Box 

Plunging water 
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Chlorophyll 

To test for the influence of Chl a on SML MMHg concentrations, Chl a in SML 

and UW samples were collected locally in Monterey Bay in February 2018 via 

aforementioned SML sampling methodology. Chl a SML and UW sample analysis 

followed modified methods from Welschmeyer, 1994. SML and UW samples were 

vacuum pump filtered through 0.7um GFF filters until filtration slowed to near-zero or 

the entire sample was used. Filters were then folded and inserted into centrifuge vials 

with 1.2mL of 90% acetone. After freezing for 48hrs, samples were centrifuged 

(Heathrow Scientific, Gusto) at 10,000 RPM for 2 minutes. 200 L were transferred to a 

smaller vial for measurement on a handheld fluorometer (Qubit 3.0, Life Technologies) 

for Chl a concentration ( g/L) with blue excitation (430-495 nm) and red (665-720 

nm) emission wavelength. This provided a bulk Chl-a measurement. To measure Chl a 

and its degradation products as a proxy for digestion and decomposition, a High 

Performance Liquid Chromatography detector (HPLC; Thermoseparations Spectra, 

Thermo UV6000 diode array) from absorbance at 665 nm utilized Thermo Quest 

chromatography software. (Note: A small pilot experiment to confirm viability of frozen 

Figure 19. Aerosol collection module (used in aerosol generator) configured for sea 
spray collection. 

Filter Box  Vacuum Fan 
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Chl-a samples before filtration showed frozen Chl samples yielded 1.75 higher 

fluorescence values (RFUs) than unfrozen samples on the Qubit.) 

Polyaromatic	Hydrocarbons	&	Colored	Dissolved	Organic	Material

Polyaromatic hydrocarbons (PAHs) are a natural and anthropogenic pollutant also 

capable of bioaccumulating in the food web and found to be enriched in the SML. 

Colored/Chromophoric Dissolved Organic Material (CDOM) are the optically 

measurable components of dissolved organic matter (DOM) in fresh and saltwater 

systems. Given MMHg bioaccumulation in organic tissues and materials, SML and 

underlying bulk water samples were analyzed to test for any potential relationship 

between CDOM and PAHs. After initial MMHg analysis, SML and UW samples were 

analyzed for PAH and CDOM using Excitation-Emission Matrix Spectroscopy (EEMs) 

(Johengen et al., 2012). 

Fluorescence intensity contours were generated from a SPEX ISA Fluoromax-2 

scanning spectrofluorometer using quinine sulfate (QS) standards and MATLAB GUI for 

area calculations. Fluorescence spectra were over an excitation range of 230-500 nm (5 

nm intervals) and an emission range of 300  600 nm (3 nm intervals). An integration 

time of 1 second was used for each scan, with bandpass widths of 5 nm for both 

excitation and emission spectrometers. Xenon lamp intensity and emission 

monochrometer performance were verified and recalibrated before analysis. For all 

ed and spectra were corrected for wavelength-

dependent instrument effects using correction files. Fluorescence spectra intensities were 

normalized to the area under the Raman peak using MilliQ water. 

served as background blanks for A four-point calibration curve (0-50 

ppb) of Quinine Sulfate (QS) in 50 mM H2SO4 was run at the beginning and end of each 

analytical batch to track drift in fluorometer. The QS response factor 

standardized emission intensities across each analytical batch. A  were 

corrected for Raman and Rayleigh scattering peaks.  
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SML 

From the two 2015 cruises, MMHg in the SML and underlying water from the 

mixed layer ranged from 16.02 - 380.39 fM and 4  48 fM respectively, corresponding to 

enrichment factors (EF) of 2.5  29.6 (Fig. 22, Table 5). For this particular graph, 

averaged GT/MT samples where GP measurements were absent While MMHg 

enrichment of the SML exhibited noticeable trends with seawater temperature, 

fluorescence (chl proxy), PAR (sunlight) and potentially wind speed (Fig. 23), only 

temperature was statistically significant in a single variable linear regression (n=9 

r2=0.484, p = 0.0374). As a multiple regression, all four variables explained ~60% of 

SML enrichment, yet were highly insignificant (n=9, r2 = 0.596, p = 0.4860).  
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Station EF  
(GP  *GT/MT) 

Salinity Temp  
C

Oxygen
mol/Kg 

Fluorescence 
mg/m3 

Wind Spd  
knots 

PAR 
E/Sec/Meter^2

Bodega 3.88 33.77 11.05 209.37 2.88 3.4 503.72 
Canyon Axis 20.52 33.18 18.6 234.04 0.16 5.29 0.45 

Crescent 11.08 32.57 13.73 259.79 0.93 8.2 810.87 
Newport 1.3* 30.97 12.95 304.2 1.6 3.9 677.3 
Pepperwood 2.55 33.17 13.19 329.6 8.49 4.17 2.72 

Pt. Reyes 29.62 33.05 15.6 259.09 0.73 10.2 84.5 

SFSU 7.36 33.139 13.6 278.85 7.1 15 1821.06 

Moss Landing 14.11 33.16 14.11 239.4 3.47 2 563.2 
Coos Bay 3.36* 33.37 13.72 283.67 1.44 11.83 62.29 

05
1015
2025
30 Enrichment Factors of MMHg in SML

GP GT MT Man

Figure 20. MMHg enrichment factors in the SML and collection method from 2015 
cruise stations. 

Table 4. MMHg average SML enrichment factors via glass plate collection method and 
paired oceanographic conditions from 2015 cruise stations. (*GT and MT averages used 
when GP was unable to be used) 
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Figure 21. Notable trends between SML MMHg enrichment factors and 
oceanographic parameters (temperature, fluorescence, PAR, wind speed). 
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Lawson & Mason, 

1998; Pickhardt & Fisher, 2007; Shiuan & Fisher, 2017

Despite this variability between sampling tool and sites, an enrichment can be 

found across all stations and sampling tools. 
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Figure 22. MMHg SML enrichment factors based on temperature and mesoscale 
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supports and refines 2014 cruise findings

Microplastics are of great concern as they contaminate the marine environment and pose 

a direct and indirect health hazard to organisms of various sizes when ingested (Fig. 25, 

Cole et al., 2013; do Sul et al., 2014). Microplastics are among many materials that may 

float at the surface and accumulate within the SML (Song et al., 2014; Wurl et al., 2017), 

thus potentially coated in MMHg- -

greater than normal surface water MMHg concentrations. The SML may be a vector of 

MMHg to inhabitants of and visitors to  and air-sea boundary layer. 
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Azetsu-Scott & Passow, 2004; Zhou et al., 1998

MMHg/Cl- ion concentrations measured across coastal compartments help 

characterize the marine MMHg contribution to coastal fog, utilizing the Cl- ion as a tracer 

of marine origin (Fig. 26) (See Aerosol Generator, Sea Spray & Fog). If the SML were 

contributing most of the MMHg found in fog, we would expect this ratio to be much 

higher compared to fog, since that MMHg would mostly be associated with Cl- ions from 

marine derived organic compounds. While the SML is indeed enriched with MMHg and 

was measured by more accurate and tested means, it does not appear to provide enough 

Figure 23. Microplastics ingestion pathways throughout the marine foodweb. From
do Sul et al., 2014 
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of a source concentration to account for MMHg concentrations in fog, given the higher 

MMHg/Cl- ratios found in fog. 

 Glass sampling methods are almost certainly still diluted by virtue of the 

sampling technique itself (i.e. dipping/penetrating into bulk UW, dip speed, handling). 

Despite relatively large enrichment factors, contamination from underlying water diluting 

the microlayer could explain why these concentrations fall short of a theoretical 1500x 

enrichment from the 2014 cruise surface grabs. 

SML Sampler Comparison

Based on the relatively large standard deviation for absolute SML concentrations 

for GT and GP methods (Fig. 27a), SML glass sampling methods varied only slightly by 

1
10
100
1000
10000

Bodega SFSU Moss Landing (totalmean, N[UW] =20N[SML]=17)

MMHg in Coastal Compartments
UW SML FOG

Figure 24.  MMHg concentrations in coastal compartments. 
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enrichment factors (GT: 2.4, GP: 2.7, MT: 2.5; Fig. 27b) and sampling efficiency 

(MMHg [fM] /cm2: GT: 0.0229 ± 0.0176, GP: 0.0207 ± 0.0148, MT: 0.0134 ± 0.0023).  

This variability is consistent with the known composition and patchiness 

tendencies of the SML microenvironment, as previously suggested by Wurl & Obbard, 

2004. Despite lab and field experiments showing rapid reformation of disturbed surface 

films (Dragcevic & Pravdic, 1981; Williams et al., 1986), larger scale physical 

oceanographic conditions (winds, breaking waves) leading to greater dissipation and 

dilution likely depletes MMHg-containing material within the SML. To some extent, 

MMHg partitioning into phytoplankton (via passive or active uptake) and eventually 

zooplankton may also play a role in determining spatial and temporal distribution of 

MMHg within the pool of SML organic material. 
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Figure 25. SML collection methods compared to a) underlying water b) MMHg 
SML enrichment factors and c) SML MMHg collection efficiency 
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THg Enrichment & MMHg Fraction

SML samples collected during February 2018 for MMHg/THg comparisons 

showed no noticeable enrichments (EF>1) in the SML for MMHg, while THg were as 

high as 25 for nearshore samples (~3-5 miles) (Fig. 28, Table 7). Save for one anomalous 

UW sample (Fig. 29), MMHg/THg fraction as a percent in SML and UW samples were 

similar to those in seawater from other measurements (Bowman et al., 2015; Sunderland 

et al. 2009). However, MMHg SML enrichment was nearly zero (Fig 28, while THg 

enrichments were mostly around 5-fold. This agreement in the MMHg fraction between 

SML material and seawater, and no SML enrichment may indicate a few possibilities: 1) 

THg enrichments are a relic of photodegraded or biodiluted MMHg, or 2) organic MMHg 

material is lingering just below the surface, and has not risen to accumulate in the SML (a 

mixed layer profile for this site would have answered this). Photodegradation and active 

winter weather that characterized the time of year sampled, are likely factors for these 

results. 
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Figure 26. SML Enrichment Factors for MMHg and THg collected during February 2018. 
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THg [fM] MMHg [fM] 

Temp 
(oC) UW SML EF UW SML EF

Avg MMHg % 
THg 

2-Feb-2018 12.5 1045.8 4183.3 4.0 94.8 101.1 1.1 5.7 

7-Feb-2018 13.2 788.4 4663.3 5.9 79.8 82.6 1.0 5.9 

21-Feb-2018 11.3 922.9 751.3 0.8 81.9 40.3 0.5 7.1 

29-Feb-2018 11.3 190.1 4853.4 25.5 112.7 122.0 1.1 30.9 

Table 6.  Avg MMHG and THg [fM] for UW vs SML vs EF totals and Avg 
MMHg as a percent total of THg (MMHg % THg)   

Figure 27.  Percent MMHg of Total Hg in SML and UW 
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Aerosol Generator, Sea Spray & Fog

Ratios of MMHg concentrations and tracer Cl- ion measurements across coastal 

compartments increased by orders of magnitude from UW to fog water. Mean Log 

(MMHg / Cl- ) ratios for fog (collected in CASCC, 2.274) were ~300x higher (in absolute 

MMHg / Cl- ) than SSA filter collections (SSA, 0.207) and SSA made during two fog 

events (Fog/SS, 1.86), ~300x higher than filter collections for Bubble Aerosol filters 

(0.455) (Fig. 30). ML concentrations for MMHg are orders of magnitude lower than 

coastal fog, and when standardized for tracer Cl- ion values (SML MMHg/Cl- : 8.5x10-4), 

account for 0.03% of MMHg/Cl- values in marine coastal fog (Fig 26). However, the 

shoreward increase in MMHg/Cl- ratios of coastal compartments indicate appreciable 

mechanistic concentration of MMHg into aerosols relative to SML. Synthesized aerosols 

from the aerosol generator (BubbleAero, Fig 30) yield ~20% of Fog MMHg/Cl- ratios, 

while SSA collected at the beach absent fog conditions (SSA, Fig 30) exhibit ~9%. The 

Fog/SS data are two averaged filter measurements made during a fog event. These values 

are very similar to those of the aerosol generator, yet are still ~20% of fog samples 

collected via CASCC. The aerosol generator represents an apparent non-trivial source of 

MMHg to fog and land via sea spray, and is a proxy for SSA collected at the shoreline 

hundreds of meters inshore. Yet these shoreline SSA samples appear to contain less than 

half of the MMHg/Cl- aerosols. Filter measurements may be 

underestimating MMHg/Cl- compared to bottled water samples, despite the effort to 

standardize both measurement types. Filters contain less physical volume for collection 

and are more prone to material saturation compared to a 250mL bottle. The fog events 

during which Fog/SS samples were collected on filters may also not be an accurate 

representation of fog events where 250mL bottled samples were collected. No 250mL fog 

samples were collected in tandem with filters. 

 Moss Landing 

salinity measurements (YSI handheld pH meter) showed normal/expected SML & UW 

- ion 

measurements via IC were much lower (3.2 ample dilution 
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during ion chromatography analysis (Supplemental?). Potential over-dilution of samples 

aside, 

Figure 28.  Potential MMHg transport across measured coastal compartments, 
via mean Log (MMHg / Cl-) ratios. 
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SML Chlorophyll 

The lack of MMHg SML enrichment also 

Chl-a enrichment in the SML was nonexistent, with a ~2.7x 

higher chlorophyll signal in UW than the SML. Higher water temperature was associated 

with lower Chl-a concentrations (Fig. 31). There appeared to be no clear relationship 

between Chl- 32). 

Chl-a and organic material are generally enriched in the SML (

Hardy & Apts, 1989; Wurl et al., 2017), however the <1 EF found in the Feb 2018 

samples suggest Chl-a is likely also subject to SML variables such as patchiness, diurnal 

production shifts, delayed blooming, and photodegradation (Galgani et al., 2014; 

). Phaeopigment abundances did not appear to influence MMHg 

concentrations (Fig. 32), but remains an interesting topic to revisit with higher sample 

sizes across productive seasons, given specific phytoplankton species may also affect 

SML Chl-a and phaeopigment (and thus potentially MMHg) concentrations and 

enrichment (Lee & Fischer, 2017; Zäncker et al., 2017). 

Figure 29. Chl-a [ g/L] in the SML and UW. 
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SML PAH/CDOM  

Wet atmospheric deposition of PAHs can contribute significant enrichments of 

more than 300x to the SML (Lim et al., 2007) since many PAH sources are combustion 

emissions (Abdel-Shafy & Mansour, 2016). While MMHg in the SML did not appear to 

have any relationship with PAH (a potential SML proxy) concentrations, it decreased 

with increasing CDOM concentrations (Fig. 33). The lack of rainfall before or during 

sampling of the SML could explain the lack of agreement between MMHg and PAH in 

concentrations elevated in marine cloud droplets at altitude relative to continental stratus 

(Weiss-Pienzas et al., 2018). Future measurements before and after rainfall events, as 

well as in and out of area of high shipping traffic and industry could resolve any 

atmospheric flux of MMHg to the ocean and SML or lower atmospheric marine boundary 

layer. However, given the independent nature between PAH and marine MMHg source 

functions, a finding of no correlation is unsurprising.  

CDOM can be formed via the microbial processing of organic matter, typically 

phytoplankton exudates (Thorton, 2014; Kinsey et al., 2018) and are susceptible to 

reduced refractivity and detection under photodegradation (Miranda et al., 2018). SML 

Figure 30. Chl-a and Phaeopigment fractions with MMHg [fM] in the SML and UW. 
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MMHg trended negatively with increased CDOM fluorescence intensity (Fig. 33). SML 

MMHg trended negatively under increased PAR, surface temperatures and fluorescence, 

suggesting integrated effects of photodegradation, photoreduction (Amyot et al., 1997; 

Lee et al., 2018) and biodilution (increased fluorescence with increased productivity 

resulting in a diluted MMHg signal). In addition to the variability of this 

microenvironment, no seawater or SML samples in this study were filtered, suggesting 

that increased particulate matter could be influencing the amount of CDOM signal in 

these samples. Phaeopigments, DOM, POM (particulate organic matter) were not 

measured for these samples, therefore future comprehensive sampling during a more 

productive time of year could explain higher CDOM and lower Chl-a in this study. 

Sampling may have also occurred at some intermediate stage of degradation before 

microbial processes have fully digested the material to become optimally fluorescent. 

However, it seems more likely that the SML did not fully develop during sampling as a 

result of active wind conditions and time of year. 
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Chapter 3 

DMHg Contribution to Fog via Acidolysis 

 The apparent small contribution of SML and SSA particulate MMHg to marine 

coastal fog reflected by measured MMHg/Cl- ratios suggests other marine sources of 

MMHg to the coastal zone that eventually becoming entrained in marine coastal fog. The 

coastal zone is a complex and dynamic environment that connects land and sea. 

(Coale et al., 2018). Bottom water fluxes on a broader, 

shallow continental shelf may contribute more significantly to the levels of methylated 

species observed there. 

Some evidence points to atmospheric DMHg cleavage as a likely source of 

MMHg signals within California marine fog. One of the few studies of DMHg in the 

upper water column in coastal California saw surface water values in the spring between 

0.03 and 0.3 pM (Conaway et al., 2009), showing the first clear and reproducible profiles 

of DMHg in the coastal Monterey Bay with surface water depletions (<0.03 pM [30fM]) 

and a mid-depth increase (0.6 pM [600fM]) (Fig. 34). It was theorized that surface water 

DMHg may evade into the lower atmosphere, transforming into MMHg and potentially 

recycled to the ocean or land as aerosol or fog deposition (Conaway et al., 2009). While 

no substantiating measurements were reported in the Conaway study, this possibility has 

been supported by the recent findings of high levels of MMHg in fog (Weiss-Penzias et 

al., 2012, 2016).  

The conditions and mechanisms of surface ocean DMHg conversion to 

atmospheric MMHg are unknown, however there are probable suspects. Previously 

observed DMHg loss from sample preservation with HCl solution prompted further study 

(Fig. 35, Parker and Bloom, 2005; Fitzgerald and Mason, 1997). Black et al., confirmed 

the finding of DMHg in Monterey Bay surface waters, but also showed minimal DMHg 

photodemethylation and DMHg to MMHg conversion in acidified samples. While Black 

et al., used glass in these photodemethylation experiments (which do not transmit UV 

light), leaving photodemethylation as a potential converter, the exposure to acidic 
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conditions may provide another chemical pathway (Fig. 36; Black et al., 2009). 

Photodemethylation appears to degrade MMHg in aquatic environments (Byington, 

2007). 

Gradients of DMHg in eddy profiles with surface depletions from 2014-2015 

cruises yielded a calculated flux to be 11pmol m-2 d-1 (Fig 36.). These are 20x higher than 

previous values in the literature (0.2-0.4 pmol m-2 d-1 , Hammerschmidt & Bowman, 

2012), 

Assuming a vertical 100m fog layer, only 0.2% of this flux would be needed to account 

for MMHg in fog, which can exhibit acidic conditions as low as 2-4 pH (Trumble & 

Walker, 1991). 

Figure 32.  DMHg profiles in offshore upwelling and downwelling eddies from 
2014-2015 cruises.  
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Fig. 33 
DMHg profiles in Monterey 
Bay. From Conoway et al., 2009 
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Figure 34. 
Stability of DMHg in 
spiked deionized water 
under different storage 
conditions. Acidified 
samples were exposed 
to room light and 
temperature, while 
unpreserved samples 
were refrigerated in the 
dark. From Parker & 
Bloom, 2005.

Figure 35. Decrease in DMHg (measured after 4 days) due to acidification and or 
decomposition of sample (A) was proportional to MMHg measured 3 months later 
when not initially sparged of DMHg (B). Dashed lines are respective detection 
limits. From Black et al., 2009 
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METHODS 

To confirm acidification over photodemethylation as a mechanism for DMHg 

cleavage in the surface seawater and acidic fog conditions, we sought to repeat 

experimental results from Black et al., 2009. 2-L polycarbonate bottles of natural 

seawater (pH 7.8 8.2) were incubated in an outdoor tub at natural surface water 

temperature. Bottle of acidified (pH 5.2) seawater were incubated in a cool, dark area for 

~12 hours. Initial and final DMHg and MMHg were also measured using methods 

described in earlier chapters. Follow-up acidification experiments (pH 1.7 & 3.5) 

incubated ~300m deep water collected from Monterey Bay in a 25L carboy and incubated 

again for ~12hrs to replicate a long duration fog event.  

Our results were comparable to Black et al., with natural unacidified seawater 

showing no detectable change in DMHg concentrations with time, regardless of the 

exposure to sunlight. Acidified seawater showed dramatic loss of DMHg under different 

pH regimes (Fig. 37). Samples from the pH 1.7 follow-up experiment exhibited an 

increase in MMHg concentrations, and appear to support this paradigm of DMHg 

demethylation under acidic conditions (Fig. 38). Calculated rate constants from the 

acidification experiments suggest a higher conversion rater at a lower pH (Fig. 39).  
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Gaseous dimethyl sulfide (DMS) has been known to affect the acidity of the 

marine boundary layer and thus sea salt aerosols, potentially creating the required acidic 

(low pH) conditions for DMHg degradation (Fig. 41 Keene et al., 1998; Reid & Sayer, 

2002). The DMS precursor dimethylsulfoniopropionate (DMSP) has also been found to 

be enriched in the SML (Matrai et al., 2008), as it is a product of phytoplankton exudates. 

DMHg likely evades into the atmosphere and degrades rapidly into MMHg, Hg(II), or 

Hg0 thereafter. This apparent acidolysis-driven demethylation of DMHg into MMHg may 

explain some, if not most, of the MMHg signal found in fog. Therefore, higher primary 

productivity could result in higher DMSP-DMS concentrations, and thus DMHg -MMHg 

conversion over time.  

Figure 38. 
pH. kdemeth demeth demeth

kdemeth (pH=8.0) from Black et al. (2009). 
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Low pH in fogReid & Sayer, 2002; Zhuang et al., 1992 

Fig. 39 Dimethyl Sulfide Propionate (DMSP) degradation into Dimethyl Sulfide by 
marine bacteria, resulting in acidic cloud conditions. Modified from iGEM 2014, Kyoto 
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CONCLUSION 

Evidence of terrestrial biota taking up marine-sourced MMHg through food web 

bioaccumulation via marine advective fog (Weiss-Penzias, 2012; Rytuba, 2014; Otriz et 

al. 2014) extends the exposure risk found in seafood to terrestrial organisms. MMHg has 

been found to greatly affect ecosystem health, disrupting and hampering migratory bird 

reproduction in the great lakes and as far as the Arctic (Tartu et al., 2013, Scheuhammer 

et al., 2007) and throughout more locally impacted regions such as the San Francisco Bay 

Delta complex (Ackerman et al., 2014). Atmospheric deposition of Hg can 

bioaccumulate noticeably into soil and vegetation within several years (Harris et al.,

2007), posing a potential contaminant to nearshore agricultural fields over some period of 

time. The approximately 25 mile coastal extent of Monterey Bay, where fog can extend 8 

miles inland, potentially receives 17g MMHg/ yr. (Fog MMHg flux of 34 ± 40ng m-2 yr-1, 

Weiss-Penzias et al. 2016). 

The coastal zone is extremely complex with various forces synergistically 

affecting the region. This thesis and related collaborative studies have yielded insight into 

how these forces and processes appear to influence regional Hg cycling (Fig. 42). 2014-

2015 cruises found MMHg and DMHg maxima at 300-800m with concentrations similar 

to other ocean basins (300-600fM). The uppermost surface layer of the ocean (SML) was 

found to be enriched up to ~30x, the first measurement of MMHg in that 

microenvironment and the highest for any heavy metal to date. High levels of pollutants 

in this heavy organic layer have major implications. Hg, particularly MMHg, adsorping 

onto microplastics in the SML also likely elevates levels within the marine food web, not 

only decreasing health of marine life, but increasing human susceptibility from seafood 

(Wang et al., 2018). MMHg concentrations and MMHg:THg fractions in fog peak around 

the near edge coastal zone, essentially in the surf zone. These aerosols may be deposited 

frequently enough bioaccumulate up the terrestrial food chain. 
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Results from this thesis suggest that the contribution of MMHg to coastal fog 

water from aerosolized SML particles is small (~1%) in terms of a MMHg/Cl ratio as a 

tracer. Gaseous DMHg undergoing acidolysis under low pH atmospheric conditions 

resulting in particulate MMHg may be the primary pathway of MMHg to fog. However, 

these contributions may likely fluctuate with the various coastal processes and 

mechanism intensity, with major factors including shoaling of DMHg and or DMS 

concentrations (which lower atmospheric pH) during upwelling events as well as primary 

productivity in the mixed layer (Simó et. al., 1999). Anthropogenic emissions and 

pollutants in the form of aerosols may also affect fog CCN and pH. To a lesser extent, 

SML derived MMHg deposition via fog and SSA may also be subject to coastal 

productivity and water column dynamics that affect the heterogeneity of the SML and 

SSA (Leeuw et al., 2000). SML and SSA sample sizes were small and require more 

generous sampling of different conditions to constrain any potential large swings in 

MMHg terrestrial deposition from fog or sea spray. 

While this study finds MMHg concentrations in fog and SML that are thousands 

fold lower than EPA standards for fish consumption, the areal extent of the coastal zone 

may, over time, deposit significant levels of particulate MMHg coated aerosols to the 

coastal landscape. Further determination and quantification of these potential inputs of 

MMHg, particularly SML and SSA, would refine the uncertainties of global and marine 

atmospheric Hg cycling (Subir at al., 2011). Understanding the mechanisms and extent of 

MMHg production and transport is essential to assessing and managing risk of exposure 

in food webs and human populations. 
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Figure 40. Conceptual model of Hg cycling within the California coastal zone.  
From Coale et al., 2018
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APPENDIX A 

Station Name Date Lat ( N) Lon ( W) 
Brazil Ranch 05/06/2014 36.27 121.96
Canyon Axis 06/06/2014 36.62 122.38
Long Marine 06/06/2014 36.95 122.20

San Mateo Shelf 07/06/2014 37.12 122.84
Montara 07/06/2014 37.53 122.57
Bodega 08/06/2014 38.31 123.13

Cordell Bank 08/06/2014 37.88 123.25
Pepperwood 08/06/2014 38.57 123.43
Shelter Cove 09/06/2014 40.01 124.15

Cape Mendocino 10/06/2014 40.44 124.53
Eureka Shelf 11/06/2014 40.83 124.36

Trinidad Upwelling 11/06/2014 41.50 124.25
Blue Max 1 12/08/2014 41.89 124.92
Red Max 1 13/08/2014 42.20 126.86

Cape Mendocino 14/08/2014 40.44 124.53
Eureka Shelf 14/08/2014 40.83 124.36
Red Max 2 14/08/2014 39.85 125.63
Blue Max 2 15/08/2014 39.14 124.57
Pepperwood 15/08/2014 38.57 123.43
Red Max 2 15/08/2014 39.85 125.63
Bodega-2 16/08/2014 38.31 123.13

Cordell Bank-2 16/08/2014 37.88 123.25
Montara 16/08/2014 37.53 122.57

Canyon Axis 17/08/2014 36.62 122.38
Long Marine Lab 17/08/2014 36.93 122.04
San Mateo Shelf 17/08/2014 37.12 122.84
Brazil Ranch-2 18/08/2014 36.52 122.01

Pt Sur 18/08/2014 36.24 121.89
Canyon Axis 24/06/2015 36.62 122.40

Table 3. 2014-2015 station locations and sampling dates
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Long Marine Lab 24/06/2015 36.90 122.09
Bodega 25/06/2015 38.30 123.13
Montara 25/06/2015 37.68 122.59

Caspar Point 26/06/2015 39.37 123.94
Eureka 26/06/2015 40.84 124.36

Crescent 27/06/2015 41.76 125.47
Mendocino 27/06/2015 40.51 125.27

Cabrillo 28/06/2015 39.39 125.10
Pt Reyes 28/06/2015 38.00 125.00
Monterey 29/06/2015 36.67 124.16
Soberanes 29/06/2015 36.46 123.03

Brazil Ranch 30/06/2015 36.52 122.01
Pt Sur 30/06/2015 36.24 121.89

Conception 13/08/2015 34.50 120.60
Ventura 13/08/2015 34.23 119.37

Avila 14/08/2015 35.10 120.72
Cambria 14/08/2015 35.55 121.17

Canyon Axis (Red 1) 15/08/2015 36.66 122.46
Long Marine Lab 15/08/2015 36.92 122.04

Montara 15/08/2015 37.53 122.57
Blue Max 1 16/08/2015 38.00 126.18
Red Max 2 16/08/2015 38.00 125.00

Bodega 17/08/2015 38.31 123.13
Pepperwood 17/08/2015 38.57 123.43
Eureka Shelf 18/08/2015 40.83 124.36
Shelter Cove 18/08/2015 40.00 124.15
Blue Max 2 19/08/2015 41.05 126.50
Red Max 3 19/08/2015 42.50 126.00
Coos Bay 20/08/2015 43.45 124.46

Port Orford 20/08/2015 42.67 124.53
Florence 21/08/2015 44.00 124.46
Newport 21/08/2015 44.55 124.35
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