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ABSTRACT 
 

Effects of Land-based Sources of Pollution 
on Coral Thermotolerance 

by 
Melissa Naugle 

Master of Science in Marine Science 
California State University Monterey Bay, 2021 

 
Phenotypic plasticity is one way that species may cope with stressful environmental changes 
associated with climate change. Reef building corals present a good model for studying 
phenotypic plasticity because they have experienced rapid climate-driven declines in the past 
thirty years, often with differential survival among individuals during heat stress. One potential 
reason for underlying differences in thermotolerance may be due to differences in baseline 
levels of environmental stress. Stress associated with pollution has been shown to produce 
synergistic effects with heat stress, exacerbating the physiological damage of heat stress. 
Conversely, it is possible that mild pollution stress could prepare corals to better cope with heat 
stress via cross tolerance mechanisms. Cross tolerance occurs when a mild stressor prepares an 
organism for more extreme, subsequent stress, reducing the impact of that stressor on the 
organism. To examine these two possibilities, acute heat stress experiments were conducted on 
Acropora hyacinthus from five sites around Tutuila, American Samoa with differing pollution 
impact. Bleaching responses were measured visually, using photographic assessment to 
estimate chlorophyll content, and using pulse amplitude fluorometry to measure photosynthetic 
efficiency. Endosymbiont community composition was assessed at each site using quantitative 
PCR. RNA sequencing was used to compare differences in genes expression patterns prior to 
and during heat stress. Symbiont communities differed among sites, with heat tolerant 
Durusdinium dominating in areas with higher pollution impact and heat sensitive Cladocopium 
relatively more common in pristine areas. Pollution stress may induce a shift towards 
Durusdinium thereby enhancing resistance to subsequent heat stress in the near term. Gene 
expression patterns showed few differences correlating to site or pollution level. 
Thermotolerance, however, did correlate with gene expression patterns, both during heat stress 
and under control conditions.  In this thesis, I present potential mechanisms underlying coral 
thermal tolerance in pollution-impacted areas. Our results highlight the importance of 
measuring pollution impacts on thermotolerance and identifying heat tolerant corals in “non-
pristine” areas and their potential to seed nearby reefs following bleaching events.  
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INTRODUCTION 

 
Anthropogenic climate change presents a bleak future for many species with major 

declines in global biodiversity predicted (Bellard et al. 2012). Rising global temperatures and 

other changing environmental conditions are predicted to push many species past their 

physiological limits (Tomanek 2008). To avoid extinction, species may respond to this 

environmental stress in three ways: 1. Range shifts to more favorable environmental conditions 

2. Natural selection and subsequent evolution towards more suitable genotypes, or 3. Plastic 

responses that allow changes in physiology without changes in genotype (Holt 1990; Davis et al. 

2005; Gienapp et al. 2008; Hofmann and Todgham 2010; Nogués-Bravo et al. 2018; Catullo et 

al. 2019). Some combination of these three responses is necessary for species persistence when 

environmental changes exceed their physiological limits (Davis et al. 2005; Gienapp et al. 2008).  

Species range shifts have now been well documented (Chen et al. 2011). However, if 

species cannot adjust their range to keep up with changing climate, they must adjust their 

physiology to persist. Species may adaptively evolve via changes in allele frequencies towards 

more suitable genotypes to tolerate their changing climate (Hoffmann and Sgrò 2011). Yet, since 

climate change is occurring at unprecedented rates (IPCC 2018), phenotypic plasticity may be 

especially important for longer-lived organisms since it can occur over remarkably short time 

scales compared to genetic adaptation (Hendry et al. 2008). Plasticity has been found to be 

particularly important in studies that attempt to disentangle it from adaptation, though this has 

proven an especially difficult question to test (Gienapp et al. 2008; Hendry et al. 2008; Merilä 

and Hendry 2014). Plasticity refers to the change in phenotype in response to a change in 

environment without a change in genotype (Scheiner 1993). Though plasticity may occur over 

multiple generations (termed trans-generational plasticity), plasticity in the context of this thesis 

focuses on within-generation plasticity (Jablonka and Raz 2009). It is also worth noting that 

plasticity itself can evolve and may be adaptive or maladaptive and therefore should also be 

considered in the context of evolution (Scheiner 1993). This study examines plasticity within one 

generation, though future work should also incorporate multi-generational processes.  

Reef building corals present a good model for studying phenotypic plasticity because 

they have experienced rapid climate-driven declines in the past twenty years, often with 
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differential survival among individuals (Marshall and Baird 2000; West and Salm 2003; Hughes 

et al. 2017). Since corals are tropical animals that already live close to their thermal maximum 

global climate change is expected to exacerbate these effects, leading to the continued decline of 

corals around the world (Hughes et al. 2017; Tewksbury et al. 2008). However, some coral 

communities, species, and genotypes have been shown to be ‘winners’ and others ‘losers’ in this 

battle to tolerate a changing environment. Some corals exhibit greater thermotolerance: the 

ability to tolerate physiologically stressful temperatures. More thermotolerant corals are more 

likely to resist bleaching: the expulsion of the coral’s endosymbionts. For example, some reefs in 

Hawaii bleached more than others during mass bleaching events (Jokiel and Brown 2004). This 

was likely at least partially due to differences in environment variables such as cloud cover and 

water depth, but differences in plasticity likely also played a role in determining thermotolerance 

(Jokiel and Brown 2004). Some coral species or populations have greater thermotolerance or 

greater capacity for plasticity, allowing them and the communities they make up to persist in 

changing climate better than others (Barshis et al. 2013; Grottoli et al. 2014; Kenkel and Matz 

2016; Thomas et al. 2019). Finally, corals of the same species occupying the same reef have 

been shown to differ in their thermotolerance, which may be due to plasticity, genetic differences 

or variations in microenvironments (Jokiel and Brown 2004; Cornwell et al. 2020). Corals are a 

good candidate for studies investigating plastic responses to climate change because they have 

high species-level and individual-level differences in thermotolerance. Corals are stationary and 

have limited dispersal capabilities to escape climate change stress, so they must adaptively 

respond in order to persist, through adaptation or plasticity (Catullo et al. 2019).  

Plasticity can occur at multiple levels within a coral ‘holobiont.’ A coral holobiont is the 

coral organism plus all the associated micro-organisms (e.g., bacteria and viruses) and symbiotic 

algae that live within the coral tissue. For example, plasticity can occur within the coral animal 

itself (e.g., gene expression shifts to increase heat shock proteins or antioxidants during thermal 

stress; Dixon et al. 2020), or within the members of the coral holobiont community that 

contribute to coral thermotolerance (e.g., endosymbiont shifts towards more heat tolerant species 

or ‘symbiont shuffling’; Berkelmans and van Oppen 2006). While other plasticity processes exist 

(e.g. transgenerational plasticity; Jablonka and Raz 2009), gene expression shifts within the coral 

host and symbiont shuffling are well-studied mechanisms by which coral are known to adjust 
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their thermotolerance within a lifetime of an individual and will be the focus of this study 

(Berkelmans and van Oppen 2006; Thomas et al. 2018; Thomas et al. 2019).  

Below, I review what is known about how these plastic mechanisms enable corals to 

respond to temperature and pollution stress and what is known about how they might respond to 

combined heat and pollution stress. 

 
Plastic Responses to Heat Stress 
 
 During environmental stress, organisms can counteract macromolecular damage through 

a cellular stress response (CSR), inducing a suite of gene and protein expression changes 

(Hochachka and Somero 2002; Kültz 2005; Evans and Hofmann 2012). The conserved CSR is 

triggered when environmental stress begins to damage macromolecules, including proteins, 

nucleic acids, and membranes, which can impair physiological function and disrupt cellular 

homeostasis (Somero 2020; Kültz 2020). To maintain cellular homeostasis and mitigate damage, 

the CSR is critical to repair macromolecules, modify energy metabolism, regulate cell 

proliferation, and initiate cell death in cells with excessive damage (Kültz 2005; Evans and 

Hofmann 2012; Somero 2020). In corals, as well as virtually all other organisms, the CSR is 

highly conserved and has diverged little throughout history (Kültz 2005; Kültz 2020). Since 

different stressors often produce similar types of macromolecular damage, the CSR often induces 

highly similar suites of responsive genes (Evans and Hofmann 2012; Dixon et al. 2020). These 

CSR gene suites occur in tiers, depending on the timing and intensity of the stress (Evans and 

Hofmann 2012). For heat stress specifically, the early CSR is deemed the ‘heat shock response’ 

which is characterized by the production of molecular chaperones, especially heat shock 

proteins, along with other proteins to mitigate thermal damage (Lindquist 1986; Hochachka and 

Somero 2002; Somero 2020). This often comes at the cost of downregulating genes involved in 

growth, typically to maintain the organism’s energy budget (Zakrzewska et al. 2011). In corals, 

this upregulation of stress-related genes and down-regulation of growth-related genes has been 

repeatedly shown to be triggered by heat stress and results in an increase in thermotolerance 

(DeSalvo et al. 2010; Thomas et al. 2019; Dixon et al. 2020). 

Another plastic process known as symbiont shuffling also contributes to coral 

thermotolerance. Symbiont shuffling is the process whereby a coral’s symbiont community 

composition shifts to change the proportions of each symbiont species, which can boost 
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thermotolerance (Buddemeier and Fautin 1993; Baker 2003; Baker et al. 2004). Under mild heat 

stress, corals may experience acute bleaching, allowing the opportunity for a shift in their 

symbiont community (Buddemeier and Fautin 1993). There are at least nine distinct lineages of 

Symbiodiniaceae, the family of coral-dwelling symbionts, with certain species conferring greater 

host thermotolerance than others (Baker 2003; Tchernov et al. 2004; Ladner et al. 2012; 

LaJeunesse et al. 2018). However, there are limits to the increase in thermotolerance due to 

symbiont shuffling and not all coral species can “shuffle” (Goulet 2006). Once symbiont 

shuffling has occurred and corals host entirely one species of symbiont, they may have 

maximized their ability to increase symbiont-driven thermotolerance (Howells et al., 2020) or 

they may revert back to less heat tolerant symbiont communities once the heat stress has 

diminished (Thornhill et al. 2006). As with gene expression shifts, symbiont shifts also are 

thought to be accompanied by tradeoffs with growth (Cunning et al. 2015). Corals that host more 

thermotolerant symbiont species exhibit lower growth rates than those that host less tolerant 

symbionts (Jones and Berkelmans 2010). Corals may employ both gene expression shifts and 

symbiont shuffling simultaneously to tolerate heat stress, and by utilizing both of these plasticity 

strategies, may improve their thermotolerance (Thomas et al. 2019). Symbiont shuffling alone 

may improve thermotolerance by up to 1-1.5°C, but the improved thermotolerance due to a 

combination of symbiont shuffling and changes in gene expression is not yet known 

(Berkelmans and van Oppen 2006).  

 
Responses to Pollution Stress 
 

While gene expression shifts and symbiont shuffling have been well studied in response 

to temperature stress, fewer studies have investigated how these processes respond when 

temperature stress interacts with local stressors such as pollution. Land-based pollution can bring 

nutrients and sediments into marine environments, affecting corals and their symbionts (Silbiger 

et al. 2018). This pollution can have a variety of direct and indirect effects on the coral holobiont, 

ranging from the organismal scale (e.g. changes in growth rate, calcification rate, increased 

symbiont densities) to the ecological (e.g. higher prevalence of disease, outbreaks of 

corallivorous starfish, and increased competition with macroalgae) (Stambler et al. 1991; Koop 

et al. 2001; McCook et al. 2001; Voss and Richardson 2006; Fabricius et al. 2010; D’Angelo and 

Wiedenmann 2014).  
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Nutrient and sediment pollution may also affect holobiont thermotolerance. Sediment 

pollution may reduce light stress and thus increase thermotolerance, or nutrient pollution may 

cause symbiont densities to spike which would increase light absorption and thus reduce 

thermotolerance (Cunning and Baker 2013; D’Angelo and Wiedenmann 2014). There have been 

multiple accounts of elevated nutrients lowering thermotolerance (Wooldridge 2009; 

Wiedenmann et al. 2013; Donovan et al. 2020) or improving thermotolerance (Béraud et al. 

2013; Zhou et al. 2017; Morris et al. 2019). Since ‘pollution’ is a broad term that encompasses 

highly variable environments, its effects on coral thermotolerance may be context dependent. 

These discrepancies in how pollution affects thermotolerance may be partially explained by 

differences in nutrient levels and ratios among nutrient concentrations (Wiedenmann et al. 2013; 

D’Angelo and Wiedenmann 2014; Morris et al. 2019). Additionally, differences in the source of 

nitrogen can affect how corals respond (Burkepile et al. 2020; Fernandes de Barros Marangoni et 

al. 2020). Laboratory studies have shown that thermotolerance is increased by moderate levels of 

ammonium (~0.3 µM) but is decreased by nitrate unless accompanied by phosphate (Rosset et al. 

2017; Morris et al. 2019). These moderate nutrient additions can increase symbiont densities, 

which can increase holobiont health and thermotolerance, but imbalanced N:P ratios can disrupt 

the symbiosis and lead to bleaching (Rosset et al. 2017). While the effects of nutrient pollution 

have been well-studied in lab-controlled studies, there are fewer instances of field-based 

assessments of pollution and thermotolerance (Wooldridge 2009). Further, there are fewer 

accounts of mechanistic explanations for field-based studies of pollution affecting 

thermotolerance. 

 
Responses to Heat and Pollution Stress 

 
Long-term pollution stress may either increase or decrease coral thermotolerance to acute 

heat stress. When corals are exposed to multiple stressors, many studies have shown synergistic 

effects, whereby the cumulative effect of two stressors is greater than each stressor 

independently (Kersting et al. 2015; Towle et al. 2016; Ellis et al. 2019). A recent meta-analysis 

showed that local stressors including pollution exacerbate coral loss due to heat stress (Donovan 

et al. 2021). More specifically, one study found that pre-exposure to nutrient stress can 

exacerbate mortality due to heat stress (Zaneveld et al. 2016). However, other studies have 

shown that multiple stressors can produce antagonistic effects in corals, whereby the cumulative 
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effect of two stressors is less than each stressor independently (Zhou et al. 2017; Marangoni et al. 

2019; Darling et al. 2020). Since the CSR is similar even for different types of environmental 

stress, it is possible that if mild long-term pollution stress triggers macromolecular damage and 

increases constitutive expression of CSR genes, this could lead to higher thermotolerance during 

heat stress (Figure 1). This may be due to the ‘frontloading’ of stress response genes in polluted 

waters, whereby the baseline gene expression more closely resembles CSR gene expression, 

better preparing the coral to tolerate acute stress (Barshis et al. 2013; Thomas et al. 2018). It is 

also possible that long-term pollution stress has induced symbiont community shifts in favor of 

more stress-tolerant symbionts, leading to higher thermotolerance. This concept of increased 

tolerance to one stressor due to exposure to a different stressor is termed “cross-tolerance” and 

has been demonstrated in many species (Li and Hahn 1978; Sabehat Adnan et al. 1998; Ely et al. 

2014; Gunderson et al. 2016). A similar concept, “pre-conditioning” or “stress-hardening,” can 

also be applied when mild exposure to an environmental stressor results in more tolerance to a 

subsequent stronger exposure to the same stressor compared with no exposure at all.  

Pre-exposure has been well explored in corals (e.g. inducing mild heat stress improves 

thermotolerance during later, more significant heat stress; Maynard et al. 2008; Thompson and 

van Woesik 2009; Bellantuono, Hoegh-Guldberg, et al. 2012). The mechanisms underlying 

preconditioning could be symbiont shuffling or gene expression shifts (e.g. increasing basal 

levels of CSR expression), though gene expression shifts tend to act over shorter time scales than 

symbiont shuffling (Bellantuono, Granados-Cifuentes, et al. 2012; Silverstein et al. 2015). Fewer 

studies have examined these mechanisms during two different sources of environmental stress in 

corals, where they would be categorized as ‘cross-tolerance’ rather than ‘pre-conditioning’ 

(Towle et al. 2016). A recent meta-analysis showed that Acropora corals exhibit a generalized 

stress response, expressing similar genes regardless of the source of environmental stress, as long 

as the intensity of the stress was similar (Dixon et al. 2020). A study that specifically measured 

gene expression during heat and nutrient stress found a number of stress response genes in 

common between the two stressors (Rosic et al. 2014). Zhou et al. (2017) also measured heat and 

nutrient stress simultaneously and found that elevated ammonium concentrations buffered gene 

expression shifts during heat stress, especially genes involved in tumor necrosis factor signaling, 

cell death, and apoptosis, which are all typically involved in the cellular stress response. This 
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evidence suggests the possibility of a cross-tolerance effect that may buffer nutrient-stressed 

corals from heat stress.  

If pollution helps to induce thermotolerance in corals, this may present a “protection 

paradox” for conservation managers who typically focus on reducing local stressors on coral 

reefs (Bates et al. 2019). This paradox arises when a protected area with reduced human impact 

is more affected by perturbation (e.g., a storm or bleaching event) compared to a higher impact 

area. Higher impacted areas may favor hardier genotypes or species that are more likely to 

persist during perturbation. Lower impacted areas may have a higher proportion of vulnerable 

species or genotypes that will be lost during perturbation. This might suggest a portfolio 

approach to coral marine conservation, where both pristine and polluted sites are targeted for 

protection and for selecting corals used in nurseries and outplanting programs (Bates et al. 2019; 

Walsworth et al. 2019). The strategy for seeking resilient corals has historically been to search in 

pristine, less impacted reefs, but there may be potential resilience value in more impacted reefs 

as well. It is important to consider adaptive potential when determining coral management plans 

to protect heat-resistant corals, cooler refuge habitat, and the habitat connectivity between these 

areas (Walsworth et al. 2019). If interventions such as selective breeding or coral nurseries are 

considered, identification of the most heat resistant corals is vital, since heat-tolerant parents 

generate more resilient nursery stock (Morikawa and Palumbi 2019). These management needs 

further support the motivations for this study of mechanisms of pollution-induced plasticity that 

build thermotolerance. 

 
Research Questions 

 
This thesis investigates the interaction between in situ exposure to chronic land-based 

sources of pollution and a short-term heat stress event in setting coral thermal tolerance. My 

study site is the main island of Tutuila in American Samoa where a mosaic of land-based 

pollution impacts is situated near relatively pristine reefs (Houk et al. 2005; Comeros-Raynal et 

al. 2019; Shuler et al. 2019). Tutuila is an ideal location to test plastic responses to nutrient 

pollution and thermotolerance in a field setting. I chose to conduct this study on Acropora 

hyacinthus, a common ‘weedy’ coral species that is faster growing but more vulnerable to 

bleaching than other coral species (Linares et al. 2011). A. hyacinthus is well-studied 

ecologically with abundant phenotypic and genomic data (Barshis et al. 2013). While the 
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remarkably thermotolerant A. hyacinthus on nearby islands such as Ofu have been well studied, 

there are fewer data assessing thermotolerance among Tutuila’s A. hyacinthus (Craig et al. 2001; 

Schumacher et al. 2018; Thomas et al. 2019). This study provides updated assessments of 

differences in thermotolerance among A. hyacinthus on Tutuila and investigates potential 

mechanisms of plasticity that may account for those differences.  

If chronic exposure to pollution stress induces cross-tolerance to acute thermal stress in a 

field setting, corals dwelling on more polluted reefs will likely exhibit greater thermotolerance 

than corals on pristine reefs. High thermotolerance on polluted reefs may be accompanied by 

differences in gene expression shifts consistent with cross-tolerance and/or symbiont 

communities with higher proportions of more thermotolerant species. Alternatively, corals on 

pristine reefs may exhibit greater thermotolerance, due to the reduction of other stressors 

(Donovan et al. 2021). High thermotolerance on pristine reefs may occur if different genes are 

needed to respond to pollution stress and heat stress, or if pollution induces symbiont shifts to 

symbiont species that are less thermotolerant. Finally, there may be no difference in 

thermotolerance among differently polluted reefs, with similar symbiont communities and gene 

expression patterns across sites. I expect that gene expression profiles and/or symbiont 

community composition will partially explain variation in thermotolerance around the island of 

Tutuila, and that other factors such as thermal history, oceanography, and reef type may also play 

a role. I tested these hypotheses through an acute heat stress assay on corals from differently 

polluted reefs around Tutuila, followed by an assessment of how symbiont communities and 

gene expression during heat stress vary by pollution level.  
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Figure 1. Hypothesized acute heat stress response to low and high pollution preconditioning. 
Corals previously exposed to high pollution may display ‘frontloading’ of stress response genes 
and could be better suited to tolerate acute heat stress compared to those in a low pollution 
treatment. This could result in a bleaching response in corals exposed to low pollution and not in 
corals exposed to higher chronic levels of pollution. Adapted from Thomas et al. (2018). 
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METHODS 

 
Study System 
 
Inhabited islands across the Indo-Pacific experience pollution from human populations, and this 

is generally thought to negatively affect coral reefs. Potential interactions between pollution and 

temperature stress can be studied using a representative island with mosaics of pollution impact. 

Tutuila, the largest island in American Samoa provides an ideal study site, with areas that are 

relatively pristine nearby to areas that have been polluted for decades. Pollution in Tutuila stems 

from three main sources: agriculture runoff, piggeries, and on-site disposal systems. These 

sources bring nutrients and sediments into the seawater and affect water quality, particularly 

affecting the concentrations of nitrogen and phosphorus (Shuler et al. 2017).  

Tutuila reefs have been assessed for their climate change resilience potential by 

accounting for characteristics such as pollution, sedimentation, herbivory, macroalgae cover, 

coral diversity, coral recruitment, disease prevalence, bleaching resistance, physical impacts, 

fishing pressure, and sea surface temperature variability (Figure 2, Schumacher et al. 2018). 

This assessment found that the reefs most resilient to climate change were found on the 

Northeast section of Tutuila and in areas of lower population density (Schumacher et al. 2018). 

However, this assessment did not include any experimental heat stress assays to quantify 

thermotolerance, nor any measurement of gene expression during heat stress or symbiont 

community differences. Tutuila’s coral cover, one indicator of general coral health, varies by reef 

and ranges from less than 10% to almost 40% (Schumacher et al. 2018).  

To determine sampling sites, I began by compiling resources from the American Samoa 

Environmental Protection Agency (Tuitele et al. 2019) and dissolved inorganic nitrogen (DIN) 

measurements from Schuler and Comeros-Raynal (2020) from seven sites that were previously 

studied in a similar set of heat stress assays in 2014 (Oliver and Logan, unpublished) in order to 

compare changes in thermal physiology over time (Table 1). DIN load (Figure 3) in each 

watershed was determined to be a useful indicator of overall watershed pollution level, with 

higher DIN loads indicating watersheds that were most affected by land-based pollution (Shuler 

and Comeros-Raynal 2020). DIN concentrations are composed of concentrations of nitrate, 

nitrite, and ammonium (Shuler and Comeros-Raynal 2020). I further assessed the seven potential 

sites by collecting data on the specific location of Acropora hyacinthus colonies as well as basic 
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nutrient and water quality characteristics and temperature (Table 2). I sampled water quality at a 

single timepoint at each site at approximately the same location and depth of the proposed 

sampling site (< 5 meters depth) prior to sampling. A Hach Colorimeter was used to measure 

turbidity, nitrate (working range: 0.4-30.0 mg/L NO3-N) and phosphorus (working range: 0.02- 

3.00 mg/L PO4). Nitrate measurements were consistently below the working range of the Hach 

colorimeter (Table 2). pH was measured using an EcoTestr portable handheld pH probe. It 

should be noted that pH values were below expected seawater pH levels, and the probe may have 

been incorrectly calibrated (Table 2). In situ temperatures were measured every 30 minutes 

using HOBO loggers which were deployed on the reef for four to ten days prior to sampling 

(Table 2). One site, Faga’malo was not included in the study as there were too few A. hyacinthus 

colonies on the reef. The Aoa site was sampled and A. hyacinthus were exposed to the heat stress 

assay, but data from this site were discarded due to technical malfunctions during the 

experiment. The final five study sites used in this experiment were chosen for their 

environmental characteristics, pollution level, level of available pollution data, and abundance of 

A. hyacinthus (Figure 4). These sites included Cannery and Coconut Point as high pollution, 

Faga’alu as moderate pollution, and Vatia and Faga’tele as low pollution. It should be noted that 

Vatia has been classified in this study as low pollution but has previously been classified as 

moderate pollution. We classify Vatia as low pollution in this study due to the low human 

population, lower DIN load, its protection status as a U.S. National Park, and decreases in 

nutrient concentrations over time due to increased management efforts (Whitall et al. 2019).  
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Figure 2. Coral resilience potential based on measurements of pollution, sedimentation, 
herbivory, macroalgae cover, coral diversity, coral recruitment, disease prevalence, bleaching 
resistance, physical impacts, fishing pressure, and sea surface temperature variability (from 
Schumacher et al. 2018). Green represents reefs with the highest resilience scores (where corals 
are predicted to be most resilient to climate change and human impacts), while orange represents 
reefs with lower resilience scores. 
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Table 1. Summary of Study Site Differences Including Population Data from the American 
Samoa Environmental Protection Agency (ASEPA) FY18 Watershed Report (Tuitele et al. 
2019), Dissolved Inorganic Nitrogen Loading (kg/day) as reported by (Shuler and Comeros-
Raynal 2020) and Relevant Protection Status.   

Site ASEPA Watershed 
Human Impact 
Classification 
(2016) 

Human 
Population 
(2016) 

DIN Load 
(kg/day/km2) 

Protection Status 

Cannery Extensive 9276 4.6 No protection; in Pago 
Pago Harbor  

Coconut Point Extensive 6707 4.3 No protection; next to 
airport  

Aoa Extensive 855 4.0 Marine Protected Area 
Faga’alu Extensive 910 2.8 No protection 
Vatia Intermediate 640 2.5 National Park 
Faga’tele Pristine 0 0.3 NOAA Sanctuary  
Faga’malo Pristine 47 0.9 Marine Protected Area 

 
 

 
 
Figure 3. Tutuila watersheds classified by dissolved inorganic nitrogen (DIN) load scaled for 
each watershed area (from Shuler and Comeros-Raynal 2020). Darker watersheds had higher 
DIN loads and are considered most affected by land-based pollution. DIN loads are reported in 
kg/day/km2.  
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Table 2. Study Site Locations and Water Quality Measurements Taken August 2019 (this study). 
Mean and maximum temperatures as measured at sampling reefs over 4-10 days.   

Site 
(pollution 
level rating) 

Date and 
Time 
Sampled 

GPS 
Location 

Mean 
Temp. 
(°C) (SD)  

Max 
Temp. 
(°C) 

pH Turbidity 
(FAU) 

NO3--N 
(mg/L) 

PO4 
(mg/L) 

Cannery 
(extensive) 

8/7/2019  
13:00 

S 14 16.250 
W 170 
41.043 

28.3 
(0.304) 

29.3 7.5 3 0.04 0.33 

Coconut 
Point 
(extensive) 

8/9/2019 
14:10 

S 14 19.476 
W 170 
42.004 

NA NA 7.5 1 0.02 > 3 

Aoa 
(intermediate) 

8/7/2019 
17:06 

S 14 16.178 
W 170 
41.071 

28.8 
(0.606) 

30.7 7.4 0 0.02 0.23 

Faga’alu 
(intermediate) 

8/13/2019 
17:03 

S 14 17.496 
W 170 
40.846 

28.7 
(0.777) 

30.7 7.5 0 0.03 1.19 

Vatia 
(pristine) 

8/13/2019 
14:20 

S 14 16.625 
W 170 
42.393 

29.0 
(0.621) 

30.7 7.5 0 0.02 > 3 

Faga’tele 
(pristine) 

8/15/2019 
8:17 

S 14 17.494 
W 170 
40.848 

28.7 
(0.504) 

30.5 7.5 0 0.03 2.61 

Faga’malo 
(pristine) 

8/9/2019 
17:00 

S 14 17.880 
W 170 
48.641 

28.9 
(0.569) 

30.8 7.4 1 0.02 3.00 
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Figure 4. Watershed human-impact classifications on the island of Tutuila, American Samoa 
(adapted from Didonato 2004 with study site locations labeled). Blue represents most pristine, 
yellow represents intermediately polluted, and red represents most polluted. Watershed class 
distinctions were determined by DiDonato (2004) using human population size in each 
watershed circa 2004.  

Study Species 
 

This study tests the effects of acute thermal stress on Acropora hyacinthus (Dana 1846), a 

stony coral species that spans the Indo-Pacific. Also known as table coral, A. hyacinthus has a 

morphology that forms large, tiered tables made up of branchlets. Colonies can grow over three 

meters in diameter, with branchlets 3-7 mm in diameter and up to 20 mm long. Growth is 

determinate, and colonies can take 3-8 years to reach maturation (Wallace 1999). This species is 

one of the most common Acropora species and is cosmopolitan across the Indo-Pacific, 

primarily preferring upper reef slopes and outer reef flats (Wallace 1999). A. hyacinthus 

comprises multiple cryptic species, with differences in morphology (Suzuki et al. 2016). 

Acropora corals tend to be faster growing and more heat sensitive than massive colonies. They 

are also often early colonizers of disturbed sites (Didonato 2004). A. hyacinthus can reproduce 

either sexually or asexually. Sexual reproduction occurs through broadcast spawning with 

external fertilization while asexual reproduction occurs through fission or fragmentation (Ayre 
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and Hughes 2000). Stony corals can host seven different genera of Symbiodinicidae (LaJeunesse 

et al. 2018), but A. hyacinthus in American Samoa tends to host only two genera, Cladocopium 

and Durusdinium (Ladner et al. 2012). Durusdinium has been shown to increase coral 

thermotolerance, while Cladocopium has been shown to be more heat sensitive, but may be 

associated with increased coral growth rates (Cunning et al. 2015). 

 
Thermotolerance Measurements 
 
Field Collections 
 

In August 2019, eight colonies of Acropora hyacinthus were sampled at each study site 

between the hours of 07:00 hr to 11:00 hr on a rising tide. 17 fragments of approximately two 

cm3 were collected haphazardly using stainless steel coral cutters from each colony. Four 

replicates for each of four temperature treatments (n = 16) were needed as well as one field 

control (n = 1) which was never placed in the temperature stress assay. Colonies larger than 30 

cm in diameter were sampled at least 10 meters apart to reduce the likelihood of sampling 

clones. All fragments were collected on snorkel and were less than two meters in depth.  

 
Temperature Stress Assay 
 

Thermal resistance to temperature stress was measured using a standardized short-term 

acute heat stress assay (Klepac and Barshis 2020; Voolstra et al. 2020). This portable heat stress 

system has been shown to determine relative differences in coral thermotolerance similarly to a 

classic long-term heat stress assay (Voolstra et al. 2020). This assay is termed the Coral 

Bleaching Autonomous Stress System (CBASS) and consists of four replicate tanks to test three 

experimental temperature treatments and one control. The temperature stress assay begun at 

13:00 hr for each study site and continued until the following morning at 06:00 hr (Figure 5). 

Replicate coral branches (n = 16 per tank, with 2 replicates of each of 8 colonies) were allowed 

to acclimate to tank conditions at 28°C for one hour. 28˚C was chosen as the acclimation 

temperature and control temperature based on in situ temperatures at the sample sites (Table 2) 

as well as August monthly water temperature buoy data from Aunu’u, American Samoa 

(http://www.pacioos.hawaii.edu/water/buoy-aunuu/). At 14:00 hr corals were exposed to a ramp-

hold temperature profile: control (28°C), 33°C, 34°C or 35°C during a 2-hour ramp, 3-hour hold, 
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and overnight recovery at 28°C (Figure 5). Light levels were measured using an Apogee 

underwater quantum meter twice during the assay and maintained between 210 – 250            

µmol m-2 s-1. To mimic natural field conditions, lights were turned off at 19:00 hr and turned on 

in the morning at 06:00 hr (Roleadro LED Aquarium Light). Partial water changes (~2 L) using 

water from the sampling site were performed 4-5 times over the course of the assay to maintain 

water quality and minimize changes in nutrient concentrations over the course of the assay. 

Water temperatures were controlled using a custom-built Arduino controller linked to aquarium 

heaters (Finnex HMA-200S Titanium Aquarium Heater) and custom-built cooling loops 

connected to a Hamilton Technology Aqua Euro Max Aquarium Chiller. Water temperatures 

were measured every minute using HOBO UA-002-64 temperature and light loggers. 

Temperatures were kept to within 0.5°C of the desired temperature.  

 
Quantification of Thermal Tolerance 

 

Thermotolerance was measured through changes in visual color paling using the 

CoralWatch® Coral Health Chart (Siebeck et al. 2006) using the same observer for all trials. 

Coral Health Chart scores were taken during acclimation (~13:00), during heat stress (~18:00) 

and after recovery (~07:00). Color paling was also measured through colorimetric analysis using 

an Olympus TG-5 taken by the same photographer in the same location for all measurements. 

Photos for colorimetric analysis were taken during heat stress (~18:30) and after recovery 

(07:00). These images were normalized using a greyscale and assessed for intensity within the 

red channel, which has been shown to correlate with bleaching (Winters et al. 2009). Red 

intensity was quantified by taking the average value from ten haphazardly selected points on 

each coral fragment. All normalization and colorimetric analysis were performed in MATLAB. 

Symbiont photochemical efficiency (Fv/Fm) was measured using a Walz Junior Pulse Amplitude 

Modulation (PAM) Fluorometer after 30 minutes of dark acclimation at 19:30 (Jones et al. 

1999). An initial temperature stress assay (for n = 4 from the high-pollution Cannery site) was 

conducted on temperatures ranging from 32°C to 39°C to determine suitable temperatures to use 

in the assay. While PAM measurements indicated a decline of symbiont photoefficiency at 38°C, 

I chose to select temperatures that were more consistent with the literature and with predictions 

of future warming in the next 100 years (Heron et al. 2016). A subset of coral fragments (n = 4 
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per temperature treatment) were collected during heat stress (at 19:00) and after overnight 

recovery (at 07:00 the following day) and preserved in RNAlater for further analysis at 

California State University, Monterey Bay. Samples were collected at two time points to 

determine differences in bleaching, gene expression, and symbiont community during heat stress 

and after overnight recovery.  

 

 
Figure 5. Visualization of the heat ramp of the acute temperature assay (CBASS) beginning at 
13:00 with a 1-hr hold at 28°C, 2-hr ramp to 33-35°C, 1-hr ramp down to 28°C, and overnight 
recovery. Colored lines show the four temperature treatments (blue = control (28°C), red = 33°C, 
purple = 34°C, orange = 35°C). Dashed lines indicate when samples were collected and stored in 
RNAlater, at 19:00 and 07:00.  

Statistical Analysis of Thermotolerance 
 

Color paling (CoralWatch Color Card and red intensity) and photochemical efficiency 

(Fv/Fm) data from 33°C, 34°C, and 35°C treatments were normalized to controls at 28˚C. 

CoralWatch Color Card data was calculated as the change in color from the initial timepoint 

(13:00) to the recovery timepoint (at 07:00). All data were assessed for normality using the 

Shapiro test and equality of variance using the Levene test. Data were analyzed using a two-way 

ANOVA with site, treatment, and site x treatment interaction as factors. If the interaction term 

was not significant (p > 0.05), the two-way ANOVA was repeated with only site and treatment 
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as factors. Tukey post-hoc tests were performed to determine differences among treatments and 

among sites. All analyses were conducted in R version 4.1.0 using the car package for ANOVA 

analysis and the agricolae package for the Tukey HSD test. All data and code are available at: 

https://github.com/melissanaugle/CBASS_bleachingdata.  

 
Generating a Single Bleaching Metric  
 

Color paling data from CoralWatch Color Card and red intensity measurements was used 

to generate a single metric for thermotolerance for each colony. These two metrics were used 

since they both measure color paling (bleaching) while photochemical efficiency (Fv/Fm) 

measures symbiont photoefficiency rather than bleaching. Additionally, logistic and beta 

regression models that included photochemical efficiency (Fv/Fm) did generate models with 

effective fit. Raw CoralWatch and red intensity values were normalized in an open interval from 

0-1 across temperature treatments from 28˚C to 35˚C, with a maximum of 36.5˚C if curves did 

not reach the midpoint by 35˚C. Logistic curves were fit to the data across temperatures and the 

midpoint of the curves was used as an indication of temperature at which bleaching occurred. 

The mean of the two midpoints (CoralWatch and red intensity) was used to generate a two-

variable mean for each coral colony. This two-variable mean was used to determine the most and 

least thermotolerant corals. The highest and lowest 10, 20, and 30% of the two-variable means 

were used to classify the 10, 20, and 30% least and most thermotolerant corals (used for 

WGCNA analysis described below).   

 
Quantification of Symbiont Communities 
 
DNA Extraction and Quantitative PCR 
 

Field-collected coral fragments were stored in RNAlater and transported back to 

California State University, Monterey Bay where they were held at -20°C. Total genomic DNA 

were extracted from preserved fragments using the Qiagen DNeasy® Blood and Tissue Kit (Cat. 

No. 69504). Samples were prepared by selecting a portion of the coral nubbin, removing excess 

RNAlater and homogenization in a Qiagen TissueLyser LT for 5 minutes at 50 hz. Total DNA 

was assessed for quality and concentration using a Nanodrop spectrophotometer and a Qubit 

fluorometer. All DNA extractions met the following criteria: > 2 ng/ul (on Qubit), 260:280 > 1.8, 
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260:230 > 1.59. Total DNA were prepared for qPCR using methods described in Cunning and 

Baker (2013) to quantify symbiont communities within each coral colony. All samples were run 

in triplicate with a no-template control on a Biorad CFX96 Touch Real-Time PCR Detection 

System. Reaction volumes were 10 µl, with 5 µl Taqman Genotyping Master Mix and 1 µl 

genomic DNA template. qPCR analysis uses genera-specific tags to identify Cladocopium and 

Durusdinium, which comprise the majority of the Symbiodinium in American Samoan Acropora 

hyacinthus (Ladner et al. 2012). Since Durusdinium are more thermally tolerant than 

Cladocopium, ratios between the two species provide a metric to understand coral 

thermotolerance contributed by the symbiont community (Cunning and Baker 2013).  

 
Statistical Analysis of Symbiont Communities  
 

Ratios of Cladocopium to Durusdinium cycle threshold (Ct) values were calculated using 

results from qPCR. Baseline thresholds were chosen for each run to remove background noise. 

Ct values were recorded for samples that amplified past the threshold in fewer than 40 cycles. Ct 

values were averaged across triplicate and cell numbers of Cladocopium and Durusdinium were 

calculated using the following formula: 2(40-Ct) / cell copy number (where cell copy number = 9 

for Cladocopium and 1 for Durusdinium (Cunning and Baker 2013). Proportions of 

Cladocopium and Durusdinium were calculated using the following formula: Proportion 

Durusdinium = Cell Number Durusdinium / (Cell Number Durusdinium + Cell Number 

Cladocopium), or vice versa for Cladocopium. Data did not pass assumptions for normality nor 

equality of variances, so colonies were categorized into either Durusdinium only or Cladocopium 

and Durusdinium and were compared to null expected numbers in a contingency table analysis 

using Fisher’s Exact Test. All analyses were conducted in R version 4.1.0. All data and code are 

available at: https://github.com/melissanaugle/Symbiont_qPCR.  

 
Gene Expression Analysis  
 
RNA Extraction and Sequencing 
 

A subset of samples from each site in control (28˚C) and heat stress (35˚C) treatments, 

sacrificed during peak heat stress (~19:00, Figure 5), were used for RNAseq analysis (n=4 per 

site per treatment). Control and the highesst temperature were chosen because physiological 

effects differed most between these two treatments. Coral samples were selected for sequencing 
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based on availability (not all samples were preserved in RNAlater due to restrictions on space 

and reagents) and RNA quantity and quality. Coral samples were stored in RNAlater and held at 

-20˚C until RNA extraction. RNA extraction and sequencing were performed in two batches. 

RNAseq on samples from Faga’tele, Faga’alu and Coconut Point was performed in 

February/March 2020, and RNAseq on samples from Cannery and Vatia was performed in 

March/April 2021. Total RNA was extracted using the Qiagen RNeasy® Plus Mini Kit (Cat. No. 

74034), following the manufacturer’s protocol. Samples were homogenized using a TissueLyser 

LT for 10 minutes at 50 Hz in 2020 and for 3 minutes at 50 Hz in 2021. RNA was assessed using 

a NanoDrop™ (Thermo Scientific), a Qubit fluorometer and a BioAnalyzer. 38 cDNA libraries 

were constructed from 300 ng of total RNA using the NEBNext® Ultra II Directional RNA 

Library Prep Kit for Illumina with Sample Purification Beads® (Cat. No. E7765) with the 

NEBNext® Poly(A) mRNA Magnetic Isolation Module (Cat. No. E7490). Paired-end libraries 

were sequenced on a HiSeq4000 150 bp lane at NovoGene in Davis, CA.  

 
Differential Gene Expression Analysis and WGCNA 
 

Low quality reads and adapter sequences were discarded using Trimmomatic (Bolger et 

al. 2014). Trimmomatic parameters were set to remove reads below 25 bp long, leading and 

trailing bases below quality “5,” and reads that did not meet quality standards for a sliding 

window where in a four base sliding window, the average quality per base drops below a 5. 

Sequences were also trimmed of adapter sequences including standard Illumina adapters and 

polyT sequences. Quality of trimmed reads were assessed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequenced reads were aligned to 

the reference A. hyacinthus transcriptome described in Barshis et al. (2013). Reads were aligned 

to the transcriptome assembly using bowtie2 and counted using RSEM in UNIX (Li and Dewey 

2011; Langmead and Salzberg 2012). Differential gene expression statistical analyses were 

conducted using edgeR with a four fold-change cutoff and a false discovery rate (FDR) of FDR < 

0.001 and FDR < 0.05. Annotations were obtained from the Dryad Repository associated with 

Barshis et al. (2013) (https://datadryad.org/stash/dataset/doi:10.5061/dryad.bc0v0). Annotations 

were obtained from BLASTx matches to the NCBI NR, Uniprot, Swissprot, and TrEMBL 

databases (Barshis et al. 2013). 
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Gene expression analyses were conducted in three ways: 1. On all samples from both 

temperature treatments (28˚C and 35˚C) to measure the impact of heat stress, 2. On all samples at 

control (28˚C) to measure differences among sites prior to heat stress, and 3. On all samples at 

heat stress (35˚C) to measure differences among sites during heat stress. For each of these three 

analyses, an MDS plot was created using the edgeR package in R and a heatmap was created 

using the ggplot2 package in R. For the analysis of all samples at control and heat stress, a Venn 

diagram was created using the VennDiagram package in R. For each of these three analyses, a 

weighted gene co-expression network analysis (WGCNA) was conducted to compare co-

regulated gene networks (called modules) and their association with temperature treatment, 

pollution level, symbiont community, and thermotolerance (Langfelder and Horvath 2008). 

WGCNA identifies co-expressed gene modules using hierarchical clustering of expression data 

and relates those modules to sample traits. Select modules with significant correlations to traits 

(p < 0.05) were statistically analyzed for gene ontology enrichment using the GO_MWU package in 

R, which uses a Mann-Whitney U-Test (Wright et al. 2015; Huerta-Cepas et al. 2017). The 

GO_MWU package tests the kME (module membership score or eigengene-base connectivity) in 

among-module genes compared to other genes in the transcriptome outside the module to test if 

genes in the module of interest are significantly enriched. Gene ontology enrichment analysis 

was used to identify enriched gene ontology terms relating to biological processes and molecular 

function. GO terms and gene names from genes differentially expressed under heat stress and 

from significant WGCNA modules, were compared to published gene lists in Barshis et al. 

(2013a) and Dixon et al. (2020) in R. All data and code are available at: 

https://github.com/melissanaugle/RNAseq_allsites_Barshisreference. All analyses were 

conducted in R version 4.1.0. 
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RESULTS 

Thermotolerance Results 
 
Colorimetric Analysis of Bleaching 
 

No significant differences in color occurred at the heat stress timepoint (Figure 6a). The 

interaction term of site x treatment was not significant (F(6,180) = 0.52, p = 0.79). When the 

interaction term was removed from the model, red intensity did not vary with site (F(3,186) = 0.73, 

p = 0.54) or temperature (F(2,186) = 2.23, p = 0.11). Data were assessed for normality using the 

Shapiro test and equality of variance using the Levene test. Coconut Point was not sampled at the 

stress time point due to an experimental error.  

After an overnight recovery, a colorimetric analysis of bleaching showed that when 

normalized to controls at 28°C, corals in the higher temperature treatments bleached more than at 

lower temperatures (F(2,230) = 10.33, p = 5.04e-05, Figure 6b). A Tukey post-hoc test showed that 

corals at 33°C had lower average red intensity (i.e., bleached less) than those at 34°C and 35°C 

(p < 0.001). Site also impacted average normalized red intensity (F(4,230) = 2.93, p = 0.02). A 

Tukey post-hoc test showed that Vatia (low pollution) bleached less than Cannery (high 

pollution) and Faga’tele (low pollution; p < 0.05). No other site comparisons were significantly 

different. There was no significant interaction between temperature treatment and site (F(8,222) = 

1.06, p = 0.39), so the final model did not include the interaction term of site x treatment. Data 

passed assumptions for normality using the Shapiro test and equality of variance using the 

Levene test.  
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Figure 6. Average red intensity as a proxy for bleaching at two time points: A.) ‘heat stress’ time 
point (two hours into heat stress) and B.) ‘recovery’ time point (after three hours heat stress and 
overnight recovery). Three temperature treatments are shown as normalized to controls at 28°C. 
Letters above bars indicate significant differences between sites determined by Tukey post-hoc 
test. Higher average red intensity indicates corals that are paler in color and more bleached. 
Coconut Point corals were not assessed for red intensity at the stress time point. Outliers not 
shown in figures.  

CoralWatch Color Card Health Score 
 

The change in color card health score from acclimation to the heat stress sampling time 

point showed that bleaching did not vary among temperatures but did vary among sites (Figure 

7a; F(4,470) = 11.66, p < 0.001). Corals from Coconut Point (high pollution) and Faga’alu 
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(moderate pollution) showed the greatest signs of bleaching and Faga’tele (low pollution) 

showed the least.  

The change in color card health score from when the coral were collected to after an 

overnight recovery showed that higher temperatures at 35˚C and 34˚C bleached more than 33˚C 

(Figure 7b; F(2,222)= 13.39, p < 0.001). Site was not significant, though was approaching 

significance (F(4,222)= 2.18, p = 0.07). There was a significant interaction between temperature 

treatment and site (F(8,222) = 1.22, p = 0.03). A Tukey post-hoc test also showed that Vatia (low 

pollution) bleached less than Faga’alu (moderate pollution) and Coconut Point (high pollution). 

Faga’alu (moderate pollution) also bleached more than Cannery (high pollution). Data passed 

assumptions for normality using the Shapiro test and equality of variance using the Levene test.  
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Figure 7. Coral Watch Color Card Health Score difference between A.) baseline score and at 
‘recovery’ time point and between baseline score and ‘heat stress’ time point. Three temperature 
treatments are shown as normalized to controls at 28°C. Letters above bars indicate significant 
differences between sites determined by Tukey post-hoc test. Higher color card score change 
(lower on y-axis) indicates corals bleached more.  

 
Photochemical Efficiency  
 

Photochemical efficiency measurements showed no differences among temperature 

treatments (F2,346) = 1.80, p = 0.17) but did show differences among sites (F(4,346) = 3.08, p = 0.02, 

Figure 8). Tukey’s post-hoc comparisons showed that Faga’tele (low pollution) corals had lower 

photochemical efficiency than Faga’alu (moderate pollution). Data passed assumptions for 

equality of variances using the Levene test and were approximately normal (p = 0.02, Shapiro 

test). Data were unimodal but slightly negatively skewed. This violation of normality is justified 

by the large sample size, balanced experimental design, unimodal distribution, and robustness of 

ANOVA tests. Four fragments produced Fv/Fm values of 0 due to total bleaching or coral death 

and were not included in the analysis.  

 
 

 
Figure 8. Photochemical efficiency of 30-minute dark-acclimated corals as measured by Fv/Fm. 
Three temperature treatments are shown as normalized to controls at 28°C. Letters above bars 
indicate significant differences between sites determined by Tukey post-hoc test. Outliers not 
shown on figure.  
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Summary of Thermotolerance Metrics 
 

We measured physiological responses to heat stress using three different metrics to 

determine site-level differences in the heat stress response. Among the five sample sites, the heat 

stress response did not correlate with pollution level nor did the three metrics consistently 

correspond with each other (Table 3). When taken together these three measurements show that 

in two of three metrics Vatia (low pollution) was least affected by heat stress and Faga’tele (low 

pollution) was most affected by heat stress. Cannery (high pollution), Coconut Point (high 

pollution), and Faga’alu (moderate pollution) showed more variation among the three metrics.  

Midpoints based on logistic models of red intensity and color card data showed some 

variation by site, with some of the most thermotolerant corals belonging to Vatia and Coconut 

Point and some of the least thermotolerant corals belonging to Faga’tele and Faga’alu (Figure 

9).  

Site level differences in thermotolerance also did not appear to relate to thermal history 

measurements taken during this study (Figure 10). Faga’tele, Faga’alu, and Vatia showed 

similar temperature trends while Cannery showed less variation and consistently lower 

temperatures. Yet, Cannery corals were equally thermotolerant in two of three thermotolerance 

metrics. More significant differences in thermotolerance occurred between Vatia and Faga’tele, 

which had similar thermal maximums and variation. We do not have temperature data from 

Coconut Point due to a lost HOBO logger.  

 
Table 3. Summary of three bleaching metrics among sites. Entries are shown for metrics where 
sites were significantly different in Tukey post-hoc comparison (p < 0.05) or denotes n.s. for not 
significant (no significant Tukey post-hoc pairwise comparisons).  

  Color Paling Symbiont 
Performance 

Site Pollution 
Level 

Red Intensity 
(Recovery) 

CoralWatch Color Card 
Health Score (Change 
from Initial to Recovery) 

Photochemical 
Efficiency 

Cannery High More bleached n.s n.s. 
Coconut Point High n.s. More bleached n.s. 
Faga’alu Moderate n.s. More bleached Less bleached 
Faga’tele Low More bleached n.s More bleached 
Vatia Low Less bleached Less bleached n.s. 
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Figure 9. Red intensity and color card logistic midpoints shown by site. The color of the point 
represents the site, with red and orange as high pollution sites, green as moderate pollution and 
blue and light blue as low pollution. The size of the points corresponds to the two-variable metric 
of thermotolerance (mean of logistic model midpoint of color card score and of red intensity) 
with larger symbols indicating higher thermotolerance.   
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Figure 10. HOBO logger temperature profiles at five sampling sites in August 2019. Circles 
indicate the day on which the corals were collected, and the heat stress assay was performed. 
Temperature measurements were taken every 30 minutes.  

Symbiont Community Results  
 

Measurements of the relative levels of heat-sensitive Cladocopium and heat-tolerant 

Durisdinium in field-collected coral fragments at each site yielded differences among sites. 

Corals from high pollution sites (Cannery and Coconut Point) hosted entirely Durisdinium. 

Corals from moderate and low pollution sites hosted a combination of Cladocopium and 

Durisdinium, with increasing proportions of corals hosting Cladocopium as pollution level 

decreased. Moderate pollution site Faga’alu held only one of eight coral fragments that hosted 

any Cladocopium, while low pollution site Vatia held two of seven coral fragments that hosted 

Cladocopium, and lowest pollution site Faga’tele held six of eight coral fragments that hosted 

Cladocopium (Figure 11). A contingency table analysis showed that the numbers of colonies 

hosting either Durisdinium only or a combination or Cladocopium and Durisdinium differed 

among sites (Table 4, Fisher’s exact, p = 0.001). While the proportion of Cladocopium increased 

with decreasing pollution level, all coral fragments primarily hosted Durisdinium (Figure 12). 
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When measured against two metrics of thermotolerance, the proportion of Cladocopium did not 

show any trend with thermotolerance (Figure 13). A Spearman correlation test showed no 

significant relationship between the proportion of Cladocopium and red intensity (p = 0.40) nor 

between the proportion of Cladocopium and photochemical efficiency (p = 0.45). 

 
Table 4. Contingency table showing number of field-collected colonies at each site containing 
either Durisdinium only, or a combination or Cladocopium and Durisdinium.  

Site Cladocopium and Durisdinium Durisdinium only 
Coconut Point (high pollution) 0 8 
Cannery (high pollution) 0 7 
Faga’alu (moderate pollution) 1 7 
Vatia (low pollution) 2 5 
Faga’tele (low pollution) 6 2 

 

 

Figure 11. Ratios of Cladocopium to Durisdinium symbiont types in field-collected coral 
fragments collected at each site (n = 8/site). Lowest pollution sites are shown to the left and 
highest pollution sites are shown to the right. Points with a value > 0 hosted more Cladocopium 
than Durisdinium. Each point represents a unique coral colony. Points at -20 hosted only 
Durisdinium.  
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Figure 12. Mean proportions of Cladocopium and Durisdinium in field-collected coral samples 
at each site. Lowest pollution sites are shown to the left and highest pollution sites are shown to 
the right.  
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Figure 13. PAM photosynthetic efficiency (Fv/Fm) and average red intensity shown as a 
function of the proportion of Cladocopium for all colonies (top row) and colonies with 
proportion of Cladocopium > 0 (bottom row). No correlation is observed between symbiont 
community and either thermotolerance metric. 

Gene Expression Results 
 

RNA sequencing was performed on five sites of differing pollution level at control and 

heat stress treatments. Gene expression patterns were compared: 1. Among all sites and 

treatments to determine the influence of heat stress across sites 2. Among sites at control 

conditions to determine the influence of pollution stress alone and 3. Among sites at heat stress 

to determine the influence of pollution on heat stress responses. In each comparison, gene 

expression patterns are shown in a MDS plot (Figures 14, 19, 22) and differential gene 

expression is visualized using a heatmap (Figures 15, 20, 23). A WGCNA was performed in 

each comparison and Gene Ontology analysis identified significantly enriched gene functions in 

significant modules (Figures 18, 21, 24).  
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Differential Gene Expression Between Heat and Control Treatments 
 

Differential gene expression analysis was performed on coral fragments from the five 

sample sites and a subset of four colonies samples from two treatments per site (heat stress at 

35˚C and control at 28˚C). Gene expression patterns of all 15,109 genes that were mapped 

clustered strongly by temperature treatment (Figure 14). The first principal component (PC1) 

explained 33.58% of the variation in gene expression, and PC2 and PC3 explained 9.53% and 

4.93% of the variation, respectively. Gene expression profiles were driven strongly by 

temperature treatment, with 6,020 genes differentially expressed between heat and control 

treatments across all sites (edgeR, FDR < 0.001, Figure 15).  

The number of genes differentially expressed between heat and control treatments at each 

site varied by pollution level, with more genes differentially expressed with increasing pollution 

level (Figure 16). A common core set of 476 genes were differentially expressed between 

control and heat stress at all five sites (Figure 16). We searched this list of 476 genes for known 

heat response gene functions and found 35 genes that were annotated as heat shock proteins or 

involved in heat shock protein binding (GO:0031072). 13 genes were involved in apoptosis 

(GO:0006915), eight in response to stress (GO:0006950), and 11 in protein folding 

(GO:0006457). A gene ontology analysis was used to find significantly enriched gene ontology 

categories in the common core set of 476 genes. Genes upregulated during heat stress compared 

to control included those involved in DNA binding, neurotransmitter transporter, cell-cell 

adhesion, immune response, and the MAPK cascade (Figure 17). Genes downregulated during 

heat stress included those involved in oxidoreductase, aromatase, mRNA binding, and hormone 

biosynthetic processes (Figure 17). GO terms associated with this common core set of genes 

were compared to GO terms from Dixon et al. (2020), where a meta-analysis was performed to 

create a list of GO terms common to the general stress response in Acropora corals. Of the 3446 

GO terms described as ‘stress response terms’ by Dixon et al. (2020), seven matched our list of 

476 common core heat stress genes. These genes included genes involved in DNA binding, zinc 

ion binding, metal ion binding, collagen, mitochondrial inner membrane, muscle organ 

development, and lipid catabolic processes. Genes in our common core set of heat response 

genes were also compared to heat stress response genes from Barshis et al. (2013), where gene 

expression during heat stress was measured in A. hyacinthus from pools in Ofu, American 

Samoa. Of the 1636 genes that Barshis et al. (2013) found differentially expressed during heat 
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stress, 59 matched our list of 476 common core heat stress genes. These 59 genes were involved 

in ATP binding, calcium ion binding, DNA binding, G-protein coupled receptor activity, 

response to stress, and neuropeptide signaling.  

A weighted gene co-expression network analysis was conducted to investigate how gene 

networks (called modules) correlate to temperature treatment and pollution level, both when 

corals were exposed to each stressor separately and in combination. 12 modules correlated with 

heat stress including exceptionally strong negative correlation with the blue module and positive 

correlation with the darkgrey module (Pearson’s R > 0.9, Figure 18). Of the 6036 genes in the 

blue module, 157 contained GO terms that matched Acropora general stress response expression 

from Dixon et al. (2020). These GO terms were primarily involved in intracellular signal 

transduction, ATP binding, calcium ion binding, oxidoreductase activity, RNA binding, and zinc 

binding. Of the 3969 genes in the darkgrey module, 84 contained GO terms that matched 

Acropora general stress response expression (Dixon et al. 2020), including GO terms involved in 

apoptosis, protein transport, ATP binding, calcium ion binding, DNA binding, metal ion binding, 

and zinc ion binding. Gene ontology analysis on the blue module revealed enrichment for tRNA 

processing, citrate metabolic process, carbohydrate catabolic process, nuclear transport, protein-

cofactor linkage, cilium or flagellum-dependent cell motility, mitochondrion organization, 

regulation of chromosome organization, and folic acid-containing metabolic processes (p < 

0.001, Table 5). These processes were therefore downregulated during heat stress compared to 

control conditions. Gene ontology analysis on the darkgrey module revealed enrichment for 

immune response, metabolic process, cellular process, and response to stimulus (p < 0.001, 

Table 5). These processes were therefore upregulated during heat stress compared to control 

conditions. 
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Figure 14. MDS plot showing differences in fold-change of 15,109 genes on all genes (prior to 
differential expression analysis). Circles represent coral fragments that underwent heat stress 
(35˚C) and triangles represent those from control (28˚C). Red and yellow denote the high 
pollution sites (Cannery and Coconut Point, respectively). Green denotes the moderate pollution 
site (Faga’alu). Blue and purple denote the low pollution sites (Faga’tele and Vatia, 
respectively).  
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Figure 15. Heatmap showing log2 fold change to visualize gene expression differences between 
heat and control treatments for 6020 genes (edgeR, FDR < 0.001). Green labels denote low 
pollution sites (Faga’tele and Vatia), orange denotes moderate pollution (Faga’alu) and red 
denotes high pollution (Coconut Point and Cannery). Control corals are shown on the left and 
heat stressed corals are shown on the right.  
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Figure 16. Venn Diagram showing number of genes differentially expressed between coral 
fragments that underwent heat stress (35˚C) and those from controls conditions (28˚C) across 
five sites (edgeR, FDR < 0.05).  
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Figure 17. Hierarchical clustering of significantly enriched molecular function (MF) and 
biological process (BP) gene ontology terms up-regulated (red) or down-regulated (blue) in the 
common core set of 476 genes differentially expressed between heat stress and control corals 
across all sites. The fraction preceding the GO term indicates the number of genes annotated with 
the term within an unadjusted p-value threshold of 0.05. Font size indicates the significance of 
the term and hierarchical clustering indicates sharing of genes among GO categories. 
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3/38 endonuclease, active with either ribo- or deoxyribonucleic acids and producing 5'-phosphomonoesters

6/151 endonuclease

1/5 steroid hydroxylase

5/45 monooxygenase

15/473 oxidoreductase

4/77 oxidoreductase, acting on paired donors, with incorporation or reduction of molecular oxygen

3/10 aromatase

4/70 electron transfer

8/276 cofactor binding

4/67 tetrapyrrole binding

2/12 mRNA 3'-UTR binding

3/24 mRNA binding

1/5 transferase, transferring aldehyde or ketonic groups

5/30 sodium ion transmembrane transporter

4/10 neurotransmitter transporter

1/5 myosin heavy chain binding

p < 1e-05

p < 1e-04

p < 0.001

BPMF
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Figure 18. Heatmap showing module-trait correlations for 15,109 genes with treatments 
including control, heat stress, each pollution level at control, and each pollution level at heat 
stress. Pearson’s R for significant correlations (p < 0.05) are reported with red indicating a 
positive correlation and blue indicating a negative correlation. 

Table 5. Significantly enriched Biological Processes (BP) GO terms for the blue and darkgrey 
modules associated with different correlation patterns in control versus heat stress. GO terms 
were included if adjusted p-value ≤ 0.001 and were selected by the GO_MWU package to best 
represent independent groups of GOs. GO terms associated with the blue modules were 
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downregulated under heat stress and those associated with the darkgrey module were upregulated 
under heat stress.  

GO term(s) Description 
adj p. 
value Module 

Cellular component organization     
GO:0007005 mitochondrion organization <1e-5 blue 
GO:0033044 regulation of chromosome organization <1e-5 blue 
GO:0045104;GO:0045103 intermediate filament cytoskeleton organization <1e-5 darkgrey 
Cellular process    
GO:0030011 maintenance of cell polarity <1e-5 darkgrey 
GO:0030029;GO:0030036 actin filament-based process <1e-5 darkgrey 
Developmental process    
GO:0010001 glial cell differentiation 0.009 blue 
GO:0040024 dauer larval development 0.010 darkgrey 
Immune response    

GO:0002822;GO:0002819 

regulation of adaptive immune response based on 
somatic recombination of immune receptors built 
from immunoglobulin superfamily domains <1e-5 darkgrey 

GO:1902105 regulation of leukocyte differentiation 0.004 darkgrey 
Localization    
GO:0006913;GO:0051169 nuclear transport <1e-5 blue 
GO:0001539 cilium or flagellum-dependent cell motility <1e-5 blue 
GO:0006839 mitochondrial transport 0.007 blue 
Metabolic process    
GO:0008033 tRNA processing <1e-5 blue 
GO:0006099;GO:0006101;GO:0072350 citrate metabolic process <1e-5 blue 
GO:0016052 carbohydrate catabolic process <1e-5 blue 
GO:0018065 protein-cofactor linkage <1e-5 blue 
GO:0006760;GO:0046653 folic acid-containing compound metabolic process <1e-5 blue 
GO:0043112 receptor metabolic process <1e-5 darkgrey 
GO:0045892;GO:1903507; GO:2000113; 
GO:1902679;GO:0010558;GO:0031327; 
GO:0051253;GO:0009890;GO:0045934 negative regulation of biosynthetic process <1e-5 darkgrey 
GO:0030163 protein catabolic process 0.008 darkgrey 
Response to chemical    
GO:0034097 response to cytokine 0.005 blue 
GO:0009636 response to toxic substance 0.006 blue 
Response to stimulus    
GO:0009611 response to wounding <1e-5 darkgrey 
GO:0019722 calcium-mediated signaling <1e-5 darkgrey 
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Differential Gene Expression at Control 
 

At control conditions, gene expression patterns did not cluster strongly by site (Figure 

19). However, a heatmap of the 2,155 genes that were differentially expressed among control 

samples showed stronger patterns by sampling site (Figure 20). Gene expression patterns also 

appeared to relate to the batch in which they were sequenced: Faga’tele, Faga’alu, and Coconut 

Point were sequenced in 2020 while Cannery and Vatia were sequenced in 2021.  

A weighted gene co-expression network analysis was used to measure how gene modules 

in control samples were correlated with pollution level, symbiont community, and the top 10-

30% most and least thermotolerant corals. This analysis showed that the grey60 module 

correlated to both the high and low pollution treatments, with opposite effects in the low versus 

high pollution treatments (Table 6). Genes associated with organic acid metabolic processes, 

metabolic processes, and response to chemical were upregulated in the corals from high pollution 

sites and downregulated in the corals from low pollution sites.  

Four gene modules correlated with the most thermotolerant corals. Purple and 

darkmagenta modules correlated with the top 10% most thermotolerant corals, and the dark 

orange and paleturquoise modules correlated with the top 20-30%. An analysis in GO_MWU of 

the modules associated with high thermotolerance showed overrepresentation of genes associated 

with cytokine production, immune responses, and multi-organism process, which were 

upregulated in more thermotolerant corals (p < 0.05, Table 7). Two gene modules correlated 

with the least thermotolerant corals. Thistle1 and honeydew1 correlated with the 10-20% least 

thermotolerant corals. An analysis in GO_MWU of the modules associated with high 

thermotolerance showed overrepresentation of genes associated with apoptosis, protein catabolic 

process, protein localization, ion transport, RNA processing, and developmental processes, 

which were upregulated in the least thermotolerant corals (p < 0.05, Table 8).  
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Figure 19. MDS plot showing differences in fold-change of 14,148 genes in corals from control 
treatments only (prior to differential expression analysis). Red and yellow denote the high 
pollution sites (Cannery and Coconut Point, respectively). Green denotes the medium pollution 
site (Faga’alu). Blue and purple denote the low pollution sites (Faga’tele and Vatia, 
respectively).  
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Figure 20. Heatmap showing log2 fold change to visualize gene expression differences among 
sites in control treatments for 2155 genes (FDR < 0.05) from differential gene expression 
analysis run in classic edgeR on control (28˚C) samples only.  
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Figure 21. Heatmap showing module-trait correlations for 14,148 genes for control (28˚C) 
treatments with three pollution level categories, sites hosting a combination of Cladocopium and 
Durisdinium, sites hosting entirely Durisdinium, and 10, 20 and 30% most/least thermotolerant 
colonies. Pearson’s R for significant correlations (p < 0.05) are reported with red indicating a 
positive correlation and blue indicating a negative correlation. 
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Table 6. Significantly enriched Biological Processes GO terms for the grey60 module associated 
with high and low pollution in control only treatments (28˚C) by site. GO terms were included if 
adjusted p-value ≤ 0.05. All GO terms listed were upregulated in high pollution and 
downregulated in low pollution corals at control conditions.  

GO term(s) Description Adj. p value 
Cellular component organization   

GO:0071555;GO:0045229; 
GO:0071554 external encapsulating structure organization <1e-5 
Metabolic process   
GO:0009164;GO:0034656; 
GO:1901658 

nucleobase-containing small molecule catabolic 
process 0.01 

GO:0043094 cellular metabolic compound salvage 0.021 
GO:0009116;GO:1901657 glycosyl compound metabolic process 0.023 
Organic acid metabolic process   
GO:0000096 sulfur amino acid metabolic process <1e-5 
GO:0019509;GO:0071267; 
GO:0043102;GO:0071265 L-methionine salvage <1e-5 
GO:0006555;GO:0009086; 
GO:0000097;GO:0009067 methionine metabolic process 0.013 
GO:0046394;GO:0016053 organic acid biosynthetic process 0.017 
GO:0009066 aspartate family amino acid metabolic process 0.019 
GO:0006520 cellular amino acid metabolic process 0.025 
GO:1901607;GO:0008652 cellular amino acid biosynthetic process 0.028 
Response to chemical    
GO:0009737 response to abscisic acid 0.025 
GO:0009751 response to salicylic acid 0.025 
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Table 7. Significantly enriched Biological Processes GO terms for modules associated with the 
most thermotolerant corals (purple, darkmagenta, darkorange, and paleturquoise) as measured 
prior to heat stress (baseline gene expression at 28˚C). GO terms were included if adjusted p-
value ≤ 0.05. All GO terms listed were upregulated in the most thermotolerant corals in control 
conditions compared to less thermotolerant corals.  

 

GO term(s) Description 
Adj. p 
value Module 

Cytokine production   
GO:0001819 positive regulation of cytokine production 0.033 darkmagenta 
GO:0001816 cytokine production 0.038 darkmagenta 
GO:0071345 cellular response to cytokine stimulus 0.045 darkmagenta 
GO:0001817 regulation of cytokine production 0.05 darkmagenta 
Immune response   
GO:0006955 immune response 0.025 darkmagenta 
GO:0045088;GO:0045089; 
GO:0031349 regulation of innate immune response 0.05 darkmagenta 
Miscellaneous   
GO:0043900 regulation of multi-organism process 0.025 darkmagenta 
GO:0048525 negative regulation of viral process 0.04 darkmagenta 

GO:0043901 
negative regulation of multi-organism 
process 0.05 darkmagenta 

GO:0006412 translation 0.05 purple 
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Table 8. Significantly enriched Biological Processes GO terms for modules associated with the 
least thermotolerant corals (honeydew1 and thistle1) as measured prior to heat stress (baseline 
gene expression at 28˚C). GO terms were included if adjusted p-value ≤ 0.05. All GO terms 
listed were upregulated in the least thermotolerant corals in control conditions compared to more 
thermotolerant corals.  

 

GO term(s) Description 
Adj. p 
value Module 

Apoptosis    
GO:0042771;GO:0072332 intrinsic apoptotic signaling pathway by p53 class mediator <1e-5 honeydew1 
GO:0070059 intrinsic apoptotic signaling pathway in response to ER stress <1e-5 honeydew1 

GO:0008630 
intrinsic apoptotic signaling pathway in response to DNA 
damage 0.007 honeydew1 

GO:0097193;GO:0097190 intrinsic apoptotic signaling pathway 0.008 honeydew1 
Developmental process    
GO:0030324 lung development 0.008 honeydew1 
GO:0010771;GO:0010977; 
GO:0031345 negative regulation of neuron projection development 0.007 honeydew1 
GO:0061002;GO:0050774; 
GO:0061000; 
GO:2000171 negative regulation of dendritic spine morphogenesis 0.027 honeydew1 

GO:0050768;GO:0010721; 
GO:0051961 negative regulation of nervous system development 0.034 honeydew1 
GO:0007420 brain development 0.035 honeydew1 
GO:0045665 negative regulation of neuron differentiation <1e-5 honeydew1 
Ion transport    
GO:0070838;GO:0072511 divalent inorganic cation transport <1e-5 thistle1 
GO:0006812 cation transport 0.05 thistle1 
GO:0006811 ion transport 0.05 thistle1 
Protein catabolic process    
GO:0010508 positive regulation of autophagy 0.037 honeydew1 
GO:0042177 negative regulation of protein catabolic process <1e-5 honeydew1 
GO:0032435;GO:1901799; 
GO:2000059;GO:1903051; 
GO:1903363;GO:0007130; 
GO:0070193 negative regulation of proteasomal protein catabolic process <1e-5 honeydew1 
GO:0032434;GO:2000058 regulation of ubiquitin-dependent protein catabolic process <1e-5 honeydew1 
GO:0042176 regulation of protein catabolic process <1e-5 honeydew1 
GO:0061136;GO:1903050; 
GO:1903362 regulation of cellular protein catabolic process <1e-5 honeydew1 
GO:0031330;GO:0009895 negative regulation of catabolic process 0.004 honeydew1 
GO:0045861 negative regulation of proteolysis 0.007 honeydew1 
GO:0031329;GO:0009894 regulation of catabolic process 0.009 honeydew1 
GO:0016573;GO:0018393; 
GO:0018394 internal peptidyl-lysine acetylation 0.036 honeydew1 
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Protein localization    
GO:0071816;GO:0045048 tail-anchored membrane protein insertion into ER membrane <1e-5 honeydew1 
GO:0090150 establishment of protein localization to membrane <1e-5 honeydew1 
GO:0051205 protein insertion into membrane 0.008 honeydew1 
GO:0072657 protein localization to membrane 0.009 honeydew1 
GO:0006620 posttranslational protein targeting to ER membrane 0.037 honeydew1 
Reproductive process    
GO:0070192 chromosome organization involved in meiotic cell cycle 0.004 honeydew1 
GO:1903046 meiotic cell cycle process 0.009 honeydew1 
RNA processing    
GO:0000381 regulation of alternative mRNA splicing <1e-5 honeydew1 
GO:0000245 spliceosomal complex assembly 0.03 honeydew1 
Miscellaneous    
GO:0022402 cell cycle process 0.036 honeydew1 
GO:0007033 vacuole organization 0.036 honeydew1 
GO:0072331 signal transduction by p53 class mediator 0.026 honeydew1 
GO:0032269;GO:0051248 negative regulation of protein metabolic process 0.033 honeydew1 
GO:0070628 proteasome binding 0.05 honeydew1 

 
 
Differential Gene Expression at Heat Stress 
 

At heat stress, gene expression patterns did not appear to cluster strongly by site (Figure 

22). However, a heatmap of the 332 genes that were differentially expressed among heat stress 

samples showed patterns by sampling site (Figure 23). Gene expression patterns again appear to 

relate to the batch in which they were sequenced: Faga’tele, Faga’alu, and Coconut Point were 

sequenced in 2020 while Cannery and Vatia were sequenced in 2021. 

A WGCNA was performed to examine gene modules in heat stressed corals that 

correlated to polluted level, symbiont community, and high or low performing thermotolerance 

(Figure 24). No modules showed strong trends with pollution level. Four modules correlated to 

symbiont community type (either hosting a combination of Cladocopium and Durisdinium or 

hosting entirely Durisdinium). These modules included bisque4, palevioletred3, cyan and 

darkolivegreen. The darkolivegreen and cyan modules also correlated to the most thermotolerant 

corals. Additionally, four other modules correlated with at least one category of high 

thermotolerance (either top 10, 20, or 30% of the most thermotolerant corals). One module, 

saddlebrown, correlated to the 10 and 20% least thermotolerant corals. Gene ontology analysis 
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for the four modules correlated to symbiont community type showed enrichment for cellular 

component organization, metabolic process, and nucleic acid metabolic process (Table 9). Gene 

ontology analysis for the four modules correlated to high thermotolerance showed enrichment for 

nucleic acid metabolic process, metabolic process, cellular component organization and cellular 

process (Table 10). Gene ontology analysis for the two modules correlated to low 

thermotolerance showed enrichment for MAPK activity and vesicle-mediated transport, which 

were upregulated in the least thermotolerant corals.  

 

 
Figure 22. MDS plot showing differences in fold-change of 11,331 genes in corals from heat 
stress treatment at 35˚C only (prior to differential expression analysis). Red and yellow denote 
the high pollution sites (Cannery and Coconut Point, respectively). Green denotes the medium 
pollution site (Faga’alu). Blue and purple denote the low pollution sites (Faga’tele and Vatia, 
respectively).  
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Figure 23. Heatmap showing log2 fold change to visualize gene expression differences among 
sites in the heat treatment at 35˚C for 332 genes (FDR < 0.05) from differential gene expression 
analysis run in classic edgeR on only heat stress samples.  
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Figure 24. Heatmap showing module-trait correlations for 11,331 genes for heat stress treatment 
at 35˚C with three pollution level categories, sites hosting a combination of Cladocopium and 
Durisdinium, sites hosting entirely Durisdinium, and 10, 20, and 30% most and least 
thermotolerant colonies. Pearson’s R for significant correlations (p < 0.05) are reported with red 
indicating a positive correlation and blue indicating a negative correlation. 
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Table 9. Significantly enriched Biological Processes (BP) GO terms for the darkolivegreen, 
bisque4, cyan and palevioletred3 modules associated with different correlation patterns in 
colonies hosting entirely Durisdinium versus those hosting Durisdinium and Cladocopium under 
heat stress at 35˚C. GO terms were included if adjusted p-value ≤ 0.001 and were selected by the 
GO_MWU package to best represent independent groups of GOs. GO terms associated with all four 
modules were upregulated in Durisdinium and Cladocopium colonies and downregulated in 
Durisdinium only colonies. 

GO term(s) Description adj p value Module 
Cell cycle    
GO:0010564 regulation of cell cycle process <1e-5 darkolivegreen 
Cellular component 
organization    
GO:0007020 microtubule nucleation <1e-5 bisque4 
GO:0022613;GO:0044085; 
GO:0042254 cellular component biogenesis 0.004 darkolivegreen 
GO:0022618;GO:0071826 ribonucleoprotein complex assembly 0.005 darkolivegreen 
Immune response    

GO:0006958 
complement activation, classical 
pathway <1e-5 bisque4 

Ion Transport    
GO:0006816 calcium ion transport <1e-5 bisque4 
Metabolic process    

GO:0006520 
cellular amino acid metabolic 
process <1e-5 darkolivegreen 

GO:0009116;GO:1901657 nucleoside metabolic process 0.008 cyan 
Nucleic acid metabolic 
process     
GO:0006281 DNA repair <1e-5 darkolivegreen 
GO:0008380 RNA splicing <1e-5 darkolivegreen 
GO:0043046;GO:0034587 piRNA metabolic process <1e-5 cyan 
GO:0006281 DNA repair 0.007 cyan 
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Table 10. Significantly enriched Biological Processes (BP) GO terms for the darkolivegreen, 
cyan, coral1 and antiquewhite4 modules associated with the top 10-20% thermotolerant corals 
under heat stress at 35˚C. GO terms were included if adjusted p-value ≤ 0.001 and were selected 
by the GO_MWU package to best represent independent groups of GOs. GO terms associated with 
all four modules were upregulated in the most thermotolerant corals. 

GO term(s) Description adj p value Module 
Cellular process    
GO:0048278;GO:0140056; 
GO:0022406 Membrane docking <1e-5 coral1 

GO:0010564 
regulation of cell cycle 
process <1e-5 darkolivegreen 

Cellular component organization    
GO:0022613;GO:0044085; 
GO:0042254 cellular component biogenesis 0.004 darkolivegreen 

GO:0022618;GO:0071826 
ribonucleoprotein complex 
assembly 0.005 darkolivegreen 

Metabolic process    

GO:0001817 
regulation of cytokine 
production <1e-5 coral1 

GO:0006520 
cellular amino acid metabolic 
process <1e-5 darkolivegreen 

GO:0009116;GO:1901657 nucleoside metabolic process 0.008 cyan 
Nucleic acid metabolic process     
GO:0006281 DNA repair <1e-5 darkolivegreen 
GO:0008380 RNA splicing <1e-5 darkolivegreen 
GO:0043046;GO:0034587 piRNA metabolic process <1e-5 cyan 
GO:0006281 DNA repair 0.007 cyan 

 
 

Summary of WGCNA Results  
 

Three analyses were performed to compare gene expression patterns: control and heat 

stress samples, control samples only, and heat stress samples only. 12 modules correlated to 

differences between control and heat stress treatments (Table 11). Ten modules containing genes 

involved in reactive oxygen species and signaling were upregulated under heat stress while two 

modules containing metabolic process genes were downregulated. Among control samples, only 

one module correlated to differences between high and low pollution, and contained genes 

involved in external encapsulating structure organization (Table 11). The control sample 

comparison also showed four modules upregulated in the most thermotolerant corals and two 

modules upregulated in the least thermotolerant corals. The most thermotolerant corals showed 
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higher expression of external encapsulating cytokine production and immune response genes at 

control conditions compared to less successful corals. Among heat stress samples, four modules 

related to symbiont community and were involved in gene silencing and RNA processing (Table 

11). Heat stress samples also showed gene expression differences between the most and least 

thermotolerant corals, with four modules upregulated in the top performers and two modules 

upregulated in the bottom performers. Top performers upregulated genes involved in gene 

silencing and RNA processing, and bottom performers upregulated genes involved in transport 

and signaling.   

 

Table 11. Summary of all three WGCNA analyses (control and heat stress samples, control 
samples, and heat stress samples). Analysis is listed along with significantly correlated modules 
(p < 0.05) to heat-stress related phenotypes. Number of genes in module, Pearson’s R, and 
expression pattern (upregulated or downregulated) are also listed. Top Biological Processes (BP) 
and Molecular Function (MF) Gene Ontology categories are also reported. Under phenotype, “D 
only” refers to colonies hosting entirely Durisdinium, and “top/bottom 10%” refers to 
thermotolerance performance.  
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Analysis Figure Module 
Num. 
genes 

Phenotype/
Treatment Correlation 

Expression 
Pattern Top GO term (BP) 

Control v heat 18 paleturquoise 117 heat stress -0.32 down  

Control v heat 18 blue 6036 heat stress -0.97 down 
Small molecule metabolic 
process 

Control v heat 18 saddlebrown 125 heat stress 0.36 up Amino acid activation 
Control v heat 18 darkred 172 heat stress 0.35 up DNA metabolic process 
Control v heat 18 thistle2 391 heat stress 0.42 up DNA integration 
Control v heat 18 darkgrey 3969 heat stress 0.91 up Signaling 
Control v heat 18 darkorange 291 heat stress 0.54 up  
Control v heat 18 darkmagenta 112 heat stress 0.33 up Reactive oxygen species 

Control v heat 18 
lightsteelblue
1 691 heat stress 0.64 up  

Control v heat 18 
darkseagreen
4 150 heat stress 0.44 up Cellular metabolic process 

Control v heat 18 darkturquoise 267 heat stress 0.5 up 
Downregulation of cytokine 
production 

Control v heat 18 royalblue 174 heat stress 0.43 up DNA biosynthetic process 

Control 21 grey60 190 
low 
pollution -0.46 down 

External encapsulating 
structure organization 

Control 21 grey60 190 
high 
pollution 0.72 up 

External encapsulating 
structure organization 

Control 21 purple 495 top 10% 0.57 up Translation 
Control 21 darkmagenta 117 top 10% 0.63 up Immune response 
Control 21 darkorange 267 top 20% 0.65 up  
Control 21 paleturquoise 406 top 20% 0.57 up  
Control 21 thistle1 69 bottom 10% 0.65 up Inorganic cation transport 

Control 21 honeydew1 280 bottom 10% 0.58 up 
Downregulation of catabolic 
process 

Heat stress 24 bisque4 412 D only -0.51 down Calcium ion transport 

Heat stress 24 
palevioletred
3 762 D only -0.55 down Developmental processes 

Heat stress 24 cyan 256 D only -0.45 down Gene silencing by RNA 

Heat stress 24 
darkolivegree
n 600 D only -0.45 down RNA processing 

Heat stress 24 cyan 256 top 10% 0.86 up Gene silencing by RNA 

Heat stress 24 
darkolivegree
n 600 top 10% 0.66 up RNA processing 

Heat stress 24 antiquewhite4 627 top 20% 0.62 up RNA splicing 
Heat stress 24 coral1 472 top 20% 0.54 up Membrane docking 
Heat stress 24 saddlebrown 143 bottom 10% 0.57 up Transport 

Heat stress 24 coral2 210 bottom 20% 0.52 up 
Activation of MAPKK 
activity 
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DISCUSSION 

Our study represents one of few field-based assessments of how pollution affects coral 

thermotolerance and attempts to uncover two potential thermotolerance mechanisms that may be 

influenced by pollution. We exposed corals from a gradient of pollution levels to a heat stress 

assay to determine how thermotolerance varies with pollution level, and how thermotolerance 

and pollution level vary with symbiont community and gene expression patterns. We found that 

the thermotolerance phenotype did not correlate with pollution level, but that symbiont 

community and gene expression patterns were related to pollution level. Corals at polluted sites 

hosted entirely heat-tolerant Durisdinium while corals at low and moderately polluted sites 

hosted a combination of Durisdinium and Cladocopium. Gene expression patterns were driven 

primarily by heat stress but also correlated with pollution level. At control conditions, 

expressional levels of some genes were correlated with pollution level, indicating some 

differences in baseline gene expression at polluted sites. Additionally, expression of gene 

networks in control corals were correlated with their subsequent performance under heat stress, 

indicating differences in baseline gene expression in corals that may dictate heat stress responses 

regardless of site or pollution level.   

 

Thermotolerance  
 
Thermotolerance around Tutuila did not vary by pollution  
 

We measured thermotolerance across five sites of different pollution levels in Tutuila, 

American Samoa using three different metrics: red intensity via colorimetric analysis, 

CoralWatch color health score, and photochemical efficiency. Red intensity and coral health 

scores both measure color paling while photochemical efficiency measures endosymbiont 

function. There was variation in these three metrics, but Faga’tele was consistently more 

sensitive to heat stress than Vatia. Both of these sites were characterized as low pollution, since 

both sites have watersheds that support a low human population, and both have shown low DIN 

loading (Tuitele et al. 2019; Shuler and Comeros-Raynal 2020). Faga’tele was found to have the 

lowest dissolved inorganic nitrogen of 25 sites sampled across Tutuila (Comeros-Raynal et al. 

2019). Faga’tele is also a NOAA National Marine Sanctuary and is the southernmost site on 

Tutuila that was sampled in this study. These factors combined may justify Faga’tele as the 
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‘lowest’ pollution site of the five sampled. However, Faga’tele was most affected by the heat 

stress assay, showing significant bleaching over Vatia in two of three metrics. Vatia is also 

characterized as a low pollution site with modest dissolved inorganic nitrogen and is also a U.S. 

National Park (Comeros-Raynal et al. 2019). However, when comparing Vatia and Faga’tele, the 

pollution impact at Vatia is higher that Faga’tele. Vatia’s watershed hosts a modest human 

population as well as some piggeries while Faga’tele’s watershed hosts virtually zero humans or 

other land-based activities that would impact the water quality there. Yet, these two sites remain 

the two lowest pollution sites compared with the other sites we examined. Since the two lowest 

pollution sites showed different responses to heat stress, environmental differences other than 

pollution level appear to be driving heat stress responses.  

One potential environmental difference at these two sites is wave energy. Vatia and 

Faga’tele both are exposed reefs (not wave sheltered) but differ in their wave energy intensity. 

Faga’tele has stronger wave energy than Vatia, though both sites have stronger wave energy than 

sheltered sites such as Cannery (Comeros-Raynal et al. 2019). Higher water flow associated with 

higher wave energy has been shown to reduce photoinhibition, which can buffer the effects of 

higher temperatures and reduce bleaching during heat stress (Nakamura et al. 2003; Nakamura et 

al. 2005). However, Faga’tele was the site with the highest wave energy, yet it bleached the most 

during heat stress.  

Another important difference to note is that Vatia is on the north side of Tutuila and is 

classified as a North reeftype, which has been shown to be distinct from the Southern reeftype 

(Houk et al. 2010; Comeros-Raynal et al. 2019). The Northern reeftype, typically seen on the 

North side of Tutuila, tends to have less interstitial space in the reef matrix and a well-cemented 

reef basement while the Southern reeftype, typically seen on the South side of Tutuila, tends to 

have more interstitial porosity (Houk et al. 2010). These geomorphological differences have been 

shown to relate to biological differences between the northern and southern reefs on Tutuila, 

including distinct coral, fish, and benthic assemblages (Comeros-Raynal et al. 2019). Since Vatia 

was the only Northern reeftype and the most consistently different site, it is possible that 

Northern reeftype corals are more thermotolerant than the Southern reeftype corals, though 

additional Northern reeftype site replicates would be needed to support this claim.  
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Thermotolerance did not relate to thermal history  
 

Physiological measurements did not appear to relate to variation in thermal history across 

the sites. Temperature data collected in August 2019 showed that similar temperature profiles at 

Faga’alu, Faga’tele, and Vatia, while Cannery was cooler. Additionally, Cannery and Vatia 

showed less variability in temperature compared to the other sites. Cooler and less variable 

temperatures at Cannery would indicate that Cannery might be more susceptible to bleaching 

than other warmer sites since previous work has shown that corals living in warmer and more 

variable environments tend to be less susceptible to bleaching (Oliver and Palumbi 2011a; 

Barshis et al. 2013). However, Cannery corals did not consistently bleach more than other sites. 

Additionally, variation in bleaching metrics did not appear to correlate strongly with average, 

maximum, minimum or standard deviation temperature. Hence, it appears that thermotolerance 

was influenced more strongly by factors other than recent thermal history at these five sites. 

Temperature data over longer time intervals could provide additional insight since temperature 

data collected during this study is limited to a 4 to10 day period and may be overlooking longer-

scale differences in thermal history among sites.  

 
Limitations to our assessments of thermotolerance 

 
 To further isolate the effects of pollution on coral thermotolerance, future work should 

include additional site replicates, especially of the Northern reeftype. This may determine if 

reeftype influences thermotolerance. Additionally, a similar experiment could be repeated during 

summer months to determine if similar trends are seen during time periods when corals are more 

likely to experience bleaching. This study was conducted in August, during winter in Tutuila 

when corals are unlikely to bleach. Bleaching differences may be more apparent and more 

relevant during summer seasons, when natural bleaching events are more likely to occur. Future 

studies should also investigate the potential for variation in cryptic species Acropora hyacinthus. 

Cryptic A. hyacinthus may vary in their thermotolerance and may be identified using genetic 

methods (Ladner and Palumbi 2012). Finally, this study was a field-based study attempting to 

uncover how pollution impacts thermotolerance; but factors other than pollution may be 

influencing our results. To study impacts of pollution (e.g., elevated nutrient levels) on 

thermotolerance without confounding factors, a lab-based study manipulating one variable (e.g., 

elevated nutrient levels) would be useful. These studies have been conducted (and have been 
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described in the introduction) but they may overlook how pollution impacts corals in situ (Rosic 

et al. 2014; Rosset et al. 2017). Recent field-based studies have investigated effects of nutrients 

on coral along natural gradients or through field-based nutrient enrichment experiments but have 

not also investigated plastic processes that may account for thermotolerance differences (Becker 

and Silbiger 2020; Becker et al. 2021). Our field-based study does not include extensive water 

quality sampling in the time leading up to the study nor does it include fine scale differences in 

water quality at each reef, therefore our estimations of pollution at each site are a rough 

estimation that may be difficult to compare to lab-based studies.    

 
Symbiont Communities 
 
Polluted sites hosted entirely heat-tolerant Durisdinium 
 

At all sites, coral fragments contained primarily Durisdinium, with the proportion of 

Cladocopium increasing with lower pollution level. This pattern of higher proportions of 

Durisdinium at high pollution sites follows previous work showing that more variable or 

stressful regions tend to favor Durisdinium (Fabricius et al. 2004; Oliver and Palumbi 2009; 

Carballo-Bolaños et al. 2019). Some work has also linked increased proportions of Durisdinium 

to areas with higher pollution level or human impact (LaJeunesse et al. 2010). Our findings 

support the idea that corals that undergo pollution stress, similarly to heat stress, favor 

Durisdinium. This preference for Durisdinium in more stressful regions may be due to symbiont 

shuffling: whereby higher stress in polluted areas has induced a shift in symbiont communities 

towards Durisdinium. Symbiont community data from 2014 showed that symbiont communities 

across all sites hosted higher levels of Cladocopium (Oliver et al., unpublished) compared with 

data presented here, collected in 2019. This supports the idea that a shift in symbionts may have 

occurred between 2014 and 2019, perhaps due to bleaching events in 2015 and 2017 (Morikawa 

and Palumbi 2019; Witze 2015).  

Interestingly, in our study, the proportions of Cladocopium to Durisdinium did not appear 

to relate to thermal history differences among the sites. This contrasts with other work showing 

that mean maximum temperatures tend to correlate with the percentage of Durisdinium (Oliver 

and Palumbi 2009; Cooper et al. 2011; Oliver and Palumbi 2011b). Though it should be noted 

that our measurements of symbiont communities represent a snapshot in time and our thermal 

history measurements also are limited in scope. Additionally, the differences in the percentages 
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of Durisdinium were minimal, meaning that all sites had similar symbiont communities. 

Therefore, it may be more difficult to correlate these small differences in symbiont community to 

other environmental factors like thermal history. However, since thermal history did not correlate 

to symbiont community differences while pollution level did correlate to symbiont community, 

our results may suggest that pollution is equally or more important than temperature in 

determining symbiont community.   

The results presented here show that less polluted sites tend to host a higher proportion of 

Cladocopium while highly polluted sites tend to host only Durusdinium. This larger proportion 

of Durusdinium at higher polluted sites may confer increased thermal tolerance. Durusdinium 

has been shown to tolerate 1.0 to 1.5°C higher than Cladocopium (Berkelmans and van Oppen 

2006). Therefore, it is possible that more polluted sites hold more thermotolerant corals – though 

our results show that the most thermotolerant site, Vatia, had the second highest proportion of 

Cladocopium. Differences in proportions of Cladocopium may relate to other physiological 

differences that were not the focus of this study, including growth rate. Corals that host primarily 

Cladocopium exhibit faster growth rates than those hosting primarily Durusdinium (Stat and 

Gates 2011). Additionally, hosting a single symbiont species may offer the coral host less 

flexibility to react to changes in their environment. Corals that hosted a single symbiont species 

did not see a change in symbiont composition when exposed to environmental stress, including 

heat stress (Goulet 2006). This reduction in symbiont diversity at polluted sites may improve 

thermal tolerance (though not shown in this study) but at the expense of possible tradeoffs and 

reduced flexibility to respond to environmental change. Though it should also be noted that 

differences in symbiont communities among sites in our study were minimal.  

 
High levels of Durisdinium in 2019 indicate a shift from prior levels  

 
When compared to previous data from A. hyacinthus symbiont communities from the 

same sampling sites in Tutuila, our results indicate a shift in the symbiont community towards 

Durisdinium (Oliver et al. unpublished). In 2014, all corals sampled around Tutuila hosted 

Cladocopium and Durisdinium, with a higher proportion of Cladocopium at all sites (Oliver et al. 

unpublished). By 2019, coral fragments at all sites hosted almost entirely Durisdinium. This shift 

over time may have occurred due to symbiont shuffling after bleaching, such as after the 

bleaching event in 2015 and/or 2017 (Morikawa and Palumbi 2019; Witze 2015). Since 
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Durisdinium outcompete other symbiont species in stressed corals, they are predicted to continue 

to overtake coral symbiont communities over time, especially after continual bleaching events 

(Stat and Gates 2011; Howells et al. 2020). Shifts to Durisdinium typically increase coral 

thermotolerance, though this trend was not seen in this study. In 2014, differences in the 

proportion of Durisdinium among corals was more apparent, and these differences explained 

variation in thermotolerance (Oliver et al. unpublished). By 2019, Durisdinium essentially 

dominates symbiont communities, and thermotolerance variation can no longer be explained by 

symbiont community. Additionally, shifts to Durisdinium may be accompanied by tradeoffs, 

including to growth rate (Stat and Gates 2011). While growth rate was not included in this study, 

it is possible that corals in 2019 had lower growth rates or other physiological differences 

compared to 2014.  

 
Limitations to symbiont community analysis  

  
There are a few limitations of this symbiont community analysis that should be noted here. In 

this study, we measured two symbiont genera, Cladocopium and Durisdinium, since they are the 

most prevalent on Tutuila, but it is possible that other symbiont species are present that we did 

not measure. For example, Symbiodinium (formerly clade A) has been detected at low levels on 

Tutuila but was not measured as a part of this study (Oliver and Palumbi 2009). Additionally, 

there was variation among colonies within each site, with multiple coral fragments at each site 

that hosted entirely Durisdinium. There may be within-site differences among coral colonies that 

account for these differences in symbiont community, including depth, light exposure, or other 

environmental variables that we did not measure within sites (Frade et al. 2008; Innis et al. 

2018). For example, distance from shore has been shown to affect symbiont community in 

American Samoa, with Durisdinium dominating back-reef habitats and a combination of 

Durisdinium and Cladocopium in fore-reef habitats (Oliver and Palumbi 2009). This study did 

not measure distance from shore (either within or among-sites), which may also influence 

symbiont community. There may also be variation within the fragments that were sampled, as it 

has been shown that symbiont proportions can vary over different portions of a single colony 

(Goulet and Coffroth 2003; Rowan et al. 1997). Future work encompassing broader field 

sampling and a larger sample size per site could address some of these limitations.  
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Gene Expression  
 
Gene expression patterns were best explained by heat stress 
 

When examining all sites and treatments, gene expression patterns were driven primarily 

by heat stress. As seen in numerous other studies, heat stress is a strong driver of gene expression 

patterns (Li and Dewey 2011; Barshis et al. 2013). Heat stress appeared to induce gene 

expression shifts in known heat shock response genes including Heat Shock Protein 70 (hsp70). 

Hsp70 has been proposed as a biomarker of environmental stress in corals since it tends to 

upregulate under thermal stress, as well as under general stress (Louis et al. 2017; Wiens et al.) 

Hsp70 is a part of a broader group of heat shock proteins, which are molecular chaperones 

responsible for maintaining the integrity of proteins and protein complexes that may be damaged 

during stress (Louis et al. 2017). HSPs have been observed to upregulate in a variety of 

organisms under heat stress, including corals (Fangue et al. 2006; Kenkel et al. 2011; Bentley et 

al. 2017). The ‘common core’ set of heat stress response genes shared across all sites included 35 

genes annotated as associated with ‘heat shock proteins’ (Figure 16). Other cellular stress 

response genes found to be differentially regulated under heat stress include those involved in 

apoptosis, protein folding, metal ion binding, and DNA binding.  

A weighted gene co-expression network analysis (WGCNA) indicated numerous gene 

modules that related to the heat stress response (Table 5). Two modules were negatively 

correlated with the heat stress treatment and ten modules were positively correlated with the heat 

stress treatment, indicating that multiple groups of genes are involved in the heat stress response. 

The blue WGCNA module contained a large suite of genes that were downregulated under heat 

stress. Some of these gene groups included metabolic and catabolic process genes, which 

typically downregulate when an organism is under stress in order to reduce energetic cost (Hand 

and Hardewig 1996). The darkgrey module was the most significantly correlated upregulated 

module associate with heat stress. This module included some expected heat stress response 

genes, including GO terms falling under ‘response to stress,’ ‘signaling,’ and ‘immune response’ 

categories (Kültz 2005; Palmer et al. 2008). Notably, enrichment for the ‘response to wounding’ 

category was upregulated under heat stress. Taken together, these patterns indicate that heat-

stressed corals in our study are responding to macromolecular damage via gene expression.   
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 In examining the heat stress response among sites, 476 genes were commonly found to be 

involved in the heat stress response among all sites (Figure 16). This indicates that a common 

core set of genes are differentially regulated under heat stress regardless of site-specific 

differences. When comparing how genes are differentially expressed between heat stress and 

control among sites, it appears that higher pollution sites differentially express more genes 

compared to lower pollution sites (Figure 16). Coconut Point (high pollution) showed the largest 

number of differentially expressed genes between control and heat stress. Since gene expression 

shifts can be energetically expensive, the considerable shift in gene expression at Coconut Point 

may be disadvantageous to coral health at that site. Coconut Point did bleach more than other 

sites in one out of three physiology metrics measured in this study, but this is not strong evidence 

that greater gene expression shifts at that site affected bleaching.  

 When gene expression differences were compared between low and high pollution sites, 

it appeared that gene expression profiles were very different in control treatments but converged 

under heat stress. While there were hundreds to thousands of differentially expressed genes 

between low pollution sites and between high pollution sites at control, there were only tens of 

differentially expressed genes between low pollution sites and between high pollution sites 

during heat stress. This lack of gene expression diversity under heat stress suggests that these 

corals are expressing conserved genes needed to tolerate heat stress and cannot afford to express 

their normal site-specific variation in gene expression. This trend is again seen when comparing 

gene expression differences among all sites at control and among all sites at heat stress. There 

were 2155 genes differentially expressed among controls and only 332 genes differentially 

expressed under heat stress (Figure 20, Figure 23). Under high heat stress, corals typically 

express a conserved response (DeSalvo et al. 2010; Barshis et al. 2013; Thomas et al. 2019; 

Dixon et al. 2020). Yet, under mild stress, corals have been shown to have more variable gene 

expression patterns (Dixon et al. 2020). This also suggests that 35˚C represents a high heat stress 

temperature for A. hyacinthus.  

 
Baseline gene expression patterns related to pollution level  
  

While gene expression profiles among controls did not group by site on an MDS plot 

(Figure 19), some grouping by site was seen on a heatmap (Figure 20). However, gene 

expression appeared to group by the batch in which sites were sequenced: Coconut Point (high 
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pollution), Faga’alu (moderate pollution), and Faga’tele (low pollution) in 2020 and Cannery 

(high pollution) and Vatia (low pollution) in 2021. Batch effects in RNA sequencing data have 

been reported in previous work and may be underlying these groupings (Liu and Markatou 

2016). However, each sequencing batch included one low and one high pollution site, so by 

grouping these pollution treatments together, we can attempt to filter out these potential batch 

effects.  

At control conditions, gene expression patterns were compared among sites to determine 

if pollution affects gene expression prior to heat stress, and to examine the possibility of “front-

loading (sensu Bashis et al. 2013). In a WGCNA analysis of gene expression patterns among 

controls, the grey60 module showed opposing patterns in the low pollution versus the high 

pollution sites (Figure 21). This module contained genes relating to ‘response to chemical,’ 

indicating that chemical detection and response genes are upregulated in corals from higher 

pollution sites. These genes included categories of ‘response to abscisic acid’ and ‘response to 

salicylic acid,’ both of which are plant hormones that may counter oxidative stress (Larkindale 

and Knight 2002). Additionally, this module contained multiple GO categories relating to 

various metabolic and biosynthetic processes, suggesting that corals exposed to higher pollution 

may be focusing more energy on metabolism compare to those exposed to lower pollution. This 

supports other research showing that low to moderately elevated nutrient levels improve coral 

growth and metabolism (Bongiorni et al. 2003; Sawall et al. 2011; Morris et al. 2019). When 

compared to GO categories upregulated under nutrient stress in Rosic et al. (2014), none of the 

categories matched GO terms in the grey60 module. We also compared the GO terms of genes in 

the grey60 module to the generalized Acropora stress response GO terms from Dixon et al. 

(2020) and found five of the 190 genes shared GO terms. These five genes were primarily mini-

collagen and calcium-binding proteins. While few of the GO terms in the grey60 module 

matched previous studies, many of the GO terms appears to be involved in production of 

methionine, which is an amino acid that has been shown to mitigate oxidative stress (Luo and 

Levine 2009; Aguilar et al. 2017). Therefore, it is possible that pollution is inducing stress 

response genes, just different genes than those from two previous studies. This may be due to the 

highly context-dependent nature of pollution, whereby differences in pollution may induce 

different stress response genes.   
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Baseline gene expression correlated with thermotolerance 
 
Gene expression at control conditions was linked to thermotolerance during heat stress in 

six gene modules (Figure 21). Interestingly, those gene expression patterns did not appear to be 

dictated by sample site, meaning that regardless of site, some corals express genes that correlate 

with future heat stress tolerance. This suggests that baseline gene expression may dictate how 

corals will respond to heat stress. In the most thermotolerant corals, baseline gene expression 

including upregulation of cytokine production and immune response genes (Table 7). 

To examine the possibility that these genes are frontloaded in the most thermotolerant 

corals, we compared the genes in the four modules where baseline expression correlated to high 

thermotolerance against frontloaded genes identified in Barshis et al. (2013). The four modules 

correlating to high thermotolerance matched three of the 135 genes identified as frontloaded in 

Barshis et al. (2013). These three genes were annotated as a large repetitive protein, a non-

collagenous (NC) domain protein, and a protein kinase family protein (Barshis et al. 2013).  In 

the least thermotolerant corals, baseline gene expression included upregulation of apoptosis and 

ion transport, which are characteristic stress response genes (Kültz 2005). These patterns indicate 

that corals with baseline gene expression patterns characteristic of the cellular stress response 

perform worse during heat stress. Our results suggest that expression of certain stress response 

genes can hinder cellular stress response effectiveness, perhaps due to the severity of the stress. 

Expression of apoptotic or programmed cell death related genes could be indicative of severe or 

chronic stress. This idea has been proposed previously: constitutive expression of stress response 

genes may not benefit organisms if 1) overexpression of these genes is costly or 2) these genes 

drive tradeoffs in the stress response (Rivera et al. 2021). The most thermotolerant corals may 

use other gene pathways to protect against macromolecular damage without triggering apoptosis 

(Rivera et al. 2021). Baseline levels of thermotolerant corals in our study expressed higher levels 

of cytokine production and immune response genes. One study found that disease-tolerant corals 

upregulated cytokine-related pathways under stress while disease-susceptible corals upregulated 

apoptotic-related pathways (Fuess et al. 2017). Taken together, our results indicate that cytokine 

production and immune response genes at baseline conditions benefit corals during heat stress 

while apoptosis-related genes hinder thermotolerance. These differences in baseline gene 

expression may be due to variables that were not measured in this study, including 

environmental, ecological, or evolutionary variation.  
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Gene expression during heat stress correlated with thermotolerance and symbiont community  

 
 During heat stress, gene expression did not correlate with pollution, but did correlate with 

symbiont community (Figure 24). This follows previous work showing that symbiont 

community can affect gene expression in the coral host (Yuyama et al. 2012; Barfield et al. 2018; 

Helmkampf et al. 2019). Two gene modules showed opposite patterns in corals hosting entirely 

Durisdinium comparing to those hosting Cladocopium and Durisdinium. These four modules 

were upregulated in Cladocopium-containing corals during heat stress. These modules contained 

genes involved in nucleic acid metabolic process and cellular component organization (Table 9). 

Interestingly, two of these modules that were upregulated in Cladocopium-containing corals 

were also upregulated in the most thermotolerant corals. This is unexpected since previous work 

shows that colonies hosting entirely Durisdinium are typically more thermotolerant (Berkelmans 

and van Oppen 2006; Stat and Gates 2011; Howells et al. 2020). This indicates that our results 

suggest that a small fraction of Cladocopium supports gene expression patterns that correlate to 

higher thermotolerance, though we note that levels of Cladocopium in our study were extremely 

low.  

 Gene expression at heat stress was also related to high or low thermotolerance (Figure 

24). Four modules were related to the top 10-20% most thermotolerant corals, and these modules 

contained genes relating to RNA splicing, processing, and gene silencing. This suggests that the 

most thermotolerant corals, or corals that host trace amounts of Cladocopium, are regulating 

their RNA in different ways than less thermotolerant corals. RNA processing and modification 

genes have been shown to upregulate in corals hosting Cladocopium compared to those hosting 

Durisdinium (Barfield et al. 2018). This suggests that maintaining symbiosis with Cladocopium 

may require post-transcriptional modifications (Baumgarten et al. 2017; Barfield et al. 2018). 

The least thermotolerant corals correlated to expression of two gene modules during heat stress, 

including one that was enriched for MAPK signaling. Mitogen-activated protein kinases 

(MAPK) are signaling proteins involved in repairing oxidative damage that occurs during stress 

(Kültz 2005). The least thermotolerant corals are expressing stress response genes during heat 

stress, perhaps because they are encountering greater macromolecular damage than the more 

thermotolerant corals.   
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Limitations in gene expression analysis  
 
There are some important caveats to this gene expression study that should be discussed. 

As mentioned above, we saw some evidence of batch effects, since Vatia and Cannery corals 

underwent RNA extraction and sequencing in 2021 while Faga’tele, Faga’alu, and Coconut Point 

corals underwent RNA extraction and sequencing in 2020. These batch effects may lead to some 

additional variation in gene expression patterns that is not due to environmental variables, but 

rather due to differences in sequencing preparation. Additionally, the samples taken for RNAseq 

during heat stress were taken after a two hour ramp up to 35˚C followed by a two and a half hour 

hold at 35˚C. Since the heat stress response is known to occur in tiers (e.g., different stress 

response genes are expressed during the initial hour of heat stress compared to later heat stress), 

our single timepoint may not capture a complete picture of how heat stress affects corals from 

different pollution levels (Seneca and Palumbi 2015; Traylor-Knowles et al. 2017). Lastly, our 

sample size for RNAseq analysis was relatively low (n= 3-4 per site per treatment), but this is not 

uncommon for gene expression studies where the cost of sequencing is high (Ching et al. 2014). 

Our results should be interpreted while acknowledging these limitations.   
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CONCLUSION 

This thesis explored the impact of pollution on coral thermotolerance, symbiont 

communities and gene expression in a field-based experiment. Symbiont communities showed 

trends with pollution level with more polluted sites hosting higher proportions of heat tolerant 

Durisdinium. Yet, all sites overwhelmingly hosted Durisdinium, demonstrating a noticeable shift 

in symbiont communities from 2014, which contained much higher levels of heat sensitive 

Cladocopium. Thermotolerance was not determined by symbiont communities nor pollution 

level, but did relate to gene expression patterns, even at control conditions. This suggests that 

differences in baseline gene expression may allow some corals to better tolerate subsequent heat 

stress. We found that baseline expression of apoptotic genes resulted in lower coral 

thermotolerance, and that thermotolerance was improved in corals that upregulated cytokine 

production genes prior to heat stress and RNA processing genes during heat stress. Future work 

should investigate what triggers these differences in baseline gene expression to better 

understand how management efforts can manipulate them to improve coral thermotolerance. 

This study highlights how gene expression patterns will be especially important in a future where 

most corals are dominated by Durisdinium and symbiont-driven thermotolerance has reached an 

upper limit.  

 

 

 

 

 

 

 

 

 

 



 80 

REFERENCES 

Aguilar C, Raina J-B, Motti CA, Fôret S, Hayward DC, Lapeyre B, Bourne DG, Miller DJ. 2017. 
Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides 
insights into DMSP biosynthesis by corals. BMC Genomics. 18(1):612. doi:10.1186/s12864-
017-3959-0. 

Ayre DJ, Hughes TP. 2000. Genotypic Diversity and Gene Flow in Brooding and Spawning 
Corals Along the Great Barrier Reef, Australia. Evolution. 54(5):1590–1605. 
doi:10.1111/j.0014-3820.2000.tb00704.x. 

Baker AC. 2003. Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and 
Biogeography of Symbiodinium. Annu Rev Ecol Evol Syst. 34(1):661–689. 
doi:10.1146/annurev.ecolsys.34.011802.132417. 

Baker AC, Starger CJ, McClanahan TR, Glynn PW. 2004. Corals’ adaptive response to climate 
change. Nature. 430(7001):741–741. doi:10.1038/430741a. 

Barfield SJ, Aglyamova GV, Bay LK, Matz MV. 2018. Contrasting effects of Symbiodinium 
identity on coral host transcriptional profiles across latitudes. Mol Ecol. 27(15):3103–3115. 
doi:10.1111/mec.14774. 

Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. 2013. Genomic 
basis for coral resilience to climate change. Proc Natl Acad Sci. 110(4):1387–1392. 
doi:10.1073/pnas.1210224110. 

Bates AE, Cooke RSC, Duncan MI, Edgar GJ, Bruno JF, Benedetti-Cecchi L, Côté IM, Lefcheck 
JS, Costello MJ, Barrett N, et al. 2019. Climate resilience in marine protected areas and the 
‘Protection Paradox.’ Biol Conserv. 236:305–314. doi:10.1016/j.biocon.2019.05.005. 

Baumgarten S, Cziesielski MJ, Thomas L, Michell C, Esherick L, Pringle J, Aranda Lastra M, 
Voolstra C. 2017. Evidence for miRNA-mediated modulation of the host transcriptome in 
cnidarian-dinoflagellate symbiosis. Mol Ecol. 27. doi:10.1111/mec.14452. 

Becker DM, Putnam HM, Burkepile DE, Adam TC, Vega Thurber R, Silbiger NJ. 2021. Chronic 
low-level nutrient enrichment benefits coral thermal performance in a fore reef habitat. Coral 
Reefs. doi:10.1007/s00338-021-02138-2. [accessed 2021 Jul 6]. https://doi.org/10.1007/s00338-
021-02138-2. 

Becker DM, Silbiger NJ. 2020. Nutrient and sediment loading affect multiple facets of 
functionality in a tropical branching coral. J Exp Biol. 223(21). doi:10.1242/jeb.225045. 
[accessed 2020 Dec 23]. http://jeb.biologists.org/content/223/21/jeb225045. 

Bellantuono AJ, Granados-Cifuentes C, Miller DJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. 
2012. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress. PLOS ONE. 
7(11):e50685. doi:10.1371/journal.pone.0050685. 



 81 

Bellantuono AJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. 2012. Resistance to thermal stress in 
corals without changes in symbiont composition. Proc Biol Sci. 279(1731):1100–1107. 
doi:10.1098/rspb.2011.1780. 

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. 2012. Impacts of climate 
change on the future of biodiversity. Ecol Lett. 15(4):365–377. doi:10.1111/j.1461-
0248.2011.01736.x. 

Bentley BP, Haas BJ, Tedeschi JN, Berry O. 2017. Loggerhead sea turtle embryos (Caretta 
caretta) regulate expression of stress response and developmental genes when exposed to a 
biologically realistic heat stress. Mol Ecol. 26(11):2978–2992. doi:10.1111/mec.14087. 

Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. 2013. The response of the scleractinian coral 
Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J 
Exp Biol. 216(14):2665–2674. doi:10.1242/jeb.085183. 

Berkelmans R, van Oppen MJH. 2006. The role of zooxanthellae in the thermal tolerance of 
corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B Biol Sci. 
273(1599):2305–2312. doi:10.1098/rspb.2006.3567. 

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence 
data. Bioinformatics. 30(15):2114–2120. doi:10.1093/bioinformatics/btu170. 

Bongiorni L, Shafir S, Angel D, Rinkevich B. 2003. Survival, growth and gonad development of 
two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar Ecol Prog Ser. 
253:137–144. doi:10.3354/meps253137. 

Buddemeier RW, Fautin DG. 1993. Coral Bleaching as an Adaptive Mechanism. BioScience. 
43(5):320–326. doi:10.2307/1312064. 

Burkepile DE, Shantz AA, Adam TC, Munsterman KS, Speare KE, Ladd MC, Rice MM, Ezzat 
L, McIlroy S, Wong JCY, et al. 2020. Nitrogen Identity Drives Differential Impacts of Nutrients 
on Coral Bleaching and Mortality. Ecosystems. 23(4):798–811. doi:10.1007/s10021-019-00433-
2. 

Carballo-Bolaños R, Denis V, Huang Y-Y, Keshavmurthy S, Chen CA. 2019. Temporal 
variation and photochemical efficiency of species in Symbiodinaceae associated with coral 
Leptoria phrygia (Scleractinia; Merulinidae) exposed to contrasting temperature regimes. PLOS 
ONE. 14(6):e0218801. doi:10.1371/journal.pone.0218801. 

Catullo RA, Llewelyn J, Phillips BL, Moritz CC. 2019. The Potential for Rapid Evolution under 
Anthropogenic Climate Change. Curr Biol. 29(19):R996–R1007. doi:10.1016/j.cub.2019.08.028. 

Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid Range Shifts of Species 
Associated with High Levels of Climate Warming. Science. 333(6045):1024–1026. 
doi:10.1126/science.1206432. 



 82 

Ching T, Huang S, Garmire LX. 2014. Power analysis and sample size estimation for RNA-Seq 
differential expression. RNA. 20(11):1684–1696. doi:10.1261/rna.046011.114. 

Comeros-Raynal MT, Lawrence A, Sudek M, Vaeoso M, McGuire K, Regis J, Houk P. 2019. 
Applying a ridge-to-reef framework to support watershed, water quality, and community-based 
fisheries management in American Samoa. Coral Reefs. 38(3):505–520. doi:10.1007/s00338-
019-01806-8. 

Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Radford B, Jones AM, Doyle J, Canto M, 
O’Leary RA, Oppen MJH van. 2011. Environmental Factors Controlling the Distribution of 
Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef. PLOS 
ONE. 6(10):e25536. doi:10.1371/journal.pone.0025536. 

Cornwell B, Hounchell K, Walker N, Golbuu Y, Nestor V, Palumbi SR. 2020 Apr 28. 
Widespread variation in heat tolerance of the coral Acropora hyacinthus spanning variable 
thermal regimes across Palau. bioRxiv.:2020.04.26.062661. doi:10.1101/2020.04.26.062661. 

Craig P, Birkeland C, Belliveau S. 2001. High temperatures tolerated by a diverse assemblage of 
shallow-water corals in American Samoa. Coral Reefs. 2(20):185–189. 
doi:10.1007/s003380100159. 

Cunning R, Baker AC. 2013. Excess algal symbionts increase the susceptibility of reef corals to 
bleaching. Nat Clim Change. 3:259. doi:10.1038/nclimate1711. 

Cunning R, Gillette P, Capo T, Galvez K, Baker AC. 2015. Growth tradeoffs associated with 
thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral 
Reefs. 34(1):155–160. doi:10.1007/s00338-014-1216-4. 

Dana JD. 1846. Zoophytes. Lea and Blanchard. 

D’Angelo C, Wiedenmann J. 2014. Impacts of nutrient enrichment on coral reefs: new 
perspectives and implications for coastal management and reef survival. Curr Opin Environ 
Sustain. 7:82–93. doi:10.1016/j.cosust.2013.11.029. 

Darling ES, McClanahan TR, Côté IM. 2020. Combined effects of two stressors on Kenyan coral 
reefs are additive or antagonistic, not synergistic. Conservation Letters. 

Davis MB, Shaw RG, Etterson JR. 2005. Evolutionary Responses to Changing Climate. Ecology. 
86(7):1704–1714. doi:10.1890/03-0788. 

DeSalvo MK, Sunagawa S, Voolstra CR, Medina M. 2010. Transcriptomic responses to heat 
stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser. 402:97–113. 
doi:10.3354/meps08372. 

Didonato G. 2004. DEVELOPING AN INITIAL WATERSHED CLASSIFICATION FOR 
AMERICAN SAMOA. 



 83 

Dixon G, Abbott E, Matz M. 2020. Meta-analysis of the Coral Environmental Stress Response: 
Acropora corals show opposing responses depending on stress intensity. Mol Ecol. n/a(n/a). 
doi:10.1111/mec.15535. [accessed 2020 Jul 8]. 
https://onlinelibrary.wiley.com/doi/abs/10.1111/mec.15535. 

Donovan MK, Adam TC, Shantz AA, Speare KE, Munsterman KS, Rice MM, Schmitt RJ, 
Holbrook SJ, Burkepile DE. 2020 Feb 19. Nitrogen pollution interacts with heat stress to 
increase coral bleaching across the seascape. Proc Natl Acad Sci. doi:10.1073/pnas.1915395117. 
[accessed 2020 Feb 25]. http://www.pnas.org/content/early/2020/02/18/1915395117. 

Donovan MK, Burkepile DE, Kratochwill C, Shlesinger T, Sully S, Oliver TA, Hodgson G, 
Freiwald J, Woesik R van. 2021. Local conditions magnify coral loss after marine heatwaves. 
Science. 372(6545):977–980. doi:10.1126/science.abd9464. 

Ellis JI, Jamil T, Anlauf H, Coker DJ, Curdia J, Hewitt J, Jones B, Krokos G, Kürten B, Prasad 
D, et al. 2019 Sep 3. Multiple stressor effects on coral reef ecosystems. doi:10.1111/gcb.14819. 
[accessed 2020 Aug 31]. https://repository.kaust.edu.sa/handle/10754/656704. 

Ely BR, Lovering AT, Horowitz M, Minson CT. 2014. Heat acclimation and cross tolerance to 
hypoxia. Temperature. 1(2):107–114. doi:10.4161/temp.29800. 

Evans TG, Hofmann GE. 2012. Defining the limits of physiological plasticity: how gene 
expression can assess and predict the consequences of ocean change. Philos Trans R Soc Lond B 
Biol Sci. 367(1596):1733–1745. doi:10.1098/rstb.2012.0019. 

Fabricius K, Mieog J, Colin P, Idip D, van Oppen M. 2004. Identity and diversity of coral 
endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature 
and shading histories. Mol Ecol. 13:2445–58. doi:10.1111/j.1365-294X.2004.02230.x. 

Fabricius KE, Okaji K, de’Ath G. 2010. Three lines of evidence to link outbreaks of the crown-
of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs. 29:593–
605. doi:10.1007/s00338-010-0628-z. 

Fangue NA, Hofmeister M, Schulte PM. 2006. Intraspecific variation in thermal tolerance and 
heat shock protein gene expression in common killifish, Fundulus heteroclitus. J Exp Biol. 
209(15):2859–2872. doi:10.1242/jeb.02260. 

Fernandes de Barros Marangoni L, Ferrier-Pagès C, Rottier C, Bianchini A, Grover R. 2020. 
Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci Rep. 
10. doi:10.1038/s41598-020-68916-0. 

Frade PR, Jongh FD, Vermeulen F, Bleijswijk JV, Bak RPM. 2008. Variation in symbiont 
distribution between closely related coral species over large depth ranges. Mol Ecol. 17(2):691–
703. doi:https://doi.org/10.1111/j.1365-294X.2007.03612.x. 

Fuess LE, Pinzón C JH, Weil E, Grinshpon RD, Mydlarz LD. 2017. Life or death: disease-
tolerant coral species activate autophagy following immune challenge. Proc R Soc B Biol Sci. 
284(1856):20170771. doi:10.1098/rspb.2017.0771. 



 84 

Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J. 2008. Climate change and evolution: 
disentangling environmental and genetic responses. Mol Ecol. 17(1):167–178. 
doi:10.1111/j.1365-294X.2007.03413.x. 

Goulet T, Coffroth M. 2003. Genetic composition of zooxanthellae between and within colonies 
of the octocoral Plexaura kuna, based on small subunit rDNA and multilocus DNA 
fingerprinting. Mar Biol. 142(2):233–239. doi:10.1007/s00227-002-0936-0. 

Goulet TL. 2006. Most corals may not change their symbionts. Mar Ecol Prog Ser. 321:1–7. 
doi:10.3354/meps321001. 

Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD, Schoepf V, McGinley M, Baumann J, 
Matsui Y. 2014. The cumulative impact of annual coral bleaching can turn some coral species 
winners into losers. Glob Change Biol. 20(12):3823–3833. doi:10.1111/gcb.12658. 

Gunderson AR, Armstrong EJ, Stillman JH. 2016. Multiple Stressors in a Changing World: The 
Need for an Improved Perspective on Physiological Responses to the Dynamic Marine 
Environment. Annu Rev Mar Sci. 8(1):357–378. doi:10.1146/annurev-marine-122414-033953. 

Hand SC, Hardewig I. 1996. Downregulation of cellular metabolism during environmental 
stress: mechanisms and implications. Annu Rev Physiol. 58:539–563. 
doi:10.1146/annurev.ph.58.030196.002543. 

Helmkampf M, Bellinger MR, Frazier M, Takabayashi M. 2019. Symbiont type and 
environmental factors affect transcriptome-wide gene expression in the coral Montipora capitata. 
Ecol Evol. 9(1):378–392. doi:10.1002/ece3.4756. 

Hendry AP. 2016. Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary 
Dynamics. J Hered. 107(1):25–41. doi:10.1093/jhered/esv060. 

Hendry AP, Farrugia TJ, Kinnison MT. 2008. Human influences on rates of phenotypic change 
in wild animal populations. Mol Ecol. 17(1):20–29. doi:10.1111/j.1365-294X.2007.03428.x. 

Heron SF, Maynard JA, van Hooidonk R, Eakin CM. 2016. Warming Trends and Bleaching 
Stress of the World’s Coral Reefs 1985–2012. Sci Rep. 6(1):38402. doi:10.1038/srep38402. 

Hochachka PW, Somero GN. 2002. Biochemical Adaptation: Mechanism and Process in 
Physiological Evolution. Oxford University Press. 

Hoffmann AA, Sgrò CM. 2011. Climate change and evolutionary adaptation. Nature. 
470(7335):479–485. doi:10.1038/nature09670. 

Hofmann GE, Todgham AE. 2010. Living in the now: physiological mechanisms to tolerate a 
rapidly changing environment. Annu Rev Physiol. 72:127–145. doi:10.1146/annurev-physiol-
021909-135900. 

Holt RD. 1990. The microevolutionary consequences of climate change. Trends Ecol Evol. 
5(9):311–315. doi:10.1016/0169-5347(90)90088-U. 



 85 

Houk P, Didonato G, Iguel J, Van Woesik R. 2005. Assessing the Effects of Non-Point Source 
Pollution on American Samoa’s Coral Reef Communities. Environ Monit Assess. 107(1):11–27. 
doi:10.1007/s10661-005-2019-4. 

Houk P, Musburger C, Wiles P. 2010. Water Quality and Herbivory Interactively Drive Coral-
Reef Recovery Patterns in American Samoa. PLOS ONE. 5(11):e13913. 
doi:10.1371/journal.pone.0013913. 

Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA. 2020. Corals in the 
hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol. 29(5):899–911. 
doi:10.1111/mec.15372. 

Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P. 2017. 
Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. 
Mol Biol Evol. 34(8):2115–2122. doi:10.1093/molbev/msx148. 

Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, 
Babcock RC, Beger M, Bellwood DR, Berkelmans R, et al. 2017. Global warming and recurrent 
mass bleaching of corals. Nature. 543(7645):373–377. doi:10.1038/nature21707. 

Innis T, Cunning R, Ritson-Williams R, Wall CB, Gates RD. 2018. Coral color and depth drive 
symbiosis ecology of Montipora capitata in Kāne‘ohe Bay, O‘ahu, Hawai‘i. Coral Reefs. 
37(2):423–430. doi:10.1007/s00338-018-1667-0. 

IPCC. 2018. Global warming of 1.5°C. Intergovernmental Panel on Climate Change. 

Jablonka E, Raz G. 2009. Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, 
and Implications for the Study of Heredity and Evolution. Q Rev Biol. 84(2):131–176. 
doi:10.1086/598822. 

Jokiel PL, Brown EK. 2004. Global warming, regional trends and inshore environmental 
conditions influence coral bleaching in Hawaii. Glob Change Biol. 10(10):1627–1641. 
doi:10.1111/j.1365-2486.2004.00836.x. 

Jones A, Berkelmans R. 2010. Potential Costs of Acclimatization to a Warmer Climate: Growth 
of a Reef Coral with Heat Tolerant vs. Sensitive Symbiont Types. PLOS ONE. 5(5):e10437. 
doi:10.1371/journal.pone.0010437. 

Jones RJ, Kildea T, Hoegh-guldberg O. 1999. PAM Chlorophyll Fluorometry: a New in situ 
Technique for Stress Assessment in Scleractinian Corals, used to Examine the Effects of Cyanide 
from Cyanide Fishing. Mar Pollut Bull. 38(10):864–874. doi:10.1016/S0025-326X(98)90160-6. 

Kenkel CD, Aglyamova G, Alamaru A, Bhagooli R, Capper R, Cunning R, deVillers A, Haslun 
JA, Hédouin L, Keshavmurthy S, et al. 2011. Development of Gene Expression Markers of 
Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites. PLOS ONE. 
6(10):e26914. doi:10.1371/journal.pone.0026914. 



 86 

Kenkel CD, Matz MV. 2016. Gene expression plasticity as a mechanism of coral adaptation to a 
variable environment. Nat Ecol Evol. 1(1):1–6. doi:10.1038/s41559-016-0014. 

Kersting DK, Cebrian E, Casado C, Teixidó N, Garrabou J, Linares C. 2015. Experimental 
evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder 
coral. Sci Rep. 5:18635. doi:10.1038/srep18635. 

Klepac CN, Barshis DJ. 2020. Reduced thermal tolerance of massive coral species in a highly 
variable environment. Proc R Soc B Biol Sci. 287(1933):20201379. doi:10.1098/rspb.2020.1379. 

Koop K, Booth D, Broadbent A, Brodie J, Bucher D, Capone D, Coll J, Dennison W, Erdmann 
M, Harrison P, et al. 2001. ENCORE: The Effect of Nutrient Enrichment on Coral Reefs. 
Synthesis of Results and Conclusions. Mar Pollut Bull. 42(2):91–120. doi:10.1016/S0025-
326X(00)00181-8. 

Kültz D. 2005. Molecular and evolutionary basis of the cellular stress response. Annu Rev 
Physiol. 67:225–257. doi:10.1146/annurev.physiol.67.040403.103635. 

Kültz D. 2020. Evolution of cellular stress response mechanisms. Journal of Experimental 
Zoology Part A: Ecological and Integrative Physiology. 

Ladner JT, Barshis DJ, Palumbi SR. 2012. Protein evolution in two co-occurring types of 
Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodiniumclade 
D. BMC Evol Biol. 12(1):217. doi:10.1186/1471-2148-12-217. 

Ladner JT, Palumbi SR. 2012. Extensive sympatry, cryptic diversity and introgression 
throughout the geographic distribution of two coral species complexes. Mol Ecol. 21(9):2224–
2238. doi:10.1111/j.1365-294X.2012.05528.x. 

LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR. 
2018. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral 
Endosymbionts. Curr Biol. 28(16):2570-2580.e6. doi:10.1016/j.cub.2018.07.008. 

LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh‐
Guldberg O, Fitt WK. 2010. Long-standing environmental conditions, geographic isolation and 
host–symbiont specificity influence the relative ecological dominance and genetic diversification 
of coral endosymbionts in the genus Symbiodinium. J Biogeogr. 37(5):785–800. 
doi:https://doi.org/10.1111/j.1365-2699.2010.02273.x. 

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics. 9(1):559. doi:10.1186/1471-2105-9-559. 

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 
9(4):357–359. doi:10.1038/nmeth.1923. 

Larkindale J, Knight MR. 2002. Protection against Heat Stress-Induced Oxidative Damage in 
Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiol. 
128(2):682–695. doi:10.1104/pp.010320. 



 87 

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics. 12:323. doi:10.1186/1471-2105-12-323. 

Li GC, Hahn GM. 1978. Ethanol-induced tolerance to heat and to adriamycin. Nature. 274:699–
701. doi:10.1038/274699a0. 

Linares C, Pratchett MS, Coker DJ. 2011. Recolonisation of Acropora hyacinthus following 
climate-induced coral bleaching on the Great Barrier Reef. Mar Ecol Prog Ser. 438:97–104. 
doi:10.3354/meps09272. 

Lindquist S. 1986. The heat-shock response. Annu Rev Biochem. 55:1151–1191. 
doi:10.1146/annurev.bi.55.070186.005443. 

Liu Q, Markatou M. 2016. Evaluation of Methods in Removing Batch Effects on RNA-seq Data. 
Infect Dis Transl Med. 2. doi:10.11979/idtm.201601002. 

Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD. 2017. Gene expression biomarkers of 
heat stress in scleractinian corals: Promises and limitations. Comp Biochem Physiol Part C 
Toxicol Pharmacol. 191:63–77. doi:10.1016/j.cbpc.2016.08.007. 

Luo S, Levine RL. 2009. Methionine in proteins defends against oxidative stress. FASEB J. 
23(2):464–472. doi:10.1096/fj.08-118414. 

Marangoni LFB, Pinto MM de AN, Marques JA, Bianchini A. 2019. Copper exposure and 
seawater acidification interaction: Antagonistic effects on biomarkers in the zooxanthellate 
scleractinian coral Mussismilia harttii. Aquat Toxicol. 206:123–133. 
doi:10.1016/j.aquatox.2018.11.005. 

Marshall PA, Baird AH. 2000. Bleaching of corals on the Great Barrier Reef: differential 
susceptibilities among taxa. Coral Reefs. 19(2):155–163. doi:10.1007/s003380000086. 

Maynard JA, Anthony KRN, Marshall PA, Masiri I. 2008. Major bleaching events can lead to 
increased thermal tolerance in corals. Mar Biol. 155(2):173–182. doi:10.1007/s00227-008-1015-
y. 

McCook L, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on coral reefs: 
a review of evidence and mechanisms. Coral Reefs. 19(4):400–417. 
doi:10.1007/s003380000129. 

Merilä J, Hendry AP. 2014. Climate change, adaptation, and phenotypic plasticity: the problem 
and the evidence. Evol Appl. 7(1):1–14. doi:10.1111/eva.12137. 

Morikawa MK, Palumbi SR. 2019. Using naturally occurring climate resilient corals to construct 
bleaching-resistant nurseries. Proc Natl Acad Sci. 116(21):10586–10591. 
doi:10.1073/pnas.1721415116. 



 88 

Morris LA, Voolstra CR, Quigley KM, Bourne DG, Bay LK. 2019. Nutrient Availability and 
Metabolism Affect the Stability of Coral–Symbiodiniaceae Symbioses. Trends Microbiol. 
27(8):678–689. doi:10.1016/j.tim.2019.03.004. 

Nakamura T, Woesik R van, Yamasaki H. 2005. Photoinhibition of photosynthesis is reduced by 
water flow in the reef-building coral Acropora digitifera. Mar Ecol Prog Ser. 301:109–118. 
doi:10.3354/meps301109. 

Nakamura T, Yamasaki H, Woesik R van. 2003. Water flow facilitates recovery from bleaching 
in the coral Stylophora pistillata. Mar Ecol Prog Ser. 256:287–291. doi:10.3354/meps256287. 

Nogués-Bravo D, Rodríguez-Sánchez F, Orsini L, de Boer E, Jansson R, Morlon H, Fordham 
DA, Jackson ST. 2018. Cracking the Code of Biodiversity Responses to Past Climate Change. 
Trends Ecol Evol. 33(10):765–776. doi:10.1016/j.tree.2018.07.005. 

Oliver TA, Palumbi SR. 2009. Distributions of stress-resistant coral symbionts match 
environmental patterns at local but not regional scales. Mar Ecol Prog Ser. 378:93–103. 
doi:10.3354/meps07871. 

Oliver TA, Palumbi SR. 2011a. Do fluctuating temperature environments elevate coral thermal 
tolerance? Coral Reefs. 30(2):429–440. doi:10.1007/s00338-011-0721-y. 

Oliver TA, Palumbi SR. 2011b. Many corals host thermally resistant symbionts in high-
temperature habitat. Coral Reefs. 30:241–250. doi:10.1007/s00338-010-0696-0. 

Palmer CV, Mydlarz LD, Willis BL. 2008. Evidence of an inflammatory-like response in non-
normally pigmented tissues of two scleractinian corals. Proc R Soc B Biol Sci. 275(1652):2687–
2693. doi:10.1098/rspb.2008.0335. 

Rivera HE, Aichelman HE, Fifer JE, Kriefall NG, Wuitchik DM, Wuitchik SJS, Davies SW. 
2021. A framework for understanding gene expression plasticity and its influence on stress 
tolerance. Mol Ecol. 30(6):1381–1397. doi:10.1111/mec.15820. 

Rosic N, Kaniewska P, Chan C-KK, Ling EYS, Edwards D, Dove S, Hoegh-Guldberg O. 2014. 
Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal 
and nutrient stress. BMC Genomics. 15(1):1–17. doi:10.1186/1471-2164-15-1052. 

Rosset S, Wiedenmann J, Reed AJ, D’Angelo C. 2017. Phosphate deficiency promotes coral 
bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar Pollut Bull. 
118(1):180–187. doi:10.1016/j.marpolbul.2017.02.044. 

Rowan R, Knowlton N, Baker A, Jara J. 1997. Landscape ecology of algal symbionts creates 
variation in episodes of coral bleaching. Nature. doi:10.1038/40843. 

Sabehat Adnan, Weiss David, Lurie Susan. 1998. Heat-shock proteins and cross-tolerance in 
plants. Physiol Plant. 103(3). doi:10.1034/j.1399-3054.1998.1030317.x. [accessed 2020 Aug 31]. 
https://elibrary.ru/item.asp?id=1222481. 



 89 

Sawall Y, Teichberg MC, Seemann J, Litaay M, Jompa J, Richter C. 2011. Nutritional status and 
metabolism of the coral Stylophora subseriata along a eutrophication gradient in Spermonde 
Archipelago (Indonesia). Coral Reefs. 30(3):841–853. doi:10.1007/s00338-011-0764-0. 

Scheiner SM. 1993. Genetics and Evolution of Phenotypic Plasticity. Annu Rev Ecol Syst. 
24:35–68. 

Schumacher B, Heron S, Vargas-Angel B. 2018. Identifying coral reef resilience potential in 
Tutuila, American Samoa based on NOAA coral reef monitoring data. 

Seneca FO, Palumbi SR. 2015. The role of transcriptome resilience in resistance of corals to 
bleaching. Mol Ecol. 24(7):1467–1484. doi:10.1111/mec.13125. 

Shuler C, Comeros-Raynal M. 2020. Ridge to Reef Management Implications for the 
Development of an Open-Source Dissolved Inorganic Nitrogen Loading Model in American 
Samoa. doi:10.20944/preprints202003.0101.v1. [accessed 2020 Mar 20]. 
https://www.preprints.org/manuscript/202003.0101/v1. 

Shuler CK, Amato DW, Gibson V, Baker L, Olguin AN, Dulai H, Smith CM, Alegado RA. 
2019. Assessment of Terrigenous Nutrient Loading to Coastal Ecosystems along a Human Land-
Use Gradient, Tutuila, American Samoa. Hydrology. 6(1):18. doi:10.3390/hydrology6010018. 

Shuler CK, El-Kadi AI, Dulai H, Glenn CR, Fackrell J. 2017. Source partitioning of 
anthropogenic groundwater nitrogen in a mixed-use landscape, Tutuila, American Samoa. 
Hydrogeol J. 25(8):2419–2434. doi:10.1007/s10040-017-1617-x. 

Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O. 2006. Monitoring coral bleaching using 
a colour reference card. Coral Reefs. 25(3):453–460. doi:10.1007/s00338-006-0123-8. 

Silbiger NJ, Nelson CE, Remple K, Sevilla JK, Quinlan ZA, Putnam HM, Fox MD, Donahue 
MJ. 2018. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc R Soc B Biol 
Sci. 285(1880):20172718. doi:10.1098/rspb.2017.2718. 

Silverstein RN, Cunning R, Baker AC. 2015. Change in algal symbiont communities after 
bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Change Biol. 
21(1):236–249. doi:10.1111/gcb.12706. 

Somero G. 2020. The cellular stress response and temperature: Function, regulation, and 
evolution. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 
333(6):379–397. 

Stambler N, Popper N, Dubinsky Z, Stimson J. 1991. Effects of Nutrient Enrichment and Water 
Motion on the Coral Pocillopora damicornis. Pac Sci. 45. 

Stat M, Gates R. 2011. Clade D Symbiodinium in Scleractinian Corals: A “Nugget” of Hope, a 
Selfish Opportunist, an Ominous Sign, or All of the Above? J Mar Biol. 2011. 
doi:10.1155/2011/730715. 



 90 

Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H. 
2016. Genetic evidence of peripheral isolation and low diversity in marginal populations of the 
Acropora hyacinthus complex. Coral Reefs. 35(4):1419–1432. doi:10.1007/s00338-016-1484-2. 

Tchernov D, Gorbunov MY, Vargas C de, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG. 
2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in 
corals. Proc Natl Acad Sci. 101(37):13531–13535. doi:10.1073/pnas.0402907101. 

Tewksbury JJ, Huey RB, Deutsch CA. 2008. Putting the Heat on Tropical Animals. Science. 
doi:10.1126/science.1159328. 

Thomas L, López EH, Morikawa MK, Palumbi SR. 2019. Transcriptomic resilience, symbiont 
shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol Ecol. 
28(14):3371–3382. doi:10.1111/mec.15143. 

Thomas L, Rose NH, Bay RA, López EH, Morikawa MK, Ruiz-Jones L, Palumbi SR. 2018. 
Mechanisms of Thermal Tolerance in Reef-Building Corals across a Fine-Grained 
Environmental Mosaic: Lessons from Ofu, American Samoa. Front Mar Sci. 4. 
doi:10.3389/fmars.2017.00434. [accessed 2020 Jul 11]. 
http://www.frontiersin.org/articles/10.3389/fmars.2017.00434/full. 

Thompson DM, van Woesik R. 2009. Corals escape bleaching in regions that recently and 
historically experienced frequent thermal stress. Proc R Soc B Biol Sci. 276(1669):2893–2901. 
doi:10.1098/rspb.2009.0591. 

Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW. 2006. Multi-year, seasonal 
genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. 
Mar Biol. 148(4):711–722. doi:10.1007/s00227-005-0114-2. 

Tomanek L. 2008. The Importance of Physiological Limits in Determining Biogeographical 
Range Shifts Due to Global Climate Change: The Heat-Shock Response. Physiol Biochem Zool 
PBZ. 81:709–17. doi:10.1086/590163. 

Towle EK, Baker AC, Langdon C. 2016. Preconditioning to high CO2 exacerbates the response 
of the Caribbean branching coral Porites porites to high temperature stress. Mar Ecol Prog Ser. 
546:75–84. doi:10.3354/meps11655. 

Traylor-Knowles N, Rose NH, Sheets EA, Palumbi SR. 2017. Early Transcriptional Responses 
during Heat Stress in the Coral Acropora hyacinthus. Biol Bull. 232(2):91–100. 
doi:10.1086/692717. 

Tuitele C, Tuiasosopo J, Sunia A, Skelton S, Fano V, Buchan E. 2019. American Samoa 
Watershed Management and Protection Program FY18 Annual Report. 

Voolstra CR, Buitrago-López C, Perna G, Cárdenas A, Hume BCC, Rädecker N, Barshis DJ. 
2020. Standardized short-term acute heat stress assays resolve historical differences in coral 
thermotolerance across microhabitat reef sites. Glob Change Biol. doi:10.1111/gcb.15148. 



 91 

Voss JD, Richardson LL. 2006. Nutrient enrichment enhances black band disease progression in 
corals. Coral Reefs. 25(4):569–576. doi:10.1007/s00338-006-0131-8. 

Wallace CC. 1999. Staghorn Corals of the World: A Revision of the Coral Genus Acropora 
(Scleractinia; Astrocoeniina; Acroporidae) Worldwide, with Emphasis on Morphology, 
Phylogeny and Biogeography. Csiro Publishing. 

Walsworth TE, Schindler DE, Colton MA, Webster MS, Palumbi SR, Mumby PJ, Essington TE, 
Pinsky ML. 2019. Management for network diversity speeds evolutionary adaptation to climate 
change. Nat Clim Change. 9(8):632–636. doi:10.1038/s41558-019-0518-5. 

West JM, Salm RV. 2003. Resistance and Resilience to Coral Bleaching: Implications for Coral 
Reef Conservation and Management. Conserv Biol. 17(4):956–967. doi:10.1046/j.1523-
1739.2003.02055.x. 

Whitall D, Curtis M, Mason A, Vargas-Angel B. 2019. Excess Nutrients in Vatia Bay, American 
Samoa: Spatiotemporal Variability, Source Identification and Impact on Coral Reef Ecosystems. 
doi:10.25923/J8CP-X570. [accessed 2021 Jun 29]. 
https://repository.library.noaa.gov/view/noaa/22423. 

Wiedenmann J, D’Angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP. 2013. 
Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat Clim Change. 
3(2):160–164. doi:10.1038/nclimate1661. 

Wiens M, Ammar MSA, Nawar AH, Koziol C, Hassanein HMA, Eisinger M, Müller IM, Müller 
WEG. Induction of heat-shock (stress) protein gene expression by selected natural and 
anthropogenic disturbances in the octocoral Dendronephthya klunzingeri. J Exp Mar Biol Ecol. 
245(2):265–276. 

Winters G, Holzman R, Blekhman A, Beer S, Loya Y. 2009. Photographic assessment of coral 
chlorophyll contents: Implications for ecophysiological studies and coral monitoring. J Exp Mar 
Biol Ecol. 380(1):25–35. doi:10.1016/j.jembe.2009.09.004. 

Witze A. 2015. Corals worldwide hit by bleaching. Nature. doi:10.1038/nature.2015.18527. 
[accessed 2021 Jun 20]. http://www.nature.com/articles/nature.2015.18527. 

Wooldridge SA. 2009. Water quality and coral bleaching thresholds: Formalising the linkage for 
the inshore reefs of the Great Barrier Reef, Australia. Mar Pollut Bull. 58(5):745–751. 
doi:10.1016/j.marpolbul.2008.12.013. 

Wright RM, Aglyamova GV, Meyer E, Matz MV. 2015. Gene expression associated with white 
syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics. 16(1):371. 
doi:10.1186/s12864-015-1540-2. 

Yuyama I, Harii S, Hidaka M. 2012. Algal symbiont type affects gene expression in juveniles of 
the coral Acropora tenuis exposed to thermal stress. Mar Environ Res. 76:41–47. 
doi:10.1016/j.marenvres.2011.09.004. 



 92 

Zakrzewska A, van Eikenhorst G, Burggraaff JEC, Vis DJ, Hoefsloot H, Delneri D, Oliver SG, 
Brul S, Smits GJ. 2011. Genome-wide analysis of yeast stress survival and tolerance acquisition 
to analyze the central trade-off between growth rate and cellular robustness. Mol Biol Cell. 
22(22):4435–4446. doi:10.1091/mbc.e10-08-0721. 

Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, Welsh R, Correa 
AMS, Lemoine NP, Rosales S, et al. 2016. Overfishing and nutrient pollution interact with 
temperature to disrupt coral reefs down to microbial scales. Nat Commun. 7:11833. 
doi:10.1038/ncomms11833. 

Zhou Z, Zhang G, Chen G, Ni X, Guo L, Yu X, Xiao C, Xu Y, Shi X, Huang B. 2017. Elevated 
ammonium reduces the negative effect of heat stress on the stony coral Pocillopora damicornis. 
Mar Pollut Bull. 118(1):319–327. doi:10.1016/j.marpolbul.2017.03.018. 

 


	Effects of Land-based Sources of Pollution on Coral Thermotolerance
	Microsoft Word - MNThesis_v11.docx

