Document Type


Publication Date


Publication Title

International Journal of Environmental Research and Public Health


Serratia marcescens is an environmental bacterium and clinical pathogen that can cause an array of infections. We describe an environmental sampling and comparative genomics approach used to investigate a multi-year outbreak of S. marcescens at a correctional facility. Whole genome sequencing analysis revealed a predominant cluster of clonally related S. marcescens from nine patient cases and items associated with illicit drug use. Closely related strains found among items associated with case-patient cells and diluted Cell Block 64 (CB64), a quaternary ammonium disinfectant, and Break Out (BO), a multipurpose cleaner, highlighted their role as environmental reservoirs for S. marcescens in this outbreak. Comparative genomic analysis suggested outbreak strains were both persistent (identical strains found over long periods and in multiple locations of the correctional facility) and diverse (strains clustered with multiple global samples from NCBI database). No correlation was found between antimicrobial resistance (AMR) genes of outbreak strains; NCBI strains have more AMR genes. Principal component analysis (PCA) of virulence factors associated with persistence and infectivity indicated variation based on phylogroups, including the predominant cluster; identifiable variations among environmental versus clinical strains were not observed. Identification of multiple distinct genetic groups highlights the importance of putting epidemiological genomic studies in a proper genetic context.


Published in International Journal of Environmental Research and Public Health by MDPI. Available via doi: 10.3390/ijerph20176709.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (