Document Type
Article
Publication Date
7-12-2022
Publication Title
Molecular Ecology
Abstract
Acidification-induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2. In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2 variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish, Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight-day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2 variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification.
Recommended Citation
Toy, Jason A.; Kroeker, Kristy J.; Logan, Cheryl A.; Takeshita, Yuichiro; Longo, Gary C.; and Bernardi, Giacomo, "Upwelling-Level Acidification and pH/pCO2 Variability Moderate Effects of Ocean Acidification on Brain Gene Expression in the Temperate Surfperch, Embiotoca jacksoni" (2022). Marine Science Faculty Publications and Presentations. 2.
https://digitalcommons.csumb.edu/marinescience_fac/2
Comments
Published in Molecular Ecology by John Wiley & Sons Ltd. Available via doi: 10.1111/mec.16611.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.