Document Type

Article

Publication Date

9-30-2019

Publication Title

PLOS One

Abstract

Weeds are the major limitation to efficient crop production, and effective weed management is necessary to prevent yield losses due to crop-weed competition. Assessments of the relative efficacy of weed control treatments by traditional counting methods is labor intensive and expensive. More efficient methods are needed for weed control assessments. There is extensive literature on advanced techniques of image analysis for weed recognition, identification, classification, and leaf area, but there is limited information on statistical methods for hypothesis testing when data are obtained by image analysis (RGB decimal code). A traditional multiple comparison test, such as the Dunnett-Tukey-Kramer (DTK) test, is not an optimal statistical strategy for the image analysis because it does not fully utilize information contained in RGB decimal code. In this article, a bootstrap method and a Poisson model are considered to incorporate RGB decimal codes and pixels for comparing multiple treatments on weed control. These statistical methods can also estimate interpretable parameters such as the relative proportion of weed coverage and weed densities. The simulation studies showed that the bootstrap method and the Poisson model are more powerful than the DTK test for a fixed significance level. Using these statistical methods, three soil disinfestation treatments, steam, allyl-isothiocyanate (AITC), and control, were compared. Steam was found to be significantly more effective than AITC, a difference which could not be detected by the DTK test. Our study demonstrates that an appropriate statistical method can leverage statistical power even with a simple RGB index.

Comments

Copyright: © 2019 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published in Plos ONE by Public Library of Science. Available via doi: 10.1371/journal.pone.0222695.

Share

COinS