Document Type

Article

Publication Date

2017

Publication Title

Horticulturae

Abstract

Using evapotranspiration (ET) data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

Comments

Published in Horticulturae by MDPI. Available via doi: 10.3390/horticulturae3020028.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Share

COinS