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CHAPTER I

GEOGRAPHIC VARIABILITY IN LINGCOD (OPHIODON ELONGATUS)
DEMOGRAPHY AND LIFE HISTORY ALONG THE U.S. WEST COAST: 
OCEANOGRAPHIC DRIVERS AND MANAGEMENT IMPLICATIONS

Abstract 

Fish populations exhibit variation in life-history and demography based on a 
variety of biological, environmental, and anthropogenic factors. Understanding the spatial 
patterns in life-history variability for commercially exploited fish stocks is important 
when making management decisions and designating stock boundaries. Between 2015 
and 2017, 2,189 Lingcod were collected from seven geographically distinct regions along 
the West Coast to investigate latitudinal patterns in population distribution, growth, 
timing of maturity, condition, and natural and fishing mortality. Life history parameters 
of growth, maturity, longevity, condition, and natural and total mortality were calculated 
and compared for Lingcod in each region and by sex. A principle components analysis
was used to relate trends in life-history parameters to coastwide environmental patterns in 
sea surface temperature and productivity. Non-metric multidimensional scaling 
ordination plot and PERMANOVA were used to identify biologically relevant 
breakpoint(s) for Lingcod along the U.S. West Coast. The results from this study 
demonstrate that Lingcod exhibit strong latitudinal patterns in life history that is 
consistent with Bergmann’s Rule, where Lingcod from colder, northern waters grow 
faster and larger, live longer, mature at larger sizes, and have lower natural mortality 
rates than Lingcod from warmer, southern waters. Lingcod total mortality rates did not 
follow a latitudinal trend but were highest in Washington and Southern California 
regions, which is consistent with historic fishing practices, current fishing pressure, and 
local patterns of productivity within those regions. Between sexes, female Lingcod were 
found to grow faster and larger, live longer, mature at larger sizes, and were in worse 
condition than male conspecifics. These findings suggest that while Lingcod life-history 
traits related to age, growth, and condition are strongly influenced by localized patterns 
of temperature and oceanography along the coast, there can be considerable variation 
based on a regions’ history of exploitation. A biologically relevant breakpoint for 
Lingcod along the U.S. West Coast was identified at the central Oregon coast, dividing 
the Lingcod stock into northern and southern substocks. The coastwide Lingcod 
population and fishery may benefit by using this boundary as a biologically appropriate 
break point when conducting future stock assessments. Implications for applying these 
findings to other federally managed groundfish species and stock assessment models are 
discussed. 
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Introduction

Marine fishes are exposed to unique, constantly fluctuating environments that are 

affected by oceanographic variability, habitat complexity, and human-induced impacts. 

These factors have been shown to affect demography and life history of broadly ranging 

species in a variety of ways, from altering population structure to shifting patterns of 

growth, maturity, and mortality (Robertson et al. 2005a, Robertson et al. 2005b, Keller et 

al. 2011, Hamilton et al. 2011). For economically important fish stocks, this can have 

considerable consequences on fisheries management and stock assessment methods 

(Hilborn et al. 2003, King and McFarlane 2003, Maunder and Piner 2015). 

Modern fishery management strategies along the U.S. West Coast rely on species-

specific stock assessment models, which are based on quantifiable life-history parameters 

(e.g., recruitment, growth, size and age at maturity, fecundity, natural mortality), 

estimates of stock biomass, and the history of exploitation (Hilborn 2003, Hilborn et al. 

2003a, Worm et al. 2009). Stock assessment models often assume that life history 

parameters are stable and unchanging across a species’ range or the management area of 

interest (Cope et al. 2011, Dichmont et al. 2016). Thus, most fish stocks are managed 

over broad geographic areas with catch limits, minimum size limits, or other regulations 

applying equally in all places (Fahrig 1993, Punt 2003). Past studies indicate that the 

assumption of spatial uniformity in stock status can be inaccurate and lead to errors in 

fisheries management; therefore, it is essential to include data on regional life-history 

variability to guide future stock assessment efforts (Hilborn et al. 2003b, Hilborn 2003, 

Gunderson et al. 2008, Cope and Punt 2011).  
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Demography and life-history of fish species are often influenced by latitude 

(Boehlert and Kappenman 1980, Gertseva et al. 2010, Keller et al. 2012, Gertseva et al. 

2017, Keller et al. 2018) and the environmental factors associated with it. Typically, 

organisms in higher latitudes exhibit slower growth rates, increased longevity, and attain 

larger adult sizes compared to organisms residing in lower, warmer latitudes (Bergmann 

1847, Allee and Schmidt 1951, Ray 1960, Atkinson 1994, Atkinson and Sibly 1997, for 

an exception, see Conover and Present 1990). This can be due to numerous ecological 

factors but is generally attributed to temperature-driven energetic tradeoffs between 

somatic growth and reproduction, and regional variability in food availability and 

metabolism (Boyce 1978, Choat and Robertson 2002, Munch and Salinas 2009).  

Latitudinal variation in life history and demography of fishes has been reported in 

both temperate (Boehlert and Kappenman 1980, Brodziak and Mikus 2009, Keller et al. 

2012, Gertseva et al. 2017) and tropical (Robertson et al. 2005a, Robertson et al. 2005b) 

marine environments and can influence fisheries management methods. Two 

economically important groundfish species from the Channel Islands in Southern 

California, California sheephead (Semicossyphus pulcher) and grass rockfish (Sebastes 

rastrelliger), display geographic variation in life-history traits that appear to be linked to 

environmental gradients in temperature, productivity, and historic fishing pressure 

(Hamilton et al. 2011, Wilson et al. 2012). Wilson et al. (2012) found that even subtle 

changes in life-history and demographic rates can translate to large differences in 

spawning potential in the Grass rockfish population. Additionally, Hamilton et al. (2011) 

demonstrated that by dividing the Channel Islands region into spatially explicit 

management zones based on oceanographic patterns of productivity, total yield of the 
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California sheephead fishery could be maximized while the population is maintained at 

sustainable levels.

GROUNDFISHES OF THE NORTHEAST PACIFIC

In the Northeast Pacific along the U.S. West Coast, a large gradient in 

oceanographic conditions occurs due to interactions between the California Current 

System (CCS) and seasonal and annual wind forcing, influencing sea surface 

temperatures and upwelling events in nearshore environments. These factors control 

many of the transport mechanisms necessary for nutrient supply and larval dispersal and 

survival (Checkley and Barth 2009). Physical features such as capes, points, submarine 

canyons and islands play an important role in determining the intensity of upwelling 

events, which in turn directly influences regional fish productivity (Ware and Thomson 

2005). There are several natural breaks in the biogeography of the Pacific coastline where 

many species range endpoints occur: Cape Blanco in Oregon, Cape Mendocino in 

northern California, and Point Conception in southern California (Blanchette et al. 2008, 

Checkley and Barth 2009). The regions between these break points exhibit localized 

oceanographic patterns in sea surface temperature, primary productivity, and trophic 

interactions (Foster and Schiel 1985, Love et al. 2002, Ware and Thomson 2005),

resulting in marked disparities in the demography and structure of nearshore fish 

communities. 

The groundfishes that inhabit the Northeast Pacific are diverse, wide-ranging, 

long-lived, have a strong association with the seafloor (Archibald et al. 1981, Love et al. 

1990, Love et al. 2002) and include over 90 species of rockfishes, roundfishes, flatfishes, 
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sharks, skates and others (PFMC 2014). While 70% of assessed groundfish stocks are 

found to be at or above the management target of 40% of virgin biomass, only 30% of 

groundfish species within the U.S. West Coast groundfish fishery complex are assessed 

on a regular basis. Additionally, many of these commercially important stocks 

experienced severe overfishing through the 1980s and 1990s due to misinformation (e.g. 

unreported catch, overestimation of stock productivity) and mismanagement (e.g. 

unregulated sectors, overcalculated annual catch limits) (NMFS 2009). With over 8,000 

miles of coastline (NOAA 2016), the U.S. West Coast encompasses a wide range of 

habitats and environmental conditions; this diversity of conditions can result in regional 

differences in life-history parameters and population structure of many groundfishes. 

Incorporating data on regional life-history variability into assessments of stock status and 

health may prevent future stock collapses and lead to improved sustainability of fisheries.

Lingcod (Ophiodon elongatus, Girard 1883) are an ideal species to use in 

examining variability in life history and demography. Lingcod are members of the 

groundfish complex, are broad ranging and ubiquitous along the U.S. West Coast and are 

opportunistic top predators in the nearshore demersal ecosystem (Wilby 1937, Miller and 

Lea 1972, Hart 1973). Lingcod exhibit geographic variability in body size, spatial 

separation between sexes and have limited home ranges, suggesting that they may have 

the potential for substantial variation in demography and life-history traits across their 

range. 

The Lingcod stock along the U.S. West Coast is assessed for the Pacific Fishery 

Management Council on a regular basis, however several limitations exist that can lead to 

uncertainty in assessment models (Jagielo and Wallace 2005, Hamel et al. 2009). 
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Lingcod are currently modeled as having a northern (Washington and Oregon) and 

southern (California) stock, where biological and catch information are grouped in each 

region (Jagielo et al. 1997, Adams et al. 1999). Historically, there has been higher 

uncertainty regarding Lingcod stock status for the southern area relative to the northern 

area since early landings information in the south was much sparser and sample sizes 

used for growth, maturity, and mortality estimates were considerably smaller (Jagielo et. 

al 2003). When the coastwide Lingcod stock was considered rebuilt in 2005 to 64% of its 

unfished biomass, the northern and southern areas were rebuilt to significantly different 

levels, with the northern region recovering to 87% of the unfished biomass and the 

southern region recovering to only 24% of the unfished biomass (Jagielo and Wallace 

2005). This validates the previous decision to manage Lingcod as multiple stocks; 

however, it may also indicate that managing Lingcod by more than two region specific 

sub-stocks may be necessary to ensure that estimates of Lingcod stock productivity are 

accurate and to prevent the potential for overharvesting on localized scales. The 2009 

Lingcod stock assessment (Hamel et al. 2009) stressed major uncertainty regarding the 

proper break points for stocks and sub-stocks, and stock-specific length-at-age data. 

These issues remain unaddressed in the 2017 Lingcod stock assessment (Haltuch et al. 

2017). In addition, ageing validity and ageing bias have affected estimates of age and size 

at maturity of Lingcod in past stock assessments due to inconsistent ageing methods 

(Chatwin 1956, Miller and Geibel 1973, Beamish and Chilton 1977). While Lingcod

have been aged throughout their range, ageing has focused on limited regional scales, 

small sample sizes, or specific size classes; there has not been a comprehensive Lingcod 
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ageing study across its range among all size classes (Chilton and Beamish 1982, Cass and 

Beamish 1983, Laidig et al. 2001, Silberberg et al. 2001).  

My goal in this chapter was to determine how Lingcod demography and life 

history vary across its coastwide range in correlation to oceanographic indicators. My 

research objectives were (1) to quantify and compare sex-specific population structure 

and life-history (growth rates, longevity, size and age at maturity, somatic condition, and 

mortality rates) of Lingcod in seven regions along the U.S. West Coast; (2) to investigate 

potentially correlated associations between life-history parameters and oceanographic 

indicators; (3) to identify distinct groups within the coastwide Lingcod population based 

on similarities in life-history so as to determine biologically relevant breakpoints in the 

Lingcod stock; and (4) to suggest management implications of these findings for Lingcod 

and other commercially important groundfish species.  

Based on past studies on Lingcod life-history and Bergmann’s rule, I predicted 

that among coastwide regions, Lingcod at higher latitudes will have larger median and 

asymptotic sizes, live longer, grow faster, reach maturity at larger sizes, and have lower 

natural mortality compared to Lingcod from lower latitudes (Bergmann 1847, Echeverria 

1987, Haldorson and Love 1991). Furthermore, I expected Lingcod at high latitudes to be 

in better condition than Lingcod from lower latitudes because colder waters in the 

northern CCS are more productive than warmer southern waters. I expect that Lingcod 

life history parameters will be directly related to environmental correlates (sea surface 

temperature and productivity) and predict that biologically driven breaks in the Lingcod 

population to occur at major biogeographic locations (i.e. Cape Blanco, Cape Mendocino, 

and/or Point Conception) along the coast.  
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Methods

SPECIES NATURAL HISTORY

Lingcod are in the greenling family (Hexagrammidae) and range from Kodiak 

Island, Alaska to Baja California, Mexico (Wilby 1937, Miller and Lea 1972, Hart 1973). 

They are opportunistic top predators, feeding on a variety of taxa, including octopus and 

squid (Cephalopoda), herring (Clupea sp.), rockfishes (Sebastes sp.), and flatfishes 

(Pleuronectiformes) (Miller and Geibel 1973, Beaudreau and Essington 2011).Genetic 

studies using a mitochondrial DNA marker found that Lingcod are genetically similar 

throughout their coastal range, suggesting extensive gene flow among populations 

throughout the West Coast (Jagielo et al. 1997, Marko et al. 2007).  

Like other groundfish species, Lingcod are sexually dimorphic, with females 

typically growing faster and attaining larger asymptotic sizes. Females also reach 

maturity at larger sizes, between 3-5 years of age, whereas males are smaller but reach 

maturity earlier at 2 years of age (Miller and Geibel 1973, Cass et al. 1990). Spawning 

typically begins in early December and peaks from January to March. Mature females 

move from deeper offshore areas (100-200 m) to shallow (10-40 m) rocky habitats to 

deposit eggs at favorable nesting sites (Wilby 1937, Jewell 1968, Low and Beamish 

1978). Mature males will initially select and guard optimal nesting areas, crevices or 

rocky outcrops with high water flow, before the arrival of spawning females. After eggs 

are deposited, female Lingcod will return to depth and leave the male to guard the eggs 

until they hatch, usually between 5-7 weeks (Low and Beamish 1978, Miller and Geibel 

1973). Nest guarding by males protects developing embryos from predation by 
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opportunistic fish and invertebrate predators (Jewell 1968, Low and Beamish 1978). 

Upon hatching, the larvae are approximately 12 mm in total length and stay pelagic until 

they reach about 70 mm, at which point they typically settle to soft-bottom habitats. 

Juvenile Lingcod often remain on soft-bottom habitats until attaining a size of 350 mm 

(1-2 years of age) before moving into high-relief rocky habitat, potentially for protection 

from larger predators (Petrie and Ryer 2006).  

Adult Lingcod display a high degree of site fidelity with an established location of 

residence (< 8 km home range), but frequently leave for brief periods of time over short 

distances, presumably to feed (Jagielo 1990, Jagielo 1999, Starr et al. 2005, Greenley 

2009,). Residence times vary by sex, size, season, and habitat of residence (Greenley et 

al. 2016, Stahl et al. 2014). Due to this, males and females exhibit slight spatial 

segregation by depth and habitat type. More females are caught in the commercial fishery 

by trawl gear in low relief, deep, offshore habitats (62.4% females, 37.6% males), and 

more males caught in the recreational fishery by divers and party boat anglers in shallow, 

nearshore areas with high relief rocky habitat (66.3% males, 33.7% females) (Miller and 

Geibel 1973). 

SAMPLING AREA AND COLLECTION PROTOCOL

Lingcod were collected from seven geographically distinct regions along the U.S. 

West Coast and Alaska; Southeast Alaska (54°30'N to 59°48'N), Puget Sound, coastal 

Washington (46°16’N-49°N), Oregon (42°N - 46°16’N), northern California (38°02’N - 

42°N), central California (34°30’N - 38°02’N), and southern California (32°32’N - 

34°30’N) (Fig. 1). The selection of these regions was made to evenly distribute sampling 
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effort across a broad latitudinal scale; the precise locations of life-history break points 

were determined post data-collection.

Figure 1: Map of study site showing sampling ports per region 
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Lingcod were caught using hook-and-line fishing gear across all seven regions on 

chartered fishing boats. Three to four fishing ports were selected per region (n=23 ports 

total), with the goal that selected ports were evenly distributed within each region and 

across the entire study area (Fig. 1), depending upon the geographic location of the ports 

and the availability and accessibility of recreational party boats (or Commercial 

Passenger Fishing Vessels [CPFVs]). CPFVs were chartered at each port for a half- to 

full-day of fishing, depending on weather and the number of Lingcod collected. We 

worked closely with CPFV captains, deckhands and local volunteer anglers to identify 

appropriate fishing grounds in order to collect 100 Lingcod per port using hook-and-line 

fishing gear. To ensure a thorough collection of Lingcod across a wide range of age and 

size classes, shallow (<60 m) and deep (60-170 m) nearshore and offshore rocky reefs 

were sampled equally. Lingcod can be targeted using weighted bars, jigs, swim baits, and 

live bait, which greatly reduces incidental catch of other bottomfish species (i.e. Sebastes 

spp). Because Lingcod are known to recruit to rocky substrate around 35 cm total length 

(Miller and Geibel 1973), it is unlikely that smaller size classes are excluded by this 

mode of fishing in rocky habitats.   

All incidentally caught species were measured and released. Species suffering 

from barotrauma were descended and released at depth using a descending device 

(SeaQualizer®) to reduce mortality. Catch information, such as location, depth, relief, 

and catch per unit effort, was collected for each drift. Landed individuals were euthanized 

per the Institutional Animal Care and Use Committee protocol (Permit Number: 964), as 

approved by San Jose State University. Total length (cm), weight (kg), sex, and color 

status were collected immediately after the Lingcod was landed. Fresh gill tissue was also 
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collected during onboard sampling and preserved in 95% ethanol to be used for future 

genetic analyses. The Lingcod were then frozen or put on ice until dissection. 

LAB DISSECTIONS 

Standard morphometrics were collected during the lab dissection process: Total 

length (cm), standard length (cm), whole weight (kg), gape (mm), and body depth (mm). 

Additionally, liver weight (g) was measured for condition, the weights of whole stomachs 

(g) were measured, and stomach contents were stored in 95% ethanol to be used in future 

Lingcod diet studies. Male and female gonads were weighed (g) and visually inspected 

for maturity according to WDFW standards (Table 1; Silberberg et al. 2001). Muscle 

tissues samples were collected in 1.8 mL cryogenic vials and frozen for future fatty acid 

and stable isotope analysis. Fin rays 4-8 on the second dorsal fin were removed at the 

base joint and kept frozen until ready to be aged. Fin rays collected in Washington were 

sent to WDFW to be processed and aged by their ageing lab then returned to MLML

where cross-lab ageing validation was established. All other fin rays were processed and 

aged at MLML. Sagittal otoliths were removed, cleaned, and stored dry for potential age 

validation studies. Otoliths were only retained in California because age validation work 

is regularly done in Oregon, Washington and Alaska. 

AGEING 

To evaluate geographic variation in age frequencies and growth rates (length-at-

age curves, see below), I aged 75 to 100 Lingcod from each port following the Lingcod 

fin ray preparation protocol described by Chilton and Beamish (1982) and currently used 
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by the WDFW (R. LeGoff, WDFW, personal communication). Lingcod were aged using 

rays 4-8 on their second dorsal fin, which has been found to have the highest accuracy, 

readability, and minimal between-reader bias when compared to other ageing structures 

(Chilton and Beamish 1977, Cass and Beamish 1983, Claiborne et al. 2016). After cutting 

off the appropriate dorsal fin section, I dried the rays so that they lay perpendicular to the 

cut base by using a wire frame cage to hold the rays in place. The fins were dried for up 

to three days, then hardened with two coats of a medium thickness Cyanoacrylate (CA) 

glue, set with CA accelerator, and left to dry completely for one to two days. Using a 

PACE Pico high-speed saw, 1-2 mm wide sections (depending on fin size) were cut 

beginning from the fin base joint, producing 5-6 readable ray sections. The sections were 

then oriented in the order that they were cut and mounted on a microscope slide using 

two coats of medium viscosity Cytoseal™ 60 mounting fluid. After the slides completely 

dried, the sections were aged and stored in slide boxes.  

 Ages were determined by counting the number of annuli, the translucent zones 

that form once a year during winter growth. Annuli are often distinct along all growth 

axes of each fin ray section (Fig. 2). The opaque summer growth zone forms during the 

spring and summer months, during periods of fast growth. Fine, translucent rings called 

“checks” can form during summer growth zones, making it difficult to distinguish 

between actual annuli, potentially resulting in over-ageing error. Additionally, fin ray 

sections closer to the fin base may contain “occlusions”, or holes caused by resorption of 

the center of the fin ray in older Lingcod, obscuring early annulus rings and leading to 

error by under-ageing. However, error can be minimized using known mean annular radii 

measurements for the first, second, and third annuli. I used the established mean annular 
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radii measurements found by Beamish and Chilton (1977), later validated by McFarlane 

and King (2001), for Lingcod collected in their northern range, and the mean annular 

radii measurements validated by Laidig et al. (2001) for Lingcod in their southern range. 

All samples were read using a compound microscope at 30x to 50x using transmitted 

light. The imaging software Image Pro Plus 7.0 was used to measure the annular radii of 

one to three optimal fin ray sections per fish to verify the location of the first three annuli. 

The NWFSC Cooperative Ageing Project (CAP) laboratory and WDFW aged 509 

Lingcod collected from Washington waters; I aged the remaining 1,681 Lingcod caught 

in all other regions.  I conducted a blind double-read of a subsample of 219 fish to test 

my own ageing bias and precision, while a subsample of 386 and 196 slides were 

exchanged with the WDFW ageing lab and the CAP lab, respectively, to be cross read for 

accuracy and precision.  

Figure 2: Lingcod fin-ray section with radii measurements on the first three annuli (in 
mm). The winter growth increments can be seen in white. 
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MATURITY ASSESSMENTS

 Maturity status was assessed through visual inspection of gonads using the 

maturity stages defined by the WDFW for male and female Lingcod (Table 1). Five 

stages were described for female maturity (immature, maturing, mature, spent, and 

transitional) and three stages (immature, mature, and transitional) for males. However, 

for the purpose of fitting maturity curves for age and length at 50% maturity, only the 

stages of mature and immature gonads were used.  

Table 1: Lingcod maturity stages as defined by the Washington Department of Fish and 
Wildlife (WDFW) (Silberberg et al. 2001).

Stages Description 

Female Immature 

Ovaries are small (1.5-2.0 cm). Color ranges from translucent 
pink to red. Multiple-veined in appearance. No distinguishable 
eggs present.

Maturing

Eggs are visible and opaque. Ovaries are swelling with an 
orange colored egg mass. The ovary wall may or may not be 
thickened. 

Mature 
Ovaries are swollen with large, pale, sticky egg mass. The 
ovaries will appear thickened. 

Spent
Thick-walled ovaries are empty and flaccid. They may appear 
bloodshot. There may be residual eggs inside the ovary. 

Transitional 

Ovaries are thick-walled and firming in early stage, progressing 
to thinner-walled, multi-veined condition similar to advanced 
immature ovaries. Eggs are not distinguishable. 

Male Immature 
Testes are small, round to thin ribbon in shape. Color may range 
from translucent to white. 

Transitional 
Moderate sized testes, firm and compact. The color ranges from 
brown to mottled white. Flowing sperm is not present.

Ripe 
Testes moderate to large, softening and white. Flowing sperm 
should be detectable by pressure or visible in cut cross-section.
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Data Analysis

Analyses were conducted using the statistical computing platform R version 3.5.1

and JMP Pro version 14. To account for the potential confounding effects of depth of 

collection on the analysis, linear regression was used to test the relationship between 

depth and size, and depth and latitude. If a significant effect of depth was discovered, 

samples were stratified and subdivided as needed to control for these factors throughout 

the analyses.  

AGEING ERROR 

 Several sources of error are associated with the age determination of calcified 

structures. Accuracy error accounts for how close the estimated age is to the true age, and 

precision error is a measure of the reproducibility of measurements on a given structure 

(Chang 1982, Campana 2001). The coefficient of variation (CV=SD/mean) has been 

shown to be a robust measure of precision, (Kimura and Lyons 1991, Campana et al. 

1995, Campana 2001) and can be written as: 

CV = 100%

( )
Where CVj is the age precision estimate for a single fish (the jth fish). Xij is the ith age 

determination of the jth fish, Xj is the mean age estimate for the jth fish, and R is the 

number of times the fish is aged. This equation can be averaged across fish to produce an 

average coefficient of variation (ACV). While there is no universally accepted target 
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level of precision for ageing studies, an ACV of 5% to 7.6% serves as a comparable 

reference point (Campana 2001).

To ensure accuracy and to reduce reader bias, age bias plots were evaluated as a 

method of quality control (Campana et al. 1995) (Fig. 3). Age readings of ager y are

presented as mean ages with 95% confidence intervals corresponding to each of the age 

categories reported by ager x (Campana et al. 1995). Age bias plots allow for visual 

assessment of potential differences in paired age estimates. The use of age bias plots is 

the only method of age comparison that allows clear visual detection of systematic age 

differences, or nonlinear relationships (i.e. diverging agreement as the lower or upper 

range is approached) between ager x and ager y. The ACV between L. Lam, and L. Lam 

and WDFW are below Campana’s maximum reference point of 7.6% (6.0% and 6.6%, 

respectively). The ACV between myself and the CAP lab exceeds the reference point 

(8.2%) but the relationship between the agers is linear and has a 97% agreement within 2 

years (Table 2). The intent of the confidence intervals is not necessarily to assign 

statistical significance to the comparison, but to allow informed interpretation of any 

differences between the observed line and the equivalence line (Campana 2001). Overall, 

my age reads have no apparent systematic bias with respect to ages read by WDFW and 

the CAP lab.  
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Figure 3: Age-agreement plots between A.) Lam and CAP Lab, B.) Lam and WDFW age 
reads and C.) Lam to Lam age reads. The dashed 1:1 agreement line is shown for 
comparative purposes. Significantly different ages between age readers are shown in red
( =0.05).
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Table 2: Average coefficient of variation (ACV), average percent error (APE), and 
percent agreement between 3 agers: L. Lam, the NWFSC Cooperative Ageing Project 
(CAP) lab, and the Washington Department of Fish and Wildlife (WDFW) ageing lab. 

ACV APE % agreement +/- 1 yr +/- 2 yr
L. Lam: CAP lab 8.2 5.9 55% 87% 97%
L. Lam: WDFW 6.6 4.7 52% 89% 98%
L. Lam: L. Lam 6.0 4.2 61% 90% 98%

AGE- AND SIZE-STRUCTURE

The nonparametric Kruskal-Wallis test was used to compare age and size 

distributions among all regions, followed by the Steel-Dwass method for pairwise 

comparisons between regions. The Kolmogorov-Smirnov test was used to compare size-

frequency distributions between sexes.

GROWTH CURVES AND LONGEVITY

To examine differences in growth rates, I fit sex-specific von Bertalanffy growth 

functions (VBGF) to size at age data for male and female Lingcod from each region 

using maximum likelihood parameter estimates (Kimura 1980). The following equation 

was used:

Lt = Linf (1 – e –k (t-t0))

Where Lt equals the estimated length at age, Linf is the predicted maximum asymptotic 

length, k is the growth coefficient, t is the age, and t0 is the theoretical time when length 

equals 0. The t0 parameter is largely a modelling artifact, not a biological parameter, and 

is included to adjust for initial sizes in the VBGF (Beverton 1954, Schnute and Fournier 

1980). I anchored t0 to 0, which is biologically appropriate since larval Lingcod are 
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known to be only 12 mm upon hatching (Petrie and Ryer 2006). I used a two-parameter 

estimation for generating maximum likelihood VBGF curves. 95% confidence regions 

were calculated around least squares estimates of Linf and k for each subpopulation using 

bootstrap methods (Kimura 1980). Longevity was calculated based on the mean of the 

upper quartile of ages for each region by sex and habitat (Robertson and Choat 2002). 

VBGF parameters and longevity estimates were considered significantly different if 

confidence regions did not overlap.   

MATURATION CURVES 

Logistic regression (mature vs. immature fish) was used to determine size and age 

at 50% maturation for Lingcod by region and sex. Sex-specific differences in age at 

maturation were determined using the logistic regression equation:   

Px = 1/(1+ e -(a+bx)) 

Where Px is the proportion of fish mature at age x, a is the intercept, and b is the 

coefficient describing the rate at which the proportion of mature fish increases with age. 

Length at maturity was calculated similarly. 95% confidence intervals were estimated 

using bootstrapping and compared among regions. The timing of maturity was considered 

statistically different if the 95% confidence intervals did not overlap. 

CONDITION

Several indices were used to examine condition of collected Lingcod samples. To 

assess general health of individual Lingcod, I used the Fulton’s K condition factor [K= 

100*(W/L3)], where the whole weight (W) is proportional to the cube of its length (L)
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(Fulton 1902, Bolger and Connolly 1989). High K values signify that a fish is heavier, 

and potentially healthier, for a given length. The hepatosomatic index (HSI = 100*(liver 

mass (g)/ body mass (g)) was also used as an index of condition. In contrast to Fulton’s 

K, HSI measures the energy reserve status of a fish, where high HSI indicates healthier 

condition with more energy reserved in the liver (higher liver weight to body weight 

ratio) (Htun-Han 1978, Bolger and Connolly 1989). I used a general linear model (GLM) 

was used to investigate the influence of the continuous variable of size, and the 

categorical variables of region, sex, and season on Lingcod condition. The interaction 

between size and region, and size and sex, were included in the model. The full model 

containing all predictor variables was compared to all combinations of nested models 

using the Akaike Information Criterion (AIC), where the model with the lowest AIC 

indicates the best fit model. To control for possible season and year effects, only Lingcod 

caught in 2015-2017 between the months of March through October were used. I used 

residual analysis to control for the confounding effect of size on condition when 

comparing among regions and between sexes, but not in the GLM because size was 

included in the GLM as a covariate.  

MORTALITY 

 Natural mortality rate, M, was estimated using the non-linear least squares Hoenig 

estimator based on maximum age, Amax. M is inversely related to Amax since it is assumed 

that if an individual in a population had a high mortality rate, it would not survive long 

enough to reach old age (Hoenig 1963). I used the updated Hoenig non-linear least 

squares estimator (Hoenig 1983) developed by Then et al. (2015), as it performs better 
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than other commonly used empirical methods (Alverson and Carney 1975, Pauly 1980, 

Jensen 1996) across a broad range of fish species:

MHoenig = (4.899)Amax
-0.916

Where Amax is the maximum observed age. Following recommendations from Hamel 

(2015), the Hoenig Amax model was fit under a log-log transformation so the slope is 

forced to be -1 in the transformed space, such that the point estimate for M is:  

MHamel = 5.4/Amax

This formula was used by Haltuch et al. (2017) in the 2017 Lingcod stock assessment to 

estimate a prior on M.   

 Total mortality (Z) was calculated using the Chapman-Robson method of cross-

sectional catch-curve analysis (Chapman and Robson 1960) with a correction factor for 

variance inflation (Smith et al. 2012). Z was obtained from each region for both sexes. 

Each substock follows the assumptions that the population is closed, has constant 

mortality and recruitment rates, constant vulnerability, and that the sample is unbiased. 

Fish younger than the modal age were excluded from the regression (Beverton and Holt 

1959, Chapman and Robson 1960, Robson and Chapman 1961, Ricker 1975). The 

Chapman-Robson estimator is based on mean age ( ) above the recruitment age and the 

sample size, n:

Z = log ([1+  – 1/n]/ )

This estimator is considered a minimum variance unbiased estimator (Chapman and 

Robson 1960), with variance approximated by: (Z) ( )
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By solving for natural mortality, M, and total mortality, Z, fishing mortality, F, can then 

be calculated using the equation F = Z – M. 

MULTIVARIATE ANALYSES OF SPATIAL STRUCTURE IN LIFE HISTORY  

 A principle components analysis (PCA) was used to determine the spatial 

association of coastwide Lingcod life history traits and to examine the influence of long-

term mean oceanographic factors (Sea surface temperature and chlorophyll a

concentration) on those life history traits. Here, chlorophyll a will be used as a proxy for 

ecosystem productivity since areas with high concentrations of chlorophyll a are able to 

support higher secondary production of prey types typically consumed by Lingcod. Life-

history parameters of Linf and k, mean size, longevity, natural mortality, Fulton’s K, and 

HSI were derived on the port level and normalized for the PCA. Factors (size at 50% 

maturity, age at 50% maturity, maximum age) containing missing values from a subset of 

ports were excluded from analysis. Mean sea surface temperature (SST) and chlorophyll 

a data was obtained from the Giovanni Visualization data portal through NASA 

Earthdata EODIS (2018). SST (°C) and chlorophyll a (mg/m3) data is collected at a 

spatial resolution of 4 km using moderate-resolution imaging spectroradiometer 

(MODIS) Aqua satellites. SST and chl a data in closest proximity to our fishing sites 

were isolated and averaged over a 12-year period (2005 to 2017) per port. Principle 

components (PCs) with eigenvalues >1 (Girden 2001) were saved and used in a linear 

regression with mean SST and chlorophyll a, respectively.  

 To identify potential Lingcod subpopulations based on life-history similarities 

along the coast, an agglomerative hierarchical cluster analysis was performed among all 
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sampled ports.  Euclidean distances were calculated among ports using normalized 

growth-based life-history parameters that are typically used in stock assessment models: 

Linf, k, mean size, longevity, size at 50% maturity, and natural mortality. The average 

silhouette method was used as a means of statistical clustering validation to compute the 

optimal number of clusters, k, where the highest average silhouette width indicates the 

best k option (Everitt et al. 2001, Rencher 2002). The complete linkage agglomeration 

clustering method was used to group the ports into k clusters. A non-metric multi-

dimensional scaling (nMDS) ordination plot was generated to preserve the order of 

relationships between ports and to visualize how the clusters were identified and the 

relative dissimilarity of clusters in multivariate space based on life-history traits. Vectors 

were used to demonstrate the influence of each life-history trait in creating the clusters. A

permutational multivariate analysis of variance (PERMANOVA) was run to determine 

whether the variance in port clusters can be attributed to growth-based life-history 

predictors. Homogeneity of group variances was tested using a multivariate analogue of 

Levene’s test. 

Results  

CATCH SUMMARY 

2,189 Lingcod were collected from rocky habitats between 2016-2017 (Table 3). 

On average, we fished for 2.5 days out of each port to obtain the targeted sample size of 

75-100 Lingcod per port. Additional samples were provided by the Alaska commercial 

longline fishery, the NWFSC Rockfish Bycatch Study in Puget Sound, the Oregon 
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Department of Fish and Wildlife Marine Reserves Program, and the California 

Collaborative Fisheries Research Program. All Lingcod were caught from depths of 7 to 

170 ft (mean: 59.8, SD±38.3) Averaged across regions, collected Lingcod exhibited a 

relatively even distribution of females and males (47% female) (Table 3). Among 

regions, there were significantly different sex-ratios (X2
6=253.56, p<0.0001), however 

this may be due to Lingcod from Washington regions being heavily skewed towards 

females. Within all other regions, males were more common. Upon removing the 

Washington region from the sex-ratio analysis, there was no significant difference in sex 

ratios (X2
5=8.98, p=0.1100), and the average sex-ratio among all regions was 41% 

females to 59% males.  

Table 3: Catch summary by region. Number of ports were chosen based on CPFV 
location and availability. Each port was fished in for an average of 2.5 days. Maximum 
and minimum total length (TL) were recorded in cm, and number of unsexed, female, and 
male Lingcod. 

Number 
of ports

Days 
fished

Female, 
N

  Male, 
N

Unsexed, 
N 

Percent 
female 

Max TL 
(cm)

Min TL 
(cm)

(N = 2,189) 23 58 1036 1153 2 0.47 - - 
Alaska 3 11 105 169 - 0.38 127 41.5 
Washington 3 6 318 68 - 0.82 112 39
Puget Sound 4 10 62 60 1 0.51 108 20
Oregon 4 10 146 211 - 0.41 111 33.8 
N. California 2 4 82 118 - 0.41 93.5 25.1 
C. California 4 9 224 347 1 0.39 96.9 16.7 
S. California 3 8 99 180 - 0.35 97 40.2 
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GEOGRAPHIC DIFFERENCES IN POPULATION STRUCTURE AND LIFE 
HISTORY

Due to the differences in depth range sampled, I used residual analysis to account 

for the covariate of depth as a confounding factor when comparing Lingcod size 

distributions. There was a significantly positive linear relationship between depth and 

size ( =0.048, r2=0.17, F1,1822=457.8, p<0.0001) and depth and age ( =0.005, r2=0.10, 

F1,1575=170.9, p<0.0001). Residuals from the linear regression were saved and used in the 

subsequent comparisons by region. 

Lingcod length frequency distributions across all sampled regions were 

significantly different (Kruskal-Wallis test, 2
6=453.6, p<0.0001). Using the Steel-Dwass 

method for nonparametric pairwise comparisons, I found Lingcod size frequency 

distributions to follow a latitudinal trend where median Lingcod size decreases with 

decreasing latitude (Fig. 4A). All regions were significantly different from one another 

with the exception of the mid-regions (Northern California, Oregon, and Puget Sound).   

Lingcod age distributions were also significantly different across all regions 

(Kruskal-Wallis test, 2
6=182.3, p<0.0001). Using pairwise comparisons between each 

region, I found Lingcod from Alaska to have the oldest median age, followed by Lingcod

from Washington. Lingcod from all regions south of Washington were statistically 

similar (Fig. 4B). 
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Figure 4: A) Size- and B) age-frequency of Lingcod by region (sexes pooled) in order of 
decreasing latitude. The red vertical line indicates median size or age per region. 

Lingcod growth parameters Linf and k are inversely related (Pilling et al. 2002) 

and exhibit a strong latitudinal cline across all regions (Table 4, Fig. 5A). Large Linf and 

small k values were found in northern regions, and small Linf and larger k values were 

observed in southern regions Non-overlapping 95% confidence intervals indicate there 

were four major subgroups with significantly different growth patterns: Alaska and 
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Washington; Puget Sound; Oregon and northern California; and central and southern 

California. These subgroups follow a latitudinal trend with decreasing Linf and increasing 

k values from north to south (Fig. 5B). Longevity decreased consistently as a function of 

latitude across all sampled regions (Table 4).  

Table 4: Von Bertalanffy growth function (VBGF) parameters, Linf and k, and longevity 
(Tmax) values by region with sexes and habitats pooled. Standard deviation (SD) for Linf, 
k, and standard error (SE) for Tmax estimates are included. Tmax among regions is 
considered statistically different if 95% confidence intervals do not overlap. 

Linf (SD) k (SD) Tmax (SE) 
Coastwide 93.4 (1.69) 0.266 (0.01) 7.9 (0.07) 
Female only 100.3 (1.97) 0.25 (0.01) 8.3 (0.09) 
Male only 74.8 (1.36) 0.358 (0.02) 7.2 (0.1)
Alaska 98.2 (3.39) 0.265 (0.02) 10.9 (0.25) 
Washington 91.9 (4.35) 0.37 (0.04) 8.8 (0.13) 
Puget Sound 98.4 (2.76) 0.265 (0.02) 7.7 (0.34) 
Oregon 88.8 (3.06) 0.305 (0.02) 7.5 (0.19) 
Northern California 81.8 (3.94) 0.364 (0.05) 7.0 (0.18) 
Central California 81.3 (3.11) 0.308 (0.03) 6.7 (0.11) 
Southern California 75.3 (3.73) 0.356 (0.05) 6.6 (0.09) 
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Figure 5: A) Spatial variation in Lingcod lifetime growth curves across 7 sampled 
regions with habitats and sexes pooled, and B) 95% confidence intervals for Linf and k for 
each region. Overlapping intervals indicate no difference in growth. 
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Length and age at 50% maturity were derived using logistic regression to compare 

the timing of maturity across regions. There was a latitudinal trend in which size at 50% 

maturity decreased as latitude declined, with the exception of Puget Sound (Table 5, Fig.

6A). I did not observe a latitudinal trend for age at 50% maturity (Fig. 6B). No estimate 

for length or age at 50% maturity was derived for Lingcod in southern California due to 

small sample size of immature individuals (N=1) (Table 5). 

Table 5: Lingcod size- and age- at 50% maturity using logistic regression by region 
(sexes pooled) with bootstrapped lower confidence intervals (LCI) and upper confidence 
intervals (UCI). No immature individuals were aged in southern California hence size 
and age at 50% could not be determined. 

Region
Size at 50% 

maturity (cm) LCI UCI
Age at 50% 
maturity (yr) LCI UCI 

Alaska 53.1 46.9 56.7 2.9 2.0 3.4
Washington 48.2 44.5 51.4 2.5 2.1 2.8
Puget Sound 43.2 35.7 48.7 1.5 0.6 2.1
Oregon 48.8 44.6 51.8 2.5 2 2.9
Northern California 47.7 42.4 50.5 2.1 1.4 2.9
Central California 41.6 39.3 43.4 2.5 2.3 2.7
Southern California - - - - - -
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Figure 6: Logistic regression of A) total length at 50% maturity and B) age at 50% 
maturity for Lingcod from each sampled region along the U.S. West Coast. The 
horizontal dashed line represents the time when 50% of the population is mature. Size 
and age at 50% is indicated by the vertical dashed lines. Size and age of maturity for 
Lingcod from Southern California could not be calculated due to small sample size of 
immature individuals. 
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Condition was analyzed using morphometric (Fulton’s K) and physiological 

(Hepatosomatic, HSI) indices. There was a positive relationship between Fulton’s K and 

length ( =0.002, r2=0.04, F1,2117=96.5, p<0.0001), and HSI and length ( =0.01, r2=0.04,

F1,2108=80.1, p<0.0001), therefore residuals were used in the subsequent condition 

comparisons among regions. 

Across regions with sexes pooled, there was no latitudinal trend in Fulton’s K 

condition factor (Fig. 7A). Lingcod in the southern California region consistently had the 

highest mean Fulton’s K (1.07, SD ±0.13) and were thus heavier on average that fish 

from the other regions. HSI exhibited a latitudinal trend and increases as latitude 

decreases (Fig. 7B). Similar to Fulton’s K index, individuals from southern California 

had the greatest mean HSI (2.18, SD ±0.76) compared to other regions.  
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Figure 7: A) Fulton's K condition index residuals and B) hepatosomatic index (HSI) 
residuals by region with 95% upper and lower confidence intervals shown as error bars. 
Overlapping letters indicate no regional difference in Fulton’s K or HSI based on 
Tukey’s HSD pairwise analysis. 

A GLM was used to investigate the influence of the continuous variable of size, 

and the categorical variables of region, sex, and season on Lingcod condition. The 

interaction between size and region, and size and sex were included in the model. 

Fulton’s K indices for Lingcod were most strongly influenced by size (F1,2104=207.56, 

p<.0001), region (F6,2104=23.13, p<.0001), sex (F1,2104=79.37, p<.0001), and season 

(F3,2104=14.05, p<.0001). The interaction between sex*size (F1,2104=7.47, p=0.0063) was 

also significant. Lingcod with higher Fulton’s K condition indices tended to be larger 

males from southern regions that were caught during winter. Overall, the six effects 

accounted for 20.4% of variance in Lingcod Fulton’s K. The effects of size, region, sex, 

and season contributed the most to determining Fulton’s K. 

In order of importance, size (F1,2092=173.71, p<.0001), season (F3,2092=47.41, 

p<.0001), region (F6,2092=24.48, p<.0001), and region*size (F6,2092=5.76, p<.0001) were 

significant predictors that accounted for 27.0% of the variation in HSI. The effect of sex 
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and the interaction between sex*size was not a significant contributor. Lingcod with high 

HSI were typically larger individuals from southern regions that were caught in the fall. 

For both condition indices, size, region, and seasonality appear to be the most significant 

drivers behind Lingcod condition, while the effects or sex are variable.

Natural mortality (M) was calculated using the Chapman-Robson method of 

catch-curve analysis. Lingcod M was higher in southern end of their range and lower in 

the northern end, with high variability in the mid-range regions (Table 6). Total mortality 

rate, Z, similarly exhibited a slight latitudinal trend, with the exception of Lingcod from 

Washington. Z rates of Lingcod were highest in Washington and southern California. 

Fishing mortality, F, was derived using the formula F = Z – M (Table 6). There is 

no trend in F across regions, however, F is greatest in Lingcod from southern California 

and from Washington, which parallels the pattern seen in Z. In some instances, M was 

calculated to be greater than Z, resulting in a negative F.  

Table 6: Total (Z), natural (M), and fishing (F) mortality rates for each region where F is 
calculated as F= Z – M. F was left blank in cases where M exceeds Z (resulting in a 
negative F). Standard error (SE) from Z calculations are shown in parentheses. 

Z (SE) M F 
Alaska 0.32 (0.04) 0.30 0.02 
Washington 0.79 (0.07) 0.34 0.45 
Puget Sound 0.35 (0.08) 0.42 -
Oregon 0.42 (0.03) 0.36 0.06 
Northern California 0.53 (0.1) 0.45 0.08 
Central California 0.54 (0.11) 0.39 0.15 
Southern California 0.87 (0.18) 0.45 0.42 
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SEX-BASED DIFFERENCES IN POPULATION STRUCTURE AND LIFE 
HISTORY

There were significant differences between male and female Lingcod length 

frequency distributions coastwide (D=0.517, p<0.0001) as well as within each region 

analyzed separately (Fig.8). Female median sizes were consistently larger than male 

median sizes. Unsexed individuals (U) were excluded from analysis.
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Figure 8: Length frequency distribution of Lingcod per region by sex (female, male, and 
unsexed). The pink and blue lines represent the median total length for female and male 
Lingcod, respectively. Female median sizes were consistently smaller than male median 
sizes across all regions.
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Comparing growth rates between sexes, female Lingcod attained larger maximum 

size (Linf = 100.3, SD ± 1.97 cm) than males (Linf = 74.8, SD ±1.36 cm) (Fig. 9A, Table 

7). However, male Lingcod reach asymptotic size faster (k = 0.358, SD ± 0.02) than 

females (k = 0.25, SD ± 0.01) (Fig. 9B, Table 7). In addition, female Lingcod live 

significantly longer (8.3 years, SE ± 0.09) than males (7.2 years, SE ± 0.1). 

Table 7: Von Bertalanffy growth function (VBGF) parameters Linf, k, and longevity 
(Tmax) values by sex. Standard deviation (SD) for Linf, k, and standard error (SE) for 
Tmax estimates are included. Tmax among regions is considered statistically different if 
95% confidence intervals do not overlap. 

Linf (SD) k (SD) Tmax (SE)
Female 100.3 (1.97) 0.26 (0.01) 8.3 (0.09)
Male 74.8 (1.36) 0.358 (0.02) 7.2 (0.1)
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Figure 9: A) Variation in lifetime growth curves for male and female Lingcod (regions 
pooled) and B) 95% confidence intervals for best fit Linf and k parameters for male and 
female Lingcod Overlapping confidence intervals indicate no difference in growth rates.

Coastwide, female Lingcod size and age at 50% maturity (50.1 cm, 2.6 years) 

were significantly greater than that of male Lingcod (41.6 cm, 2.2 years) (Table 8, Fig. 

10). Size at 50% maturity was significantly difference between sexes, but there was no 

difference in age at 50% maturity. Immature females ranged in size from 16.7 cm to 79.0 

cm (1-6 years), whereas the smallest mature female was 30.5 cm (1 year old). Immature 

males ranged in size from 17.5 cm to 62.3 cm (0-4 years), with the smallest mature male 

being 27.2 cm in length (1 year old). However, because Lingcod are batch spawners, it 

can be difficult to macroscopically determine maturity stages accurately. Gonads of 

larger and older individuals characterized as immature may be misidentified if captured 

outside of spawning season (Melissa Head, NWFSC, personal communication).
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Table 8: Female and male Lingcod size and age at 50% maturity with upper and lower 
confidence intervals (UCI, LCI, respectively). Size at 50% maturity is significantly 
difference between sexes, but there is no difference in age at 50% maturity.

Figure 10: Logistic regression of A) size (cm) and B) age at 50% maturity for both sexes 
with regions pooled. The horizontal dashed line represents the time when 50% of the 
population is mature and the vertical dashed lines represent size and age at 50% 
maturity, respectively.

Sex Size at 50% maturity LCI UCI Age at 50% LCI UCI
Female 50.1 47.6 52.4 2.6 2.3 2.8
Male 41.6 39.0 43.5 2.2 2.0 2.4 
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Welch’s t-tests assuming unequal variances were used to test for significant 

differences between the mean residuals of Fulton’s K and HSI as a function of sex. Males 

were found to be in better condition than females, with a significantly higher mean 

Fulton’s K (Welch’s t1743 = 7.62, p<0.0001) and HSI (Welch’s t1733= -3.30, p=0.0010).  

Females had higher natural mortality rates compared to males as well as higher 

total mortality rates, however the difference was not significant (Table 9). Fishing 

mortality was also higher in female Lingcod than in male Lingcod.  

Table 9: Total (Z), natural (M), and fishing (F) mortality rates for each sex (all regions 
pooled) where F is calculated as F=Z-M. Standard error (SE) for Z is shown in 
parentheses. 

PCA BETWEEN OCEANOGRAPHIC INDICATORS AND LIFE HISTORY 
TRAITS 

 Principle component 1 (PC 1) and principle component 2 (PC 2) together 

comprised up to 76.0% of the variation seen in the port-level life-history data subset (Fig. 

11). Only PC 1 and PC 2 had eigenvalues >1 (3.91 and 1.41, respectively). PC 1 

accounted for 55.8% of the variation in the data and is driven primarily by factors related 

to size and growth, where positive values of PC 1 are correlated with Linf, longevity, and 

mean size, and negative values of PC 1 are correlated with k, and natural mortality, M. 

PC 2 accounted for 20.2% of variation and is comprised of condition indices, HSI and 

Fulton’s K, on the positive scale.  

Z (SE) M F 
Female 0.57 (0.04) 0.32 0.25
Male 0.44 (0.06) 0.30 0.14
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Figure 11: Principle components analysis (PCA) factor loadings for 7 life-history traits 
on the port-level. Principle components (PC) 1 and 2 together comprise 76% of the 
variance seen in the dataset. PC 1 is an indicator of health and longevity while PC 2 
represents overall condition 

 PC 1 showed a significant negative relationship with mean SST and a significant 

positive relationship with chlorophyll a (Fig. 12A and 12B). PC 2 exhibited a positive 

relationship with SST and a slight negative relationship with chlorophyll a, however 

neither of the interactions are significant (Fig. 12C and 12D). 
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Figure 12: Linear regression between A.) PC 1 and sea surface temperature (SST), B.) 
PC 1 and chlorophyll a, C.) PC 2 and SST, and D.) PC 2 and chlorophyll a. Each point 
represents a port and is color coded by region. PC 1 is a measure of growth and 
longevity while PC 2 is an indicator of overall condition. 

CLUSTER ANALYSIS AND nMDS BY PORT 

 The average silhouette width analysis identified two clusters as being the optimal 

number of groupings for Lingcod along the U.S. West Coast. Sampled ports are generally 

separated into a northern (Alaska, Washington, and Oregon) and southern (Oregon, 

northern California, central California, and southern California) cluster (Fig. 13). The two 

clusters are significantly different (PERMANOVA: F1,18=16.022, p=<0.001). The 
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magnitude and direction of the vectors indicate that the formation of the two clusters is 

driven by differences in growth, size, and longevity, where Lingcod from the northern 

cluster are larger and older than Lingcod from the southern cluster. Inversely, Lingcod

from southern clusters have higher natural mortality rates and reach maximum sizes 

faster (larger k value) (Fig. 14) 

Figure 13: Dendogram of all sampled ports, clustered by growth-based life-history traits 
(k, Linf, longevity, mean size, and natural mortality) using the complete linkage 
agglomerative clustering method. Two clusters were identified as being optimal using the 
average silhouette width. Ports are colored according to region.  
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Figure 14: Nonmetric multidimensional scaling (nMDS) plot showing the differences 
between the northern and southern cluster. The direction and magnitude of the life-
history vectors indicate how influential each life-history trait is in creating the clusters. 

Discussion 

In this study, latitudinal variability in Lingcod life-history was investigated to 

determine biologically appropriate management units and breakpoints for the Lingcod 

stock along the U.S. West Coast. Past studies have found that neglecting to account for 

spatially-specific patterns in life-history and demography of natural populations can lead 

to mismanagement and can be detrimental to long-term sustainability of a population 

(Hilborn et al. 2003, King and McFarlane 2003, Maunder and Piner 2015).  
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VARIABILITY IN LINGCOD DEMOGRAPHY AND LIFE-HISTORY 

Spatial differences in life-history have been investigated in many shelf and slope 

groundfish species: Splitnose rockfish (Boehlert and Kappenman 1980, Gertseva et al. 

2010), Canary rockfish (Boehlert and Kappenman 1980, Keller et al. 2018), Dover sole 

(Brodziak and Mikus 2000, Gertseva et al. 2017), California sheephead (Hamilton et al. 

2011, Caselle et al. 2011), Greenstriped rockfish (Keller et al. 2012), Grass rockfish 

(Wilson et al. 2012), California halibut (Barnes et al. 2015), and Rosy rockfish (Fields 

2016). In those studies, consistent with Bergmann’s Rule, individuals from northern, 

colder, nutrient rich waters generally grew faster, attained larger maximum sizes, and 

lived longer than those from southern, warmer waters (Exceptions: Canary rockfish, 

California halibut, Rosy rockfish). Those studies also demonstrated that variability in 

latitudinal patterns of growth, maturity, and mortality, can be due to a combination of 

oceanographic conditions, biogeographic features, species interactions, and historic 

fishing pressure. As a result, it is difficult to attribute life-history differences to any one 

factor without considering the combination of possibilities on a regional scale.  

I found that Lingcod exhibit latitudinal patterns in growth and maturity, with 

individuals from high latitude regions reaching larger maximum sizes, living longer, 

growing faster and reaching maturity at larger sizes than individuals from low latitude 

regions. As there was no significant difference in age at 50% maturity among regions, the 

variability seen in size at 50% maturity is most likely due to faster growth rates at higher 

latitudes rather than differences in timing or age of maturity. As demonstrated in the 

PCA, environmental factors of SST and productivity (as measured by chlorophyll a) play 

a significant role in influencing growth, longevity, and body size of Lingcod throughout 
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the California Current System (CCS) as trends in one are closely mirrored by trends in 

the other. While Lingcod are not planktivorous, patterns in chlorophyll a are closely 

linked to Lingcod productivity since areas with higher chlorophyll a concentrations are 

able to support higher secondary production of prey types consumed by Lingcod. Patterns 

in chlorophyll a are therefore reflective of spatial differences in Lingcod prey type, 

abundance, and quality. Colder latitudes near Southeast Alaska and northern Washington 

have the highest average chlorophyll a concentrations in the Pacific Northeast, 

originating from fresh water input and a steady supply of land-derived nutrients (Hickey 

and Banas 2003, Ware and Thomson 2005). The central area between the Cape Blanco 

and Point Conception is considered the region of maximum upwelling (Parrish et al. 

1981, Strub et al. 1990, Checkley and Barth 2009) due to strong wind forcing and along-

shelf nutrient transport. South of Point Conception, a major biogeographic and 

oceanographic boundary, wind stress decreases, reducing offshore transport and is 

therefore comparatively nutrient poor (Cudaback et al. 2005). As shown by the 

relationship between SST and productivity across all sampled ports, as well as in 

previous studies, these two oceanographic factors are inextricably linked (Chavez et al. 

2010, Feng et al. 2015) and are the primary drivers behind the latitudinal patterns seen in 

Lingcod size and growth along the U.S. West Coast. 

Fish condition is an important measure of energy reserves and can have a large 

influence on growth, survival, and reproductive success (Love 1974, Lambert and Dutil 

1997, Adams 1999, Shulman and Love 1999) as well as serve as an important indicator 

of habitat productivity and ecosystem health (Lloret et al. 2002, Lloret and Planes 2003). 

Also, temperature has been assumed to play an important role in determining fish 
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condition (Ratz and Lloret 2003) where fish living in colder, northern waters tend to be in 

better condition than those from warmer southern waters (Keller et al. 2012, Fields 2016, 

Keller et al. 2018). I found the opposite to be true, with Lingcod from warmer, less 

productive southern California waters exhibiting the highest Fulton’s K and HSI 

condition indices, demonstrating that Lingcod from this region are heavier for a given 

length and have a larger liver to body weight ratio when compared to Lingcod from other 

regions.  

Several hypotheses could explain the spatial variation in body condition I 

observed. In southern regions where growth is slower, condition may be higher due to the 

energetic tradeoff that occurs where energy stores are conserved for later use at the 

expense of somatic growth (Fisher et al. 2007). In addition, pulsed resource availability in 

southern waters can affect short-term HSI and Fulton’s K calculations. The years 

between 2014 and 2016 saw one of the strongest El Niño Southern Oscillation (ENSO) 

events on record (Blunden and Arndt 2016). Beginning in the spring of 2014, coastal sea 

surface temperatures in the Northeast Pacific were significantly higher than average 

(+2.5°C) due to the formation of an anomalous warm water mass that continued to persist 

through 2015-2016 (Jacox et al. 2016, Bond et al. 2015). The abnormally warm waters 

brought a northward shift in many marine species ranges and coincided with a variety of 

unusual biological events and species sightings (Bond et al. 2015). In particular, pelagic 

red crabs (Pleuroncodes planipes) were reported to be washing up along the central to 

southern California coast from January through October of 2015, which is consistent with 

the stranding patterns seen during the 1997-1998 ENSO event as well (McClatchie 2016). 

Preliminary examination of Lingcod diet contents from the southern California region 
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found about 25% of full stomachs to contain pelagic red crabs (B. Brown, unpublished 

data).  This anomalous pulse of prey resources may thus explain the high body condition 

of southern California samples. ENSO conditions could similarly be affecting typical 

prey availability in northern waters, resulting in northern Lingcod with poorer condition. 

While past studies typically link colder temperatures with higher fish condition, it is 

possible that condition may in fact be following patterns of marine productivity (Ratz and 

Loret 2003). Therefore, prey availability and regional upwelling patterns can potentially

be a stronger indicator of condition over direct temperature effects.  

Lingcod did not exhibit a latitudinal pattern in total mortality and only a slight 

latitudinal trend in natural mortality rates; however, these two metrics are influenced by 

highly disparate factors. M is derived using maximum observed age, Amax, not longevity, 

Tmax, therefore empirically calculated M values can be easily skewed by outliers and has 

the potential to be highly variable (Hoenig 1963, Pascual and Iribarne 1993, Maunder and 

Piner 2015). This variability can be seen in past Lingcod studies where different methods 

(tag-recapture, empirical formulas) were used to calculate M, with inconsistent results

(values ranging from 0.18 to 0.8) (Forrester 1973, Jagielo 1994, Starr et al. 2005). Little 

research has been done to directly compare natural mortality over large geographic 

ranges, however, in principle, it can be assumed that in the absence of fishing, fish that 

live longer (i.e. fish from northern, productive, latitudes) experience higher survival and 

hence lower natural mortality rates. Conversely, Z is affected by both M and fishing 

mortality, F. F is based on historic fishing. pressure and is the parameter that is set as a 

management target instead of one that is mathematically derived. 
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Lingcod from Washington and southern California showed the highest Z

compared to all other regions as well as the highest F, while mid-range regions were 

significantly lower and exhibited no trend in Z or F.  Lingcod from southern California 

appear more sensitive to fluctuations in fishing mortality due to the compounding effect 

of high historic Lingcod harvest rates that remove large, reproductive adults, and 

predominantly weak oceanographic conditions unfavorable to recruitment. This can result 

in an overall reduction in spawning stock biomass and spawning potential (Haltuch et al. 

2017). Similar results were reported by Hamilton et al. (2011) and Fields (2016) when 

comparing total mortality of California sheephead and Rosy rockfish, respectively, across 

spatially distinct areas. Regions experiencing greater fishing pressure had significantly 

higher total mortality rates.  

In the early 2000s, when the Lingcod stock was federally recognized as being 

overfished coastwide, harvest rates in the south (California) had already exceeded 

management targets for several years. Recently, harvest rates have been below 

management targets, however the exploitation status of Lingcod is still considerably 

higher in the south than it is in the north (Haltuch et al. 2017). In the case of Lingcod 

from Washington, although F is comparable to that of southern California Lingcod, M is 

lower, potentially due to greater productivity and nutrient influx in the northern CCS 

region creating conditions beneficial to recruitment and survival. From this it can be 

inferred that wheras the Lingcod stock has historically been heavily exploited coastwide, 

regional population performance, health, and resilience is heavily dependent on small-

scale coastal dynamics.  
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SEX-BASED VARIABILITY IN LINGCOD DEMOGRAPHY AND LIFE-
HISTORY

Sexual dimorphism is seen in both endothermic and ectothermic organisms, such 

that reproductive success is maximized for each sex (Shine 1979, Ghiselin 1974, Berns 

2013). Sex-based differences in size and growth are generally driven by differences in 

energy allocation towards somatic growth versus reproduction and tradeoffs in 

reproductive investment (Rjinsdorp 1989, Krebs and Davies 2009). In fishes, females 

generally grow larger, mature later and have higher lipid and protein content than male 

conspecifics (Breder and Rosen 1966, Echeverria 1986, Rjinsdorp 1989, Parker 1992, 

Krebs and Davies 2009). However, this is dependent on mode of fertilization; in families 

exhibiting external fertilization, male parental care is 70% more common while the 

opposite is true in families using internal fertilization, where females are 86% more likely 

to invest in parental care (Gross and Shine 1981).  

In Lingcod and others in the Hexagrammid and Cottid families, males guard nests 

during offspring embryonic development and heavily invest in reproduction. Parental 

nest guarding behavior comes at considerable risk and cost to survival and fitness by 

limiting the male’s opportunity to forage and by increasing exposure to predation 

(Townshend and Wootton 1985, Sabat 1994, Balshine-Earn 1995, Lindstrom 1998). This 

is a potential driver behind the earlier timing of maturity and smaller sizes seen in male 

Lingcod; energy is diverted away from somatic growth sooner to focus on maximizing 

reproductive potential (Roff 1986, Charnov and Berrigan 1991b, Parker 1992). In 

addition, the higher condition and energy reserve status seen in male Lingcod may be 

reflective of the greater energetic cost required to successfully select a nesting site and 

defend egg masses against predators for 8-12 weeks during spawning season. Past studies 
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on species with nest-guarding males, found that reproductive success is positively related 

to male condition as greater energy availability translates to increased investment in 

reproductive effort (Knapp 1995, Lindstrom 1998). It is possible that male Lingcod are in 

better condition because of higher reproductive investment, however this trend is not seen 

in other species, nest-guarding or otherwise (Lloret et al. 2002, Lloret and Ratz 2000, 

Cope and MacCall 2005, Cope and Key 2009, Sogabe et al. 2012). Moreover, the same 

sex-based differences in size and growth seen in Lingcod are found in many other non-

nest guarding rockfish, flatfish, and roundfish species as well (Boehlert and Kappenman 

1980, Brodziak and Mikus 2000, Gertseva et al. 2010, Barnes et a. 2015, Gertseva et al. 

2017).  

The Lingcod in my study were collected using methods commonly employed by 

the recreational hook-and-line fishery that disproportionately targets male Lingcod from 

nearshore rocky habitats (Figure 3, Miller and Geibel 1973). Heavy exploitation can 

produce population level changes due to the tendency of the fishing industry to remove 

large, long-lived, reproductive individuals from the population (Ricker 1981, Levin et al. 

2006). This results in fishing induced evolution, where truncated size and age 

distributions lead to declines in average body size, faster growth, and earlier size at 

maturity over time (Ricker 1981, Rjinsdorp 1993, Conover and Munch 2002, Reznick 

and Ghalambor 2005, Beamish et al. 2006, Schmidt 2014, Fields 2016). Energy resources 

that used to be directed towards somatic growth are instead diverted to hasten gonad 

development, leading to smaller spawners and reduced size-at-age in mature fish 

(Dieckmann and Heino 2007, Pardoe et al. 2009). Over the past decade, the recreational 

Lingcod fishery has grown substantially, almost quadrupling its total landings since 2010 
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(Haltuch et al. 2017). Therefore, the smaller sizes, earlier maturation, and faster growth

seen in male Lingcod from this study may be a direct result of fishing induced evolution. 

However, it is likely a combination of fishing pressure and behavioral and energetic 

tradeoffs during spawning that makes sexual dimorphism in Lingcod so pronounced. 

CLUSTER ANALYSIS AND MANAGEMENT IMPLICATIONS  

 Results from the cluster analysis and nMDS demonstrate that the boundary 

currently used in Lingcod stock assessments (2 stocks, with a break at the California-

Oregon border) may not be the most biologically appropriate geographic breakpoint for 

the coastwide population. Based on estimated life-history parameters for each sampled

port along the coast, I found evidence for two regional clusters for the Lingcod stock: A 

northern and southern cluster with the boundary in central Oregon, between the ports of 

Garibaldi and Newport. While this boundary between the northern and southern clusters

is not dramatically different than the current boundary used in stock assessments, it is still 

informative and has important management implications for Lingcod and other 

Groundfish species along the U.S. West Coast.  

The current Lingcod stock assessment boundary at the California-Oregon state 

line was initially chosen because it was easier to regulate and to keep track of total 

landings on the state level. Prior to 1997, however, the Lingcod population was assessed 

on the coastwide scale as a single stock. It was eventually split up into northern and 

southern zones in 1997 due to drastic declines in the population but even then, separate 

stock assessments were only conducted because the southern region was extremely data 

limited compared to the northern region and not because of biologically relevant 
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population differences. This is the same rationale used in all recent stock assessments that 

have been conducted on broad ranging groundfish species (Hicks et al. 2010, Hicks and 

Wetzel 2015, Cope et al. 2015, Cope et al. 2016, Thorson and Wetzel 2016, Gertseva and 

Cope 2017, Stephens and Taylor 2018). For especially data limited species (i.e. 

Greenstriped rockfish, Widow rockfish, Bocaccio, Brown rockfish, Stripetail rockfish, 

English sole, and Rex sole), a single coastwide stock is commonly used. For species with 

sampling data over a longer timer series and accurate landings information from both 

commercial and recreational fishery sectors (i.e. Canary rockfish, Yelloweye rockfish, 

Black rockfish, Yellowtail rockfish, China rockfish, Copper rockfish), two to three 

coastwide breaks are often considered, typically occurring at state lines. While life-

history variability was investigated in some of the above mentioned species, for the 

purpose of creating a stock assessment model with high predictive power, coastwide 

breaks corresponding to accurate historic catch records are often used in place of 

biologically significant geographic boundaries (Hicks and Wetzel 2015, Cope et al. 

2016).  

State lines are commonly used because each state has its own unique history of 

fishing exploitation that is driven by fisher behavior and market demand, which affects 

the commercial and recreational fishing sectors in different ways. However, it is 

important to account for latitudinal variability in growth, maturity, longevity and 

mortality when modelling natural populations and setting size regulations, seasonal 

closures, and catch limits. Additional population breaks can be found within state lines, 

and considering larger states like California and Alaska, separate stock assessments may 

be needed on a regional level within states as well. For groundfish species that are 
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overfished or have been overfished in the past, spatially explicit management and 

assessment methods that incorporate state-specific historic fishing practices and 

biological population parameters could be the key to ensuring that fishery sustainability 

and yield can be maximized for years to come.  

CONCLUSIONS AND RECOMMENDATIONS

 Disentangling the mechanisms behind how fish populations change over broad 

latitudinal ranges can be very complex and has strong implications for the future of stock 

assessments and fisheries management methods. The goal of this study was to investigate 

the latitudinal and sex-specific factors that can have profound impacts on life-history 

estimates used in groundfish stock assessment models. Modelling methods are constantly 

advancing and adapting as new information becomes available, however, models are only 

as good as the data used to parameterize them (Mangel and Levin 2005, Maunder and 

Piner 2014), and current stock assessments can be limited by the lack of historic harvest 

information and insufficient or inconsistent indices of abundance.   

Given the results from this study, I would recommend a detailed examination of 

the long-term economic trade-offs between setting size regulations and catch quotas 

according to regional estimates of growth, maturity, and mortality from two Lingcod

groups along the U.S. West Coast with the break in central Oregon (Between the ports of 

Newport and Garibaldi). Total fisheries yield using central Oregon as the dividing 

boundary should be compared to that of using the boundary of the status quo at the 

California-Oregon border. Understandably, the management, assessment, and 

enforcement of a separate northern and southern stock for Lingcod divided at central 
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Oregon would require a substantial increase in state and federal involvement, funding, 

and monitoring; commercial and recreational landings information will need to be more 

spatially explicit on the port-level to capture fine scale fishery removal patterns. Risk-

assessment and cost-benefit analyses should be conducted and compared to fully assess 

the feasibility and real-world application of this option. 

 Because the most significant differences in Lingcod growth, maturity, and 

mortality rates were driven by sex, I propose separate regulations for male and female 

Lingcod in the recreational fishery only. Compared to the 100% mortality rate from using 

commercial fixed gear fishing methods (e.g. bottom-trawl and long-line), hook-and-line 

gear used in the recreational fishery can have very low post-release mortality rates. 

Unlike rockfishes that are affected by barotrauma, Lingcod are exceptionally hardy and 

experience little to no hooking or deck mortality, enabling them to be safely released at 

the surface. Additionally, Lingcod can easily be externally sexed by the presence of a 

conical papillae in males. Given that male Lingcod mature earlier than females, reducing 

the minimum size limit and increasing the bag limit for males could increase overall 

fishery yield while ensuring that larger, reproductive females remain in the population. 

While sex-based management is not often done on finfish fisheries, the West Coast 

Dungeness Crab fishery has abided by sex-specific regulations for over 100 years 

(CDFW 2011) and is still a lucrative and sustainable fishery today. The Dungeness Crab 

fishery serves as a successful example of sex-specific management where the 

preservation of large, reproductively mature females directly increases the productivity 

the fishery and the population (Rasmuson 2013). 
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 In conclusion, this study underscores the value of obtaining accurate spatial 

information for determining stock structure and dynamics for management purposes. 

Over the past several decades, fisheries management has been focusing on developing 

ecosystem-based management plans where multispecies interactions, environmental 

fluctuations, and community shifts through time and space are considered throughout the 

decision-making process (Jennings et al. 2001).  

 While it may not be economically realistic to conduct a study like this one on over 

90+ groundfish species individually, there are assemblages within the groundfish 

complex that have been found to co-occur across spatial or temporal scales (Cope and 

Haltuch 2012); an indicator species within each assemblage can be identified and used to 

represent the larger group for more targeted research on patterns of life-history 

variability. Stock assessors can use this information as a baseline to understand how 

groundfish assemblages can shift over space and time as a result of certain management 

decisions so that sustainable stocks can be maintained for future needs.  
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CHAPTER II

HABITAT-BASED DIFFERENCES IN LINGCOD DEMOGRAPHY AND LIFE 
HISTORY: HOW CAN STOCK ASSESSMENTS MEET THE NEEDS OF A 

CHANGING FISHERY? 

Abstract

 Life histories of broadly ranging groundfish stocks can vary based on 

environment and habitat type. Neglecting to account for this variability can have 

consequences on management decisions and fishery sustainability. Along the U.S. West 

Coast, groundfish stock assessments rely on biological parameters that are obtained by 

the West Coast Groundfish Bottom Trawl Survey (WCGBTS). While the WCGBTS 

provides vital, long-term fisheries data on species abundance, distribution and life-history 

for over 90 groundfish species, it is inherently biased towards groundfishes occupying 

trawlable habitats and fails to represent fishes in untrawlable, high-relief habitats. In this 

chapter, life-history parameters of growth, maturity, condition and mortality from 

Lingcod caught over high-relief habitats were compared to those from Lingcod obtained 

by the WCGBTS. As predicted, Lingcod from high-relief habitats were found to grow 

faster, attain larger sizes, mature earlier, and be in better body condition than Lingcod

from low-relief habitats. While Lingcod from high-relief areas had lower natural 

mortality rates, they also had significantly higher total mortality presumably due to 

heavier fishing pressure. Using the von Bertalanffy growth model, I evaluated the factors 

explaining variability in size-at-age and found that coastwide Lingcod growth is best 

modelled using five geographic regions, habitat, and sex. Based on these findings, I 

recommend the inclusion of a coastwide hook-and-line survey to target groundfishes 
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found over untrawlable, high-relief habitats so that biological parameters used in stock 

assessment models accurately represent the targeted population.  

Introduction

Habitat composition and structure influence fish stocks in a variety of ways that 

can have consequences for their life-history, population demography, and distribution 

(Pacunski and Palsson 2002, Hilborn et al. 2003b, Lloret and Planes 2003, Cope and Punt 

2011). Younger age classes benefit from complex nursery habitats that help to increase 

survivorship during vulnerable life stages (Sale and Dybdahl 1975, Munday et al. 1997, 

Risk 1997, Tolimieri 1995, Holbrook et al. 1990, Samhouri et al. 2009), whereas older 

age classes can exhibit strong habitat preferences, resulting in a positive relationship 

between habitat type and adult abundances (Larson and DeMartini 1974, Carr 1989, 

DeMartini and Roberts 1990, Holbrook et al. 1990). Additionally, movement among

habitats can be an integral part of fish life cycles, such as during times of settlement, 

recruitment, and spawning. Habitat usage can vary across broad geographic scales due to 

differences in substrate availability, complexity and distribution (e.g. continuous versus 

patchy), or the abundance of predators, competitors, and prey (Gust et al. 2002, 

Robertson et al. 2005a).  

Compared to low-relief, flat bottom habitats, high-relief rocky reefs can enhance 

the biodiversity of entire ecosystems and surrounding fish populations by providing 

spatial refuge from predation and supporting a higher abundance of resources and prey 

types, such as algae, invertebrates, and cryptic fish species (Able 1999, Yoklavich et al. 

2000, Lloret et al. 2002, Lloret and Planes 2003). These differences play an important 
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role in producing marked geographic variation in demography, recruitment, and 

survivorship of various fish populations (Robertson and Kaufmann 1998, Robertson et al. 

2005, Bellquist et al. 2008, Knip et al. 2011), and highlight the emerging need to use 

more spatially-explicit approaches to manage wide-ranging fish stocks and their 

associated habitats. As discussed in the previous chapter, stock assessment methods that 

neglect to account for population differences based on environmental or anthropogenic 

affects can lead to mismanagement and inaccuracies in estimates of stock productivity 

(Hilborn et al. 2003b, King and McFarlane 2003, Maunder and Piner 2014).   

In addition, habitat type can have important implications for fishery methods and 

fishing behavior. Many fishing gear types (i.e. Hook-and-line, bottom trawl, purse 

seining, etc.) Are developed in a such a way as to maximize catch and to target high-

value species from specific habitats or areas of interest (Cotter and Pilling 2007). For 

instance, bottom trawl gear targets fish over low-relief, flat bottomed habitats, while 

hook-and-line methods typically target areas with high-relief that are unfishable by other 

means. Because of this, habitat dictates the method by which fish populations are caught 

for commercial and scientific purposes. Restrictions that are enacted to protect essential 

fish habitats (i.e. Cordell Banks, Cowcod Conservation Areas, Davidson Seamount) do so 

by limiting fishing access by specific fisheries and fishing gear (Pacific Fisheries 

Management Council 2012).  

Along the U.S. West Coast, fishery independent data for groundfish assessments 

are obtained from the annual NMFS West Coast Groundfish Bottom Trawl Survey 

(WCGBTS). The WCGBTS is the only coastwide, long-term monitoring survey that 

collects indices of abundance, spawning potential, and recruitment for over 90 federally 
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managed groundfish species over trawlable habitats since 1998 and is the primary source 

of biological data used in federal stock assessments (Keller et al. 2017). Many groundfish 

species, however, are found over both high-relief (untrawlable) and low-relief habitat 

types. While the WCGBTS is advantageous in modelling groundfish abundance over a 

long time series, it can create bias in understanding population status and trends because 

the biological information is collected by only one gear type (bottom-trawl). The 

WCGBTS can be limited in scope because it only estimates life-history parameters from 

fish in trawlable habitats, excluding groundfish populations that occupy non-trawlable, 

high relief habitats (Jagielo et al. 2003). Nearshore, untrawlable reefs are unaccounted for 

when inputting biological parameters of growth, maturity, and mortality into groundfish 

stock assessments even though they are heavily exploited coastwide. Because many 

groundfish species may not readily migrate between these habitats, a significant amount 

of biological information could be lost by overlooking this essential habitat type. The 

omission of rocky, high-relief areas can cause an over- or under-estimation of stock 

productivity that can have consequences on marine ecosystems and local fishing 

industries alike.  

In this chapter, I will again be using Lingcod as the focal stock with which to 

examine variability in life-history and demography based on spatial differences. While 

Lingcod are caught commercially using bottom-trawl gear, the recreational fishery 

typically targets nearshore rocky (high-relief) untrawlable habitats in shallower depths 

between 6-55 m (California Department of Fish and Wildlife 2018, Oregon Department 

of Fish and Wildlife 2018, Washington Department of Fish and Wildlife 2018). Lingcod 

are known to have a high degree of site fidelity as adults (Starr et al. 2004, Starr et al. 
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2005, Greenley 2009, Tolimieri et al. 2009) but also exhibit ontogenetic movements and 

will migrate during winter spawning months. Despite this, the biological life-history 

parameters used to determine coastwide stock productivity in assessment models are 

based entirely on trawl-caught Lingcod, therefore there is a significant data gap for 

Lingcod living in shallow, nearshore, rocky reefs that are targeted by the recreational 

fishery. In recent years, the recreational Lingcod fishery has steadily grown and now far 

exceeds the commercial fishery in total landings (Hamel et al. 2009, Haltuch et al. 2017), 

therefore to be more accurate stock assessments should reflect this shift by incorporating 

biological information from high-relief, untrawlable habitats as well.  

The goal of this chapter is to compare Lingcod population structure and life-

history traits between trawlable (low-relief) and untrawlable (high-relief) habitats. My 

research objectives were (1) to quantify and compare population structure and life-

histories (growth rates, longevity, size and age at maturity, somatic condition, and natural 

and total mortality rate) of Lingcod between habitats, (2) to investigate the spatial scale 

of life history variability along the coast between habitats, regions, and sexes using 

growth model comparisons, and (3) to suggest management implications of these findings 

for Lingcod and other commercially- and recreationally-important groundfish species. In 

comparing low-relief and high-relief habitats, I predicted that because high-relief areas 

typically have higher species abundances (Stein et al. 1992, Carlson and Straty 1981, 

Yoklavich et al. 1995, Yoklavich et al. 2000, Love et al. 2002) and hence prey 

availability, an opportunistic predator like the Lingcod inhabiting these areas would attain 

larger sizes, higher longevity, faster growth, lower natural mortality, and improved body 

condition than Lingcod inhabiting areas of low-relief. However, due to current patterns of 
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exploitation in the Lingcod fishery, I expected Lingcod from high-relief habitats to have 

greater total mortality than Lingcod from low-relief habitats.  

Methods

SAMPLING AREA AND COLLECTION PROTOCOL

Lingcod were collected over high-relief, rocky reefs and low-relief, flat bottom 

habitats from five geographically distinct regions along the contiguous U.S. West Coast: 

coastal Washington (46°16’N – 49°N), Oregon (42°N - 46°16’N), northern California 

(38°02’N - 42°N), central California (34°30’N - 38°02’N), and southern California 

(32°32’N - 34°30’N) (Fig. 15). These five regions correspond to well-known breakpoints 

for a variety of marine species (Dawson 2001, Buonaccorsi et al. 2002, Williams and 

Ralston 2002, Cope 2004, Blanchette et al. 2008, Sivasundar and Palumbi 2010). 
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Figure 15: Map of study site showing sampling ports per region. 

Two fishing methods were used to collect Lingcod and are intended to be 

indicative of the two habitat types of interest. Lingcod from low-relief habitats were 

obtained using bottom trawl gear; Lingcod from high-relief habitats were caught via 

hook-and-line fishing gear. There are several fundamental differences between the 

sampling gear types regarding selectivity and catchability that will be discussed, however 
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due to the nature of the fishing gear and the methods described below, it is reasonable to 

associate all trawl caught Lingcod with low-relief habitats that are often targeted by the 

commercial fishery, and all hook-and-line caught Lingcod with rocky habitats utilized by 

the recreational fishery. Therefore, each method is reflective of both habitat and fishery. 

Throughout my subsequent analyses, results, and discussion, I will be referring to the two 

fishing methods as proxies for the differences between low-relief and high-relief habitats. 

Trawl caught Lingcod were acquired through collaboration with the NOAA 

NWFSC West Coast Groundfish Bottom Trawl Survey (WCGBTS) between 2014 and 

2016. The survey is the primary source of fishery-independent information for West 

Coast stock assessments, collecting biological data from federally important groundfish 

species and estimating relative abundance and distribution of groundfish populations over 

areas of low-relief. The WCGBTS targets the upper continental slope and shelf at depths 

of 55 to 1,280 meters from the U.S.-Canada border to the U.S.-Mexico border using a 

random stratified sampling design with standardized trawl fishing gear (Keller et al. 

2017). Through this collaboration, 2,095 Lingcod from low-relief habitats were retained 

from the survey between 2015 and 2016. The associated catch location information 

(depth, longitude, and latitude) was obtained for each individual from the NWFSC data 

manager.

Lingcod were caught using hook-and-line fishing gear on chartered recreational 

fishing boats from northern Washington to southern California. This area was divided 

into five primary sampling regions: Washington, Oregon, northern California, central 

California, and southern California. Two to four fishing ports were selected per region 

(n=16 ports total), with the goal that selected ports were evenly distributed within each 
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region and across the entire study area, depending upon the geographic location of the 

ports and the availability and accessibility of recreational party boats (or Commercial 

Passenger Fishing Vessels [CPFVs]). CPFVs were chartered at each port for a half- to 

full-day of fishing, depending on weather and the number of Lingcod collected. We 

worked closely with CPFV captains, deckhands and local volunteer anglers to identify 

appropriate fishing grounds in order to collect 300 Lingcod per region using hook-and-

line fishing gear. To ensure a thorough collection of Lingcod across a wide range of age 

and size classes, shallow (<60 m) and deep (60-170 m) nearshore and offshore rocky 

reefs were targeted equally by our fishing efforts. Lingcod can be targeted using weighted 

Lingcod bars, jigs, swim baits, and live bait, which greatly reduces incidental catch of 

other bottomfish species (i.e. Sebastes spp). Because Lingcod are known to settle 

primarily in soft bottom habitats and move ontogenetically to rocky substrate around 35 

cm total length (Miller and Geibel 1973, Bassett et al. 2018), it is unlikely that Lingcod 

smaller than 35 cm would be encountered in rocky habitats.   

All incidentally caught species were measured and released. Species suffering 

from barotrauma were descended and released at depth using a descending device 

(Seaqualizer®) to reduce mortality. Catch information, such as location, depth, relief, and 

catch per unit effort, was collected for each drift. Landed individuals were euthanized per 

the Institutional Animal Care and Use Committee protocol (Permit Number: 964), as 

approved by San Jose State University. Total length (cm), weight (kg), sex, and color 

status were collected immediately after the Lingcod was landed. The Lingcod were then 

frozen or put on ice until dissection. 
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LAB PROCEDURES 

As in Chapter 1, standard morphometrics, tissue samples, and maturity 

information were collected during the lab dissection process. Hook-and-line caught 

Lingcod from each port (n=75-100) were aged following the Lingcod fin ray preparation 

protocol described by Chilton and Beamish (1982) and currently used by the WDFW (R. 

LeGoff, WDFW, personal communication). Trawl caught samples were prepared and 

aged by the NWFSC ageing lab. Ages were determined by counting the number of 

annuli, the translucent zones that form once a year during winter growth. Annuli are often 

distinct along all growth axes of each fin ray section. Ageing accuracy can be improved 

using known mean annular radii measurements for the first, second, and third annuli, as 

measured in Figure 2.  

DATA ANALYSIS 

Analyses were conducted using the statistical computing platform R version 3.5.1

and JMP Pro version 14 (SAS Institute, Inc., Cary, NC). To account for depth differences 

between the sampling methods, only data generated from depth ranges shallower than 

170 m were used in subsequent analyses. 

SEX-RATIO COMPARISONS

 Male to female sex-ratios between habitats were compared using a contingency 

table and the chi-squared test. Due to differences in sampled depths between high-relief 

and low-relief habitats, sex ratios were examined across regions for each habitat 

separately 
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LIFE-HISTORY ANALYSES

The following life-history analyses are similar to those performed in Chapter 1. 

Size- and age-frequency distributions were compared between the two habitat types using 

the nonparametric two-sample Kolmogorov-Smirnov test, which compares the two 

cumulative frequency distributions. The von Bertalanffy growth function (VBGF) was fit 

to size-at-age data for Lingcod from both habitat types using maximum likelihood 

parameter estimates (Kimura 1980). Longevity was calculated based on the mean of the 

upper quartile of ages for each region by habitat (Choat and Robertson 2002). Logistic 

regression (Mature vs. Immature fish) was used to determine size and age at 50% 

maturation for Lingcod by habitat. Fulton’s K condition factor and the hepatosomatic 

index (HSI) were used to examine differences in body condition and energy storage, 

respectively. To control for possible season and year effects, only Lingcod caught in 

2015-2017 between the months of March through October were used. I used residual 

analysis to control for the confounding effect of size on condition when comparing 

between habitats. A GLM was used to investigate the influence of the continuous variable 

of size, and the categorical variables of region, sex, and habitat on Lingcod condition. 

Natural mortality, M, was estimated using the non-linear least squares Hoenig estimator 

based on maximum age, Amax (Hoenig 1983). Total mortality (Z) was estimated using the 

Chapman-Robson method of cross-sectional catch-curve analysis (Chapman and Robson 

1960) with a correction factor for variance inflation (Smith et al. 2012). With this 

method, fishing mortality, F, is calculated using the equation F = Z – M.
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VON BERTALANFFY GROWTH FUNCTION MODEL FITTING 

To investigate the spatial scale of growth variability along the coast between 

habitats and sexes, variability in Lingcod growth parameters was explored using a model 

comparison approach. Growth was chosen as the focus of this model comparison 

approach as variability in individual size and size-at-age can translate into profound 

differences in other life-history parameters. The null hypothesis assumes that covariates 

(sex: male and female, habitat: low-relief or high-relief, and latitude or region) have no 

effect on growth. Seven latitude-based subdivisions were compared based on 

biogeographic breaks, state line boundaries, past stock assessments, and commonly 

accepted management divisions (Fig. 16). VBGF models were fit to one 2-region option 

using a northern and southern boundary used by the most recent Lingcod stock 

assessment (North: Washington and Oregon, South: California); three 3-region options, 

with breaks occurring by state line (Washington, Oregon, California), by splitting 

California at Point Conception (Washington-Oregon combined, California North, 

California South), and by biogeographic boundaries (North: U.S.-Canada border to Cape 

Mendocino, Central: Cape Mendocino to Point Conception, South: Point Conception to 

U.S.-Mexico border). Two 5-region models were also explored according to the five 

predetermined regions used in this study (5-Pre: Washington, Oregon, northern 

California, central California, and southern California) and the five INPFC management 

areas used in past and current groundfish assessments (Vancouver, Columbia, Eureka, 

Monterey, and Conception) (Fig. 16). 
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Figure 16: Map of 2-, 3-, and 5-region growth modelling options. The 2-region option 
was considered based on the past two lingcod stock assessment areas. The 3-region 
options are based on state line, on splitting California at Point Conception, and on 
biogeographic boundaries. The 5-region options are based on the sub-regions used in 
this study and on INPFC regions. 

Models were fit in stages starting with the simplest growth model (assumes no 

variation due to sex, habitat, or region) followed by adding the effect of sex, habitat, and 

geographic area in order of complexity. Standard nonlinear least squares and associated 

likelihood methods were used to estimate parameters for these models (Kimura 2008). 

All combinations of explanatory variables (region, habitat, and sex) were evaluated using 

Akaike’s information criterion with correction for small sample bias (AICc) to select the 
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best-fit model, where the model with the lowest AICc is the most parsimonious. AICc

(the difference between AICc and the minimum AICc value) was used to determine 

AICc

AICc < 2 are considered to fit the data as well as the best-fit 

model (Burnham and Anderson 2002). 

Results  

CATCH SUMMARY 

1,794 Lingcod were collected from rocky, high-relief habitats between 2016-

2017. Data from 2,095 Lingcod occupying low-relief habitats were obtained from the 

NWFSC WCGBTS between 2014-2016 (Table 10). To ensure that both sampled habitats 

were comparable across regions, Lingcod collected from depths over 170 m were 

excluded from Table 10 and subsequent analyses. For the high-relief caught Lingcod, on 

average each port was fished between 1 to 5 days to obtain the targeted sample size of 

75-100 Lingcod per port. Additional samples were provided by the Oregon Department 

of Fish and Wildlife Marine Reserves Program and the California Collaborative Fisheries 

Research Program. 

Sex ratios were compared among regions and habitats. Because each habitat

sampled occurred within different depth substrata (Welch’s t3462.3 = 47.92, p<0.0001), sex 

ratios were examined across regions for each habitat separately. Lingcod from high-relief 

habitats were caught in shallower waters, between 7.6 to 170 m (Mean: 59.8, SD±125.7) 

whereas Lingcod from low-relief trawlable habitats were captured at deeper depths, 

between 57.0 to 170 m (Mean: 113.4, SD± 28.6). Averaged across regions, the majority 
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of Lingcod caught in low-relief habitats were females (58%) while individuals in high-

relief habitats exhibited a relatively even distribution of females and males (48% female) 

(Table 10). Within the low-relief habitats, there were no regional differences in sex ratio 

(X2(4)=5.71, p=0.2219) and consistently more females were sampled than males. Sex-

ratios of high-relief caught Lingcod were significantly different among regions 

(X2(4)=243.01, p<0.0001), however this was due to Lingcod from Washington regions 

being heavily skewed towards females. Within all other regions, males were more 

common. Upon removing the Washington region from the sex-ratio analysis, there was

no significant difference in sex ratios among regions in the hook-and-line samples

(X2(3)=2.34, p=0.506), and the average sex-ratio among all hook-and-line regions was 

39% females to 61% males.   

Table 10: Catch summary by habitat. Number of ports and days fished are not indicated 
for trawl fished regions due to the sampling method used by the West Coast Groundfish 
Bottom Trawl Survey (WCGBTS). Maximum and minimum total length (cm), and number 
of unsexed female and male Lingcod were recorded for all sampled regions. 

Number 
of ports

Days 
fished

Female, 
N

Male, 
N

Unsexed, 
N

Percent 
female

Max 
TL 

(cm)

Min 
TL 

(cm)
High-relief (N = 1,794) 16 37 869 924 1 0.48 - -
Washington 3 6 318 68 - 0.82 112 39 
Oregon 4 10 146 211 - 0.41 111 33.8
Northern California 2 4 82 118 - 0.41 93.5 25.1
Central California 4 9 224 347 1 0.39 96.9 16.7
Southern California 3 8 99 180 - 0.35 97 40.2
Low-relief (N = 2,095) 1152 819 124 0.58 - -
Washington - - 185 113 - 0.62 98 28 
Oregon - - 346 266 16 0.57 92 13.2
Northern California - - 158 122 8 0.56 88 14.8
Central California - - 368 267 92 0.58 89 10 
Southern California - - 95 51 8 0.65 78 18 
Grand Total 2,021 1,743 125 0.54 
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HABITAT-BASED DIFFERENCES IN POPULATION STRUCTURE AND LIFE-
HISTORY

Across all regions combined, Lingcod median sizes were larger (Figure 17A: 

D=0.59, p<0.0001) and median ages were older (Fig. 17B: D=0.61, p<0.0001) in high-

relief habitats than Lingcod from low-relief habitats. This trend was also observed when 

size- and age- residuals between habitats were compared within each region separately.

Figure 17: A) Length and B) age frequency of Lingcod by habitat per region (Sexes 
pooled). The blue and grey vertical lines indicate the median size of Lingcod from high-
relief and low-relief habitats, respectively.
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Lingcod caught in high-relief habitats achieved significantly larger asymptotic 

sizes (Linf) than Lingcod from low-relief habitats coastwide (Table 11, Fig. 18A). This 

trend was also found when males and females were analyzed from each habitat 

independently, as well as when comparing between habitats within each region 

individually. The k parameter of the VBGF is elevated in Lingcod from low-relief 

habitats, indicating faster initial growth as asymptotic size is reached (Fig. 18B), 

however, k and Linf are non-independent so this result is expected. In addition, Lingcod

caught in high-relief habitats attain older ages and have a significantly greater longevity 

than Lingcod in low-relief habitats (Welch’s t634 = 522.0, p<0.0001) (Table 11). 

Table 11: Von Bertalanffy growth function (VBGF) parameters Linf and k, and estimates 
of longevity (Tmax) for Lingcod sampled coastwide, by sex, region and habitat. Standard 
deviation for the Linf, k, and standard error for Tmax estimates are shown. 

High-relief Low-relief 
Linf (SD) k (SD) Tmax (SE) Linf (SD) k (SD) Tmax (SE)

Coastwide 93.4 (1.69) 0.266 (0.01) 7.9 (0.07) 77.1 (1.94) 0.433 (0.02) 4.6 (0.1) 
Female only 100.3 (1.97) 0.25 (0.01) 8.3 0.09) 84.6 (2.65) 0.377 (0.02) 5.8 (0.18)
Male only 74.8 (1.36) 0.358 (0.02) 7.2 (0.1) 66.3 (1.91) 0.558 (0.04) 4.3 (0.11)
Washington 91.9 (4.35) 0.37 (0.04) 8.8 (0.13) 84.8 (2.9) 0.38 (0.03) 7.1 (0.3) 
Oregon 88.8 (3.06) 0.305 (0.02) 7.5 (0.19) 75.9 (2.82) 0.445 (0.03) 4.6 (0.19)
N. California 81.8 (3.94) 0.364 (0.05) 7.0 (0.18) 64.7 (4.4) 0.586 (0.08) 3.0 (0.17)
C. California 81.3 (3.11) 0.308 (0.03) 6.7 (0.11) 66.2 (4.62) 0.542 (0.07) 3.1 (0.12)
S. California 75.3 (3.73) 0.356 (0.05) 6.6 (0.09) 64.7 (6.64) 0.6 (0.15) 3.8 (0.14)
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A 

B 

Figure 18: A) Variation in lifetime growth curves from Lingcod in high-relief versus low-
relief habitats (region and sexes pooled) and B) 95% confidence internals for best fit Linf
and k parameters both habitats. Overlapping ranges indicate no difference in growth.
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Lingcod occupying high-relief habitats reached maturity at significantly smaller 

sizes (non-overlap of 95% CI) than Lingcod caught in low-relief habitats (Table 12, Fig. 

19A). There was also a non-significant trend for Lingcod to mature at earlier ages in 

high-relief habitats (Fig. 19B). Analyzing each sex separately, female Lingcod from high-

and low-relief habitats reached 50% maturity at similar sizes and ages; male Lingcod 

from high-relief habitats reached maturity at significantly smaller sizes than male 

Lingcod from low-relief habitats (Table 12). Age-at-maturity for male Lingcod in 

trawlable habitats was unable to be calculated. 

Table 12: Size (cm) and age (years) at 50% maturity comparison by habitat and sex. 
Upper and lower confidence intervals (UCI and LCI, respectively) were estimated using 
bootstrapping. 

Size at 50% maturity LCI UCI Age at 50% maturity LCI UCI
High-relief: 43.7 41.7 45.3 2.3 2.1 2.5
  Female 50.1 47.6 52.4 2.6 2.3 2.8
  Male 41.6 39.0 43.5 2.2 2.0 2.4
Low-relief: 49.2 47.3 51.3 2.6 2.2 3.0
  Female 51.6 47.6 52.4 2.6 2.0 3.0
  Male 44.9 41.4 48.2 - - -
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A 

B 

Figure 19: Logistic regression for A) length (cm) and B) age at 50% maturity for 
Lingcod caught from high-relief and low-relief habitats. The horizontal dashed line 
represents the time when 50% of the population is mature and the vertical dashed lines 
represent size and age at 50% maturity, respectively.

Welch’s t-tests assuming unequal variances were used to test for significant 

differences between the mean residuals of Fulton’s K and HSI as a function of habitat. 
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With sexes pooled, Lingcod from high-relief habitats were generally in better body 

condition, with a higher mean Fulton’s K (i.e., heavier for a given length) (0.96 ±0.003) 

than Lingcod in low-relief habitats (0.85 ± 0.005) (Welch’s t1873.5 = -6.42, p<0.0001). 

Individuals from high-relief areas also had higher mean energy stores in the liver (1.46 

±0.02), measured as the hepatosomatic index (HSI), than individuals from low-relief 

areas (1.29 ±0.02), however the difference was not statistically significant (Welch’s 

t357.6= 1.36, p=0.17). When sexes were analyzed separately between habitats, I found that 

female Lingcod did not exhibit differences in HSI or Fulton’s K between habitats, while 

male Lingcod showed a significant difference in Fulton’s K only (Welch’s t126.7 = -3.84, 

p<0.0001). A GLM was used on residual values to investigate the influence of habitat, 

sex, and region on Lingcod condition. Region was the only significant indicator of HSI 

(F4,1637 = 113.1, p<0.0001). In order of importance, region (F4,2226=36.8, p<0.0001), sex 

(F1,2226=121.8, p<0.0001), and habitat (F1,2226=13.9, p=0.0002) were significant predictors 

of Fulton’s K.  

Lingcod from low-relief areas had significantly higher natural mortality rates (M) 

compared to those from high-relief areas (Welch’s t2643 = -14.9, p < 0.0001) (Table 13). 

This is consistent with the size-structure analysis that found smaller, younger individuals 

in low-relief habitats. The opposite was found regarding total mortality rates (Z); Lingcod

from high relief areas have greater total mortality than Lingcod from low-relief, trawlable 

habitats. Fishing mortality, F was left blank in cases where M is greater than Z, resulting 

in a negative F value (Table 13). Between sexes, female Lingcod had a higher Z than 

male Lingcod in high-relief habitats, but a lower Z in low-relief habitats. 
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Table 13: Total (Z), natural (M), and fishing (F) mortality rates per habitat where F is 
calculated as F=Z-M. In instances where a negative value was calculated (when M is 
greater than Z), F was left blank. Standard errors (SE) for Z and M are shown in 
parentheses.

MODELLING THE SPATIAL SCALE OF LINGCOD GROWTH VARIABILITY 

Thirty-three possible growth-model hypotheses were tested in order of increasing 

complexity. The 2-region divide was selected based on the most recent stock assessment,

which consisted of a northern region (Washington and Oregon) and a southern region 

(California). Three 3-region options were explored using boundaries based on state line 

(State: Washington, Oregon, and California), by splitting California at Point Conception 

and combining Washington and Oregon (CA split), and by biogeographic boundaries 

(Biogeographic: U.S.-Canada border to Cape Mendocino, Cape Mendocino to Point 

Conception, and Point Conception to the U.S.-Mexico border) (Fig. 16). The two 5-

region options considered incorporated INPFC areas (INPFC: Vancouver, Columbia, 

Eureka, Monterey, and Conception) and the 5 predetermined regions used in this study 

(5-Pre: Washington, Oregon, northern California, central California, and southern 

California) (Fig. 16). 

Z (SE) M (SE) F 
High-relief: 0.61 (0.04) 0.40 (0.001) 0.16
Female 0.69 (0.03) 0.46 (0.004) 0.23
Male 0.43 (0.07) 0.49 (0.003) - 

Low-relief: 0.48 (0.03) 0.61 (0.01) - 
Female 0.44 (0.02) 0.61 (0.01) -
Male 0.53 (0.03) 0.77 (0.01) - 
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 Results from this analysis indicate that model fits of growth variability improved

with the addition of further information (Table 14). The best-fit model for Lingcod 

growth occurred with the inclusion of five predetermined regions (5-Pre), sex, and 

habitat, and was far and away the best model). This was followed by the model including 

5-INPFC regions, sex, and habitat. Within the 3-region options alone (without sex and 

method), the model using boundaries denoted by state line fit better than alternatives 

using 3-biogeographic boundaries or by dividing California, however the 3-

biogeographic regions fit much better when the parameter of sex was included. Between 

sex and habitat effects, sex had a greater influence on Lingcod growth variability as the 

inclusion of sex consistently improved model fit more than the inclusion of habitat. 

Models incorporating both habitat and sex outperformed models with each effect 

separately.  
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Table 14: Degrees of freedom (df), number of parameters (p), corrected Akaike's 
Information Criterion (AICc c (the difference between the AICc and the 
minimum AICc value) for each von Bertalanffy growth model combination. Model fit 
improves with the addition of information. The best-fit model for describing Lingcod
growth along the U.S. West Coast incorporates 5-regions using predetermined divisions 
used in this study, and the effects of sex and habitat (shown in bold).

Model description df p AICc BIC
Length only 3 2 17104.15 17121.52 1490.47
With sex 5 4 16035.19 16064.14 421.51 
With habitat 5 4 16910.08 16939.02 1296.4 
Habitat and sex 9 8 15921.51 15973.58 307.83
With 2 regions 5 4 16622.64 16651.59 1008.96 
With sex 9 8 15801.2 15853.27 187.52 
With habitat 9 8 16452.22 16504.29 838.54 
With habitat and sex 17 16 15676.49 15774.73 62.81 
With 3 regions 
State 7 6 16546.47 16586.99 932.79 
Biogeographic 7 6 16602.68 16643.19 989
CA split 7 6 16613.95 16654.47 1000.27 
With 5 regions 
INPFC 11 10 16548.05 16611.67 934.37 
Pre 11 10 16499.55 16563.17 885.87 
With 3 regions and sex 
State + sex 13 12 15797.67 15872.84 183.99 
Biogeographic + sex 13 12 15754.94 15830.11 141.26 
CA split + sex 13 12 15803.35 15878.52 189.67 
With 3 regions and habitat
State + habitat 13 12 16398.1 16473.27 784.42 
Biogeographic + habitat 13 12 16426.16 16501.34 812.48 
CA split + habitat 13 12 16430.55 16505.73 816.87 
With 5 regions and sex 
INPFC + sex 21 20 15750 15871.29 136.32
Pre + sex 21 20 15751.73 15873.02 138.05 
With 5 regions and habitat
INPFC + habitat 21 20 16362.67 16483.96 748.99 
Pre + habitat 21 20 16336.77 16458.06 723.09 
With 3 regions, sex, and 
habitat
State + sex + habitat 25 24 15667.51 15811.81 53.83 
Biogeographic + sex + habitat 25 24 15634.75 15779.06 21.07 
CA split + sex + habitat 25 24 15674.08 15818.39 60.4 
With 5 regions, sex, and 
habitat
INPFC + sex + habitat 41 40 15622.84 15858.94 9.16 
Pre + sex + habitat 41 40 15613.7 15849.8 0
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Discussion

 Differences in habitat type and structure have been shown to influence population 

distribution, growth, maturity, energy reserves and behavior in terrestrial and aquatic 

species (Myers and Parker 1965, Lagory 1986, Pacunski and Palsson 2001, Lloret et al. 

2002, Lombardi et al. 2003, Vinagre et al. 2008). To ensure that natural populations are 

being managed properly across broad areas, habitat type needs to be considered when 

proposing size regulations, gear restrictions, and harvest quotas. Past studies have found 

that neglecting to account for spatially-specific patterns in life-history and demography of 

natural populations can lead to mismanagement and can be detrimental to long-term 

sustainability of a population (Hilborn et al. 2003, King and McFarlane 2003, Maunder 

and Piner 2015).  

 In this study, west coast commercial and recreational fishing methods (bottom 

trawl versus hook-and-line) were used as a proxy for habitat. When using bottom-trawl 

fishing gear, low-relief habitats are targeted to maximize efficiency and reduce net snags 

on boulders and pinnacles. Alternatively, anglers using hook-and-line methods typically 

focus on high-relief habitats when targeting Lingcod and other rockfish species since 

adults of legal size are known to associate with nearshore rocky reefs.  

DRIVERS BEHIND HABITAT-BASED VARIABILITY IN LINGCOD LIFE-
HISTORY

Lingcod from high-relief habitats were larger at a given age indicating faster 

average lifetime growth, however individuals caught in low-relief habitats exhibited 

faster initial growth, as seen by the greater k value during early ages before maturity is 

reached (<5 years). This is possibly an artifact of the nonlinear Von Bertalanffy growth 
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equation where the lack of young individuals (0 and 1 year olds) caught in high-relief 

areas can inflate the difference in k between habitats. However, habitat-based behavioral 

differences in juvenile Lingcod can affect early growth as well. Lingcod have been 

shown to alter their foraging behavior depending on refuge availability, where juvenile 

Lingcod in structured habitats spend more time hiding than foraging while juvenile 

Lingcod in low-relief, open environments forage for longer periods of time at greater risk 

and energetic tradeoff (Petrie and Ryer 2006). Additionally, foraging return may be 

greater in open areas as rocky or biogenic structures can interfere with prey detection and 

capture success rate (Ryer 1988). Therefore, it may benefit juvenile Lingcod to remain in 

areas with minimal structure in order to maximize foraging opportunities and growth 

until a certain size is reached before moving into high-relief habitats with more refuge. 

As marine fish mature, energy becomes increasingly focused on reproduction versus 

somatic growth and survival becomes a greater priority (Krebs and Davis 2009). Lingcod 

from both habitat types reach 50% maturity at generally the same age but at difference 

sizes due to this discrepancy in early growth. 

Lingcod in trawlable habitats were typically smaller and younger than Lingcod 

caught in untrawlable habitats. A strong recruitment pulse of young-of-the-year Lingcod 

can be seen in the mid-regions of Oregon, Northern California and Central California, 

which is consistent with the pattern of high productivity in this area. As discussed in 

Chapter 1, the stretch of coast between Cape Blanco and Point Conception is considered 

an area of maximum upwelling (Parrish et al. 1981, Strub et al. 1990, Checkley and Barth 

2009) and is less prominent in southern California and Washington, indicating the 

potential for spatial variability in recruitment strength coastwide. To control for the effect 
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of the recruitment pulse on skewing size- and age-frequency comparisons, smaller sizes 

were truncated (<30 cm), reexamined, and resulted in similar findings to the original 

analysis.  

Gear selectivity can also influence observed Lingcod sizes. Commercial trawl 

methods capture Lingcod from all size classes whereas recreational hook-and-line fishing 

gear may be biased towards larger fish, excluding smaller sizes (Chatwin 1958, Ralston 

1990). Given that juvenile Lingcod do not typically recruit to rocky habitats until they 

reach about 35 cm (Miller and Geibel 1973), it is unlikely that a significant portion of 

size classes <35 cm were excluded by hook-and-line fishing gear in my study. Larger 

Lingcod can potentially outcompete smaller individuals when striking fishing lures or 

bait and skew the size of captured individuals (Ricker 1969, Gotz et al. 2007, Etienne et 

al. 2010), however this behavior is expected regardless of terminal tackle from a 

predatory species like Lingcod. Both methods are equally selective at the upper end of 

the size distribution, therefore, the resulting difference in size and age frequency between 

low-relief and high-relief habitats is likely an accurate representation of the Lingcod 

population caught by commercial and recreational fisheries, respectively. 

Differences in habitat quality between trawlable and untrawlable areas can affect

Lingcod health and survivability across multiple life stages. High-relief habitats provide 

spatial refuge from predators and sufficient prey resources that can maximize growth, 

reproduction and condition, while enhancing the biodiversity of whole communities

(Able 1999, Yoklavich et al. 2000, Lloret et al. 2002, Lloret and Planes 2003). Lingcod, 

like other rockfishes, utilize high-relief habitats as a means of refuge, reproduction, and 

food, though this is dependent on seasonality and sex (Greenley et al. 2016, Starr et al. 
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2005, Beaudreau and Essington 2011). Lingcod caught from rocky reefs were in better 

condition, matured at smaller sizes, and had lower natural mortality than Lingcod in low-

relief habitats, suggesting greater energy reserves and potentially higher reproductive 

output and survivability (Lloret et al. 2002, Lloret and Planes 2003), however, many of 

these initial differences appeared to be driven by sex as there was a higher proportion of 

male Lingcod (61%) in high-relief habitats. Between the two habitats, female Lingcod

did not vary significantly in condition (Fulton’s K and HSI) or timing of maturity but 

male Lingcod did. The GLM also indicated that sex was a stronger factor influencing 

condition over habitat effects. As nest-guarders, male Lingcod may mature earlier and be 

in better condition in order to maximize reproductive potential and success in high-relief 

habitats (Knapp 1995, Lindstrom 1998). In addition, male Lingcod show greater site 

fidelity while female Lingcod tend to be more migratory, moving farther distances away 

from rocky habitats for longer periods of time (Starr et al. 2005, Greenley et al. 2016). 

Therefore, in addition to energetic tradeoffs due to nest-guarding behavior, long term 

habitat effects on maturity and condition may be reduced in female Lingcod while having 

a greater impact on sedentary males.  

Total mortality between habitats behaved as expected considering the history of 

the Lingcod fishery along the U.S. West Coast. Lingcod from high-relief habitats had a 

significantly higher total mortality (Z) than trawl caught Lingcod, which mirrors the 

increase in popularity of the recreational fishery and the concurrent decline of the 

commercial groundfish trawl fishery in the past few decades (Hamel et al. 2009, Haltuch 

et al. 2017). In the past, landings from the commercial trawl fishery far exceeded that of 

the recreational hook-and-line fishery, however, since 2014, Lingcod landings from both 
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the northern (Washington and Oregon) and southern (California) recreational sectors 

have been greater than their respective commercial sectors (Fig. 20). Coastwide, the 

recreational fishery surpassed the commercial fishery by an average of 642.2 metric tons 

per year since 2014 (Haltuch et al. 2017).  

Figure 20: Commercial and recreational Lingcod landings in metric tons from the 
Northern (Washington and Oregon) and Southern (California) stock assessment regions 
(Hamel et al. 2009, Haltuch et al. 2017). 

The shift seen between fishery sectors is primarily driven by population decline 

and changes in fishing regulations and catch quotas. While commercial Lingcod landings 

had been steadily declining since its peak in the early 1980s, total allowable catch in the 

commercial sector was dramatically reduced by over 80% in 2000 when the Lingcod 

fishery was deemed overfished coastwide (Hamel et al. 2009). Since 2000, landings from 
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the recreational hook-and-line sector have grown in both the Northern and Southern stock 

assessment regions, indicating that Lingcod found over high-relief habitats are being 

increasingly targeted compared to Lingcod from low-relief, trawlable habitats. This can 

have lasting effects on the coastwide Lingcod population due to the fishing industry’s 

tendency to disproportionately remove large individuals and the connectivity between 

habitats (Jagielo 1990). Spillover effects can in turn influence populations from low-relief 

habitats and the commercial trawl sector. Understanding how shifts in a fishery, such as 

fishing method or location, fisher behavior, and market demand, can have long term 

population-level effects on broad-ranging fish stocks is necessary when considering 

management options. Stock assessments using life-history parameters from only one 

fishing sector or habitat type might not be representative of the population as a whole. 

This oversight could lead to errors in models of population growth and harvest, resulting 

in mismanagement and under- or over-harvest of regional stocks.  

SPATIAL PATTERNS OF LINGCOD GROWTH ALONG THE U.S. WEST 
COAST 

 The best fit Von Bertalanffy model describing Lingcod growth along the West 

Coast contained the most complex combination of parameters: 5 regions, 2 habitats, and 

2 sexes. From a management standpoint, this information gives us insight on how the 

coastwide Lingcod population could potentially be divided for management into 5 

regional subpopulations, with different regulations for each sex and habitat. However, 

there are obvious limitations in the management of a single species in terms of economic 

and regulatory feasibility. Overall, it can be seen that the inclusion of sex alone improves 
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the growth model fit much more than including habitat, and the addition of both sex and 

habitat vastly improves the model fit over using geographic divisions. 

The current Lingcod stock assessment model is conducted as two separate 

assessments (northern and southern regions) and uses unique biological parameters for 

trawl-caught male and female Lingcod for each region (Haltuch et al. 2017). As 

evidenced by the results shown in this study, making a relatively small change by 

adopting habitat-specific growth, maturity, and mortality parameters into the current 

stock assessment model can help to increase the accuracy of future assessments for 

Lingcod. This also supports the implementation of separate size limits for male and 

female Lingcod within the commercial and recreational fisheries as size at maturity can 

be variable. Ultimately, more analyses are needed to quantify the degree to which the 

model can benefit compared to the cost of increased enforcement and data collection. 

Accounting for habitat-specific life history differences can be especially relevant to an 

industry that has undergone dramatic changes like the Lingcod fishery. The shift from 

being primarily a commercial fishery to a recreational fishery within several decades can 

be a significant driver of population-level change, therefore, stock monitoring and 

managing efforts need to be adaptive and reflective of those changes. 

CONCLUSIONS AND RECOMMENDATIONS

 The goal of this study was to demonstrate how habitat-based factors can have 

profound impacts on life-history estimates used in groundfish stock assessment models. 

While the groundfish Fisheries Management Plan has made identifying essential fish 

habitat (EFH) a priority for spatial management, there is still much research to be 
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conducted on how habitat effects can directly and indirectly influence fish growth, 

maturity, longevity, mortality, and condition on a species by species basis. Groundfish 

stock assessment models are constantly advancing and adapting as new information 

becomes available, however, they are currently limited to using biological information 

derived from fisheries-independent trawl surveys. 

 Given the results from this study, I recommend the inclusion of habitat 

considerations when estimating life-history parameters for Lingcod and other groundfish 

species that occupy both trawlable and untrawlable habitats. The FRAM Hook-and-Line 

Survey in the Southern California Bight has been collecting distribution and abundance 

information from rockfishes in untrawlable habitats since 2004, however this is only done 

in the southern California area. Because a significant proportion of total Lingcod landings 

come from the recreational hook-and-line sector, it is necessary to implement a coastwide 

fisheries-independent hook-and-line survey when collecting vital stock assessment 

information. The WCGBTS has served as a crucial resource to the management of 

groundfishes by providing an index of relative abundance over time, length-frequency 

distributions, and age-frequency distributions of over 90 groundfish species. A comparable, 

long-term survey should be conducted over untrawlable habitats along the contiguous

U.S. West Coast so that stock assessments are more accurate in representing the 

demography and biology of targeted populations vulnerable to recreational fishing. 
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