Document Type

Article

Publication Date

2022

Publication Title

Journal of Sports Science and Medicine

Abstract

Resistance exercise (RE) activates cell signaling pathways associated with myostatin. Decorin is located in the extracellular matrix (ECM) and can block the inhibitory effect of myostatin. This study sought to determine the impact of low-load (LL) and high-load (HL) RE on myostatin mRNA and protein expression along with changes in muscle decorin and circulating follistatin. Ten resistance-trained men performed a LL (50% 1RM) and HL (80% 1RM) RE session using the angled leg press and leg extension with load and volume equated. Venous blood samples and muscle biopsies were obtained prior to and at 3h and 24h following each RE session. Muscle myostatin mRNA expression was increased at 24h post-exercise (p = 0.032) in LL and at 3h (p = 0.044) and 24h (p = 0.003) post-exercise in HL. Muscle decorin was increased at 24h post-exercise (p < 0.001) in LL and HL; however, muscle myostatin was increased at 24h post-exercise (p < 0.001) only in HL. For muscle Smad 2/3, no significant differences were observed (p > 0.05). Serum follistatin was increased and myostatin decreased at 24h post-exercise (p < 0.001) in LL and HL. Muscle myostatin gene and protein expression increased in response to HL RE. However, serum myostatin was decreased in the presence of increases in decorin in muscle and follistatin in circulation. Therefore, our data suggest a possible mechanism may exist where decorin within the ECM is able to bind to, and decrease, myostatin that might otherwise enter the circulation for activin IIB (ACTIIB) receptor binding and subsequent canonical signaling through Smad 2/3.

Comments

Published in the Journal of Sports Science and Medicine by Science and Education Publishing. Available via doi: 10.52082/jssm.2022.616.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Share

COinS