Document Type


Publication Date


Publication Title



Successfully applying theoretical models to natural communities and predicting ecosystem behavior under changing conditions is the backbone of predictive ecology. However, the experiments required to test these models are dictated by practical constraints, and models are often opportunistically validated against data for which they were never intended. Alternatively, we can inform and improve experimental design by an in-depth pre-experimental analysis of the model, generating experiments better targeted at testing the validity of a theory. Here, we describe this process for a specific experiment. Starting from food web ecological theory, we formulate a model and design an experiment to optimally test the validity of the theory, supplementing traditional design considerations with model analysis. The experiment itself will be run and described in a separate paper. The theory we test is that trophic population dynamics are dictated by species traits, and we study this in a community of terrestrial arthropods. We depart from the Allometric Trophic Network (ATN) model and hypothesize that including habitat use, in addition to body mass, is necessary to better model trophic interactions. We therefore formulate new terms which account for micro-habitat use as well as intra- and interspecific interference in the ATN model. We design an experiment and an effective sampling regime to test this model and the underlying assumptions about the traits dominating trophic interactions. We arrive at a detailed sampling protocol to maximize information content in the empirical data obtained from the experiment and, relying on theoretical analysis of the proposed model, explore potential shortcomings of our design. Consequently, since this is a "pre-experimental" exercise aimed at improving the links between hypothesis formulation, model construction, experimental design and data collection, we hasten to publish our findings before analyzing data from the actual experiment, thus setting the stage for strong inference.


Published in PLOS One, available via

© 2018 Laubmeier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.