Document Type
Article
Publication Date
2013
Publication Title
Carbon Balance and Management
Abstract
Background: The objective of this study was to demonstrate a new, cost-effective method to define the sustainable amounts of harvested wood products in Southeast Asian countries case studies, while avoiding degradation (net loss) of total wood carbon stocks. Satellite remote sensing from the MODIS sensor was used in the CASA (Carnegie Ames Stanford Approach) carbon cycle model to map forest production for the Southeast Asia region from 2000 to 2010. These CASA model results have been designed to be spatially detailed enough to support carbon cycle assessments in different wooded land cover classes, e.g., open woodlands, wetlands, and forest areas.
Results: The country with the highest average forest net primary production (NPP greater than 950 g C m-2 yr-1) over the period was the Philippines, followed by Malaysia and Indonesia. Myanmar and Vietnam had the lowest average forest NPP among the region’s countries at less than 815 g C m-2 yr-1. Case studies from throughout the Southeast Asia region for the maximum harvested wood products amount that could be sustainably extracted per year were generated using the CASA model NPP predictions.
Conclusions: The method of using CASA model’s estimated annual change in forest carbon on a yearly basis can conservatively define the upper limit for the amount of harvested wood products that can be removed and still avoid degradation (net loss) of the total wood carbon stock over that same time period.
Recommended Citation
Potter, Christopher; Klooster, Steven; Genovese, Vanessa; and Hiatt, Cyrus, "Forest production predicted from satellite image analysis for the Southeast Asia region" (2013). School of Natural Sciences Faculty Publications and Presentations. 69.
https://digitalcommons.csumb.edu/sns_fac/69
Comments
Published in Carbon Balance and Management by BMC. Available via doi: 10.1186/1750-0680-8-9.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.